Різниця арифметичної прогресії формула. Сума перших n-членів арифметичної прогресії


Так, так: арифметична прогресія – це вам не іграшки:)

Що ж, друзі, якщо ви читаєте цей текст, то внутрішній кеп-очевидність підказує мені, що ви поки що не знаєте, що таке арифметична прогресія, але дуже (ні, ось так: ТОВООЧЕНЬ!) хочете дізнатися. Тому не мучитиму вас довгими вступами і відразу перейду до справи.

Для початку кілька прикладів. Розглянемо кілька наборів чисел:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Що спільного в усіх цих наборів? На перший погляд – нічого. Але насправді дещо є. А саме: кожен наступний елемент відрізняється від попереднього на те саме число.

Судіть самі. Перший набір — це числа, що просто йдуть поспіль, кожне наступне на одиницю більше попереднього. У другому випадку різниця між рядом стоять числа вже дорівнює п'яти, але ця різниця все одно постійна. У третьому випадку взагалі коріння. Проте $2sqrt(2)=sqrt(2)+sqrt(2)$, а $3sqrt(2)=2sqrt(2)+sqrt(2)$, тобто. і в цьому випадку кожен наступний елемент просто зростає на $ sqrt (2) $ (і нехай вас не лякає, що це число - ірраціональне).

Так от: усі такі послідовності якраз і називаються арифметичними прогресіями. Дамо суворе визначення:

Визначення. Послідовність чисел, в якій кожне наступне відрізняється від попереднього рівно на одну й ту саму величину, називається арифметичною прогресією. Сама величина, яку відрізняються числа, називається різницею прогресії і найчастіше позначається буквою $d$.

Позначення: $\left(((a)_(n)) \right)$ - сама прогресія, $ d$ - її різницю.

І одразу парочка важливих зауважень. По-перше, прогресією вважається лише упорядкованапослідовність чисел: їх можна читати строго в тому порядку, в якому вони записані — і ніяк інакше. Переставляти та міняти місцями числа не можна.

По-друге, сама послідовність може бути як кінцевою, і нескінченної. Наприклад, набір (1; 2; 3) - це, очевидно, кінцева арифметична прогресія. Але якщо записати щось на кшталт (1; 2; 3; 4; ...) — це вже нескінченна прогресія. Три крапки після четвірки ніби натякає, що далі йде ще досить багато чисел. Безкінечно багато, наприклад.:)

Ще хотів би відзначити, що прогресії бувають зростаючими та спадаючими. Зростаючі ми вже бачили той самий набір (1; 2; 3; 4; ...). А ось приклади спадних прогресій:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Гаразд, гаразд: останній приклад може здатися надто складним. Але решта, думаю, вам зрозуміла. Тому введемо нові визначення:

Визначення. Арифметична прогресія називається:

  1. зростаючою, якщо кожен наступний елемент більший за попередній;
  2. спадної, якщо, навпаки, кожен наступний елемент менший за попередній.

Крім того, існують так звані «стаціонарні» послідовності — вони складаються з одного і того ж числа, що повторюється. Наприклад, (3; 3; 3; ...).

Залишається лише одне питання: як відрізнити зростаючу прогресію від спадної? На щастя, тут все залежить лише від того, яким є знак числа $d$, тобто. різниці прогресії:

  1. Якщо $d \gt 0$, то прогресія зростає;
  2. Якщо $d \lt 0$, то прогресія, очевидно, зменшується;
  3. Нарешті, є випадок $d=0$ — у разі вся прогресія зводиться до стаціонарної послідовності однакових чисел: (1; 1; 1; 1; ...) тощо.

Спробуємо розрахувати різницю $d$ для трьох спадних прогресій, наведених вище. Для цього достатньо взяти будь-які два сусідні елементи (наприклад, перший і другий) і відняти з числа, що стоїть праворуч, число, що стоїть зліва. Виглядати це буде ось так:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Як бачимо, у всіх трьох випадках різниця справді вийшла негативною. І тепер, коли ми більш-менш розібралися з визначеннями, настав час розібратися з тим, як описуються прогресії і які у них властивості.

Члени прогресії та рекурентна формула

Оскільки елементи наших послідовностей не можна міняти місцями, їх можна пронумерувати:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

Окремі елементи цього набору називають членами прогресії. Там так і вказують за допомогою номера: перший член, другий член і т.д.

Крім того, як ми вже знаємо, сусідні члени прогресії пов'язані формулою:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Коротше кажучи, щоб знайти $n$-й член прогресії, потрібно знати $n-1$-й член і різницю $d$. Така формула називається рекурентною, оскільки з її допомогою можна знайти будь-яке число, лише знаючи попереднє (а за фактом – усі попередні). Це дуже незручно, тому існує хитріша формула, яка зводить будь-які обчислення до першого члена та різниці:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

Напевно, ви вже зустрічалися з цією формулою. Її люблять давати у всяких довідниках та решібниках. Та й у будь-якому тлумачному підручнику з математики вона йде однією з перших.

Проте пропоную трохи потренуватись.

Завдання №1. Випишіть перші три члени арифметичної прогресії $\left(((a)_(n)) \right)$, якщо $((a)_(1))=8,d=-5$.

Рішення. Отже, нам відомий перший член $((a)_(1))=8$ і різницю прогресії $d=-5$. Скористаємося щойно наведеною формулою і підставимо $n=1$, $n=2$ і $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \& ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Відповідь: (8; 3; −2)

От і все! Зверніть увагу: наша прогресія – спадна.

Звичайно, $ n = 1 $ можна було і не підставляти перший член нам і так відомий. Проте, підставивши одиницю, ми переконалися, що навіть для першого члена наша формула працює. У решті випадків все звелося до банальної арифметики.

Завдання №2. Випишіть перші три члени арифметичної прогресії, якщо її сьомий член дорівнює –40, а сімнадцятий член дорівнює –50.

Рішення. Запишемо умову завдання у звичних термінах:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ ((a)_(17))=((a) _(1))+16d \\\end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\\end(align) \right.\]

Знак системи я поставив тому, що ці вимоги мають виконуватися одночасно. А тепер зауважимо, якщо відняти з другого рівняння перше (ми маємо право це зробити, тому що у нас система), то отримаємо ось що:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \& ((a)_(1))+16d-((a)_(1))-6d=-50+40; \ & 10d=-10; \&d=-1. \\ \end(align)\]

Ось так просто ми знайшли різницю прогресії! Залишилося підставити знайдене число у будь-яке з рівнянь системи. Наприклад, у перше:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Тепер, знаючи перший член і різницю, залишилося знайти другий і третій член:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \&((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Готово! Завдання вирішено.

Відповідь: (−34; −35; −36)

Зверніть увагу на цікаву властивість прогресії, яку ми виявили: якщо взяти $n$-й і $m$-й члени і відняти їх один від одного, то ми отримаємо різницю прогресії, помножену на число $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Проста, але дуже корисна властивість, яку обов'язково треба знати — з її допомогою можна значно прискорити вирішення багатьох завдань щодо прогресу. Ось яскравий тому приклад:

Завдання №3. П'ятий член арифметичної прогресії дорівнює 8,4, та її десятий член дорівнює 14,4. Знайдіть п'ятнадцятий член цієї прогресії.

Рішення. Оскільки $((a)_(5))=8,4$, $((a)_(10))=14,4$, а потрібно знайти $((a)_(15))$, то зауважимо наступне:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Але за умовою $((a)_(10))-((a)_(5))=14,4-8,4=6$, тому $5d=6$, звідки маємо:

\[\begin(align) & ((a)_(15))-14,4 = 6; \ & ((a)_(15)) = 6 +14,4 = 20,4. \\ \end(align)\]

Відповідь: 20,4

От і все! Нам не потрібно складати якісь системи рівнянь і вважати перший член і різницю - все зважилося буквально в пару рядків.

Тепер розглянемо інший вид завдань — пошук негативних і позитивних членів прогресії. Не секрет, що й прогресія зростає, у своїй перший член у неї негативний, то рано чи пізно у ній з'являться позитивні члени. І навпаки: члени спадної прогресії рано чи пізно стануть негативними.

При цьому далеко не завжди можна намацати цей момент "в лоб", послідовно перебираючи елементи. Найчастіше завдання складено так, що без знання формул обчислення зайняли б кілька аркушів — ми б просто заснули, поки знайшли відповідь. Тому спробуємо вирішити ці завдання швидшим способом.

Завдання №4. Скільки негативних членів в арифметичній прогресії -38,5; −35,8; …?

Рішення. Отже, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, звідки відразу знаходимо різницю:

Зауважимо, що різницю позитивна, тому прогресія зростає. Перший член негативний, тому дійсно в якийсь момент ми натрапимо на позитивні числа. Питання лише у тому, коли це станеться.

Спробуємо з'ясувати: доки (тобто до якого натурального числа $n$) зберігається негативність членів:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \right. &-385+27cdot \left(n-1 \right) \lt 0; &-385+27n-27 \lt 0; \ & 27n \lt 412; \ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Останній рядок вимагає пояснення. Отже, відомо, що $n \lt 15\frac(7)(27)$. З іншого боку, нас влаштують лише цілі значення номера (більше того: $n\in \mathbb(N)$), тому найбільший допустимий номер - саме $n=15$, а в жодному разі не 16.

Завдання №5. В арифметичній прогресії $(()_(5))=-150,(()_(6))=-147$. Знайдіть номер першого позитивного члена цієї прогресії.

Це була б точнісінько така ж задача, як і попередня, проте нам невідомо $((a)_(1))$. Зате відомі сусідні члени: $((a)_(5))$ і $((a)_(6))$, тому ми легко знайдемо різницю прогресії:

Крім того, спробуємо висловити п'ятий член через перший і різницю за стандартною формулою:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \&((a)_(1))=-150-12=-162. \\ \end(align)\]

Тепер чинимо за аналогією з попереднім завданням. З'ясовуємо, коли в нашій послідовності виникнуть позитивні числа:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; &-162+3n-3 \gt 0; \ & 3n \gt 165; \n n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Мінімальне цілечисленне розв'язання цієї нерівності - число 56.

Зверніть увагу: в останньому завданні все звелося до суворої нерівності, тому варіант $ n = 55 $ нас не влаштує.

Тепер, коли ми навчилися вирішувати прості завдання, перейдемо до складніших. Але для початку давайте вивчимо ще одну дуже корисну властивість арифметичних прогресій, яка в майбутньому заощадить нам купу часу та нерівних клітин.

Середнє арифметичне та рівні відступи

Розглянемо кілька послідовних членів зростання арифметичної прогресії $\left(((a)_(n)) \right)$. Спробуємо відзначити їх на числовій прямій:

Члени арифметичної прогресії на числовій прямій

Я спеціально відзначив довільні члени $((a)_(n-3)),...,((a)_(n+3))$, а не якісь $((a)_(1)) ,\((a)_(2)),\((a)_(3))$ і т.д. Тому що правило, про яке я зараз розповім, однаково працює для будь-яких відрізків.

А правило дуже просте. Згадаймо рекурентну формулу і запишемо її для всіх зазначених членів:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \&((a)_(n-1))=((a)_(n-2))+d; \((a)_(n))=((a)_(n-1))+d; \& ((a)_(n+1))=((a)_(n))+d; \((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Однак ці рівності можна переписати інакше:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \&((a)_(n-2))=((a)_(n))-2d; \&((a)_(n-3))=((a)_(n))-3d; \& ((a)_(n+1))=((a)_(n))+d; \& ((a)_(n+2))=((a)_(n))+2d; \& ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Ну, і що з того? А те, що члени $((a)_(n-1))$ і $((a)_(n+1))$ лежать на тій самій відстані від $((a)_(n)) $. І ця відстань дорівнює $d$. Те саме можна сказати про члени $((a)_(n-2))$ і $((a)_(n+2))$ — вони теж віддалені від $((a)_(n))$ на однакову відстань, що дорівнює $2d$. Продовжувати можна до нескінченності, але сенс добре ілюструє картинка


Члени прогресії лежать однаково від центру

Що це означає для нас? Це означає, що можна знайти $((a)_(n))$, якщо відомі числа-сусіди:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Ми вивели чудове твердження: кожен член арифметичної прогресії дорівнює середньому арифметичному сусідніх членів! Більше того: ми можемо відступити від нашого $((a)_(n))$ ліворуч і праворуч не на один крок, а на $k$ кроків — і все одно формула буде вірною:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Тобто. ми спокійно можемо знайти якесь $((a)_(150))$, якщо знаємо $((a)_(100))$ і $((a)_(200))$, тому що $(( a)_(150))=\frac(((a)_(100))+((a)_(200)))(2)$. На перший погляд може здатися, що цей факт не дає нам нічого корисного. Однак на практиці багато завдань спеціально «заточено» під використання середнього арифметичного. Погляньте:

Завдання №6. Знайдіть усі значення $x$, при яких числа $-6((x)^(2))$, $x+1$ і $14+4((x)^(2))$ є послідовними членами арифметичної прогресії (у вказаному порядку).

Рішення. Оскільки ці числа є членами прогресії, для них виконується умова середнього арифметичного: центральний елемент $x+1$ можна виразити через сусідні елементи:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \& x+1=\frac(14-2((x)^(2)))(2); \& x+1=7-((x)^(2)); \ \ & ((x) ^ (2)) + x-6 = 0. \\ \end(align)\]

Вийшло класичне квадратне рівняння. Його коріння: $ x = 2 $ і $ x = -3 $ - це і є відповіді.

Відповідь: −3; 2.

Завдання №7. Знайдіть значення $$, у яких числа $-1;4-3;(()^(2))+1$ становлять арифметичну прогресію (у зазначеному порядку).

Рішення. Знову висловимо середній член через середнє арифметичне сусідніх членів:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \right.; \\ & 8x-6=((x)^(2))+x; \((x)^(2))-7x+6=0. \\ \end(align)\]

Знову квадратне рівняння. І знову два корені: $ x = 6 $ і $ x = 1 $.

Відповідь: 1; 6.

Якщо в процесі розв'язання задачі у вас вилазять якісь звірячі числа, або ви не до кінця впевнені в правильності знайдених відповідей, то є чудовий прийом, що дозволяє перевірити: чи ми вирішили завдання?

Припустимо, у задачі №6 ми отримали відповіді −3 та 2. Як перевірити, що ці відповіді вірні? Давайте просто підставимо їх у вихідну умову та подивимося, що вийде. Нагадаю, що у нас є три числа ($-6(()^(2))$, $+1$ і $14+4(()^(2))$), які мають становити арифметичну прогресію. Підставимо $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \ & x+1=-2; \ & 14 + 4 ((x) ^ (2)) = 50. \end(align)\]

Отримали числа -54; −2; 50, які відрізняються на 52 — безперечно, це арифметична прогресія. Те саме відбувається і при $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \ & x + 1 = 3; \ & 14 + 4 ((x) ^ (2)) = 30. \end(align)\]

Знову прогресія, але з різницею 27. Отже, завдання вирішено правильно. Бажаючі можуть перевірити друге завдання самостійно, але одразу скажу: там теж все правильно.

Загалом, вирішуючи останні завдання, ми натрапили на ще один цікавий факт, який також необхідно запам'ятати:

Якщо три числа такі, що друге є середнім арифметичним першого та останнього, то ці числа утворюють арифметичну прогресію.

У майбутньому розуміння цього твердження дозволить нам буквально «конструювати» потрібні прогресії, спираючись умову завдання. Але перш ніж ми займемося подібним конструюванням, слід звернути увагу на ще один факт, який прямо випливає з вже розглянутого.

Угруповання та сума елементів

Давайте ще раз повернемося до числової осі. Зазначимо там кілька членів прогресії, між якими можливо. коштує дуже багато інших членів:

На числовій прямій відзначено 6 елементів

Спробуємо виразити "лівий хвіст" через $((a)_(n))$ і $d$, а "правий хвіст" через $((a)_(k))$ і $d$. Це дуже просто:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \& ((a)_(n+2))=((a)_(n))+2d; \&((a)_(k-1))=((a)_(k))-d; \&((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

А тепер зауважимо, що рівні такі суми:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \& ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Простіше кажучи, якщо ми розглянемо як старт два елементи прогресії, які в сумі дорівнюють якомусь числу $S$, а потім почнемо крокувати від цих елементів у протилежні сторони (назустріч один одному або навпаки на видалення), то суми елементів, на які ми натикатимемося, теж будуть рівні$S$. Найбільш наочно це можна уявити графічно:


Однакові відступи дають рівні суми

Розуміння цього факту дозволить вирішувати завдання принципово вищого рівня складності, ніж ті, що ми розглядали вище. Наприклад, такі:

Завдання №8. Визначте різницю арифметичної прогресії, у якій перший член дорівнює 66, а твір другого та дванадцятого членів є найменшим із можливих.

Рішення. Запишемо все, що нам відомо:

\[\begin(align) & ((a)_(1))=66; \&d=? \\ ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Отже, нам невідома різниця прогресії $d$. Власне, навколо різниці і будуватиметься все рішення, оскільки добуток $((a)_(2))\cdot ((a)_(12))$ можна переписати так:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \& ((a)_(12))=((a)_(1))+11d=66+11d; \& ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Для тих, хто в танку: я виніс загальний множник 11 з другої дужки. Таким чином, шуканий твір є квадратичною функцією щодо змінної $d$. Тому розглянемо функцію $ f \ left (d \ right) = 11 \ left (d + 66 \ right) \ left (d + 6 \ right) $ - її графіком буде парабола гілками вгору, т.к. якщо розкрити дужки, ми отримаємо:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11cdot 72d+11cdot 66cdot 6 \end(align)\]

Як бачимо, коефіцієнт при старшому доданку дорівнює 11 - це позитивне число, тому дійсно маємо справу з параболою гілками вгору:


графік квадратичної функції - парабола

Зверніть увагу: мінімальне значення ця парабола набуває у своїй вершині з абсцисою $((d)_(0))$. Звичайно, ми можемо порахувати цю абсцису за стандартною схемою (є ж формула $((d)_(0))=(-b)/(2a)\;$), але куди розумніше буде помітити, що вершина, що шукається, лежить на осі симетрії параболи, тому точка $((d)_(0))$ рівновіддалена від коренів рівняння $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \ \ & 11 \ cdot \ left (d +66 \ right) \ cdot \ left (d +6 \ right) = 0; \&((d)_(1))=-66;\quad((d)_(2))=-6. \\ \end(align)\]

Саме тому я не особливо поспішав розкривати дужки: у вихідному вигляді коріння було знайти дуже просто. Отже, абсцис дорівнює середньому арифметичному чисел −66 і −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Що нам дає виявлене число? При ньому необхідний твір набуває найменшого значення (ми, до речі, так і не порахували $((y)_(\min ))$ — від нас це не потрібно). Водночас це число є різницею вихідної прогресії, тобто. ми знайшли відповідь.:)

Відповідь: −36

Завдання №9. Між числами $-\frac(1)(2)$ і $-\frac(1)(6)$ вставте три числа так, щоб вони разом з цими числами склали арифметичну прогресію.

Рішення. По суті нам потрібно скласти послідовність з п'яти чисел, причому перше і останнє число вже відомо. Позначимо недостатні числа змінними $x$, $y$ і $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Зазначимо, що число $y$ є "серединою" нашої послідовності - воно рівновіддалено і від чисел $x$ і $z$, і від чисел $-\frac(1)(2)$ і $-\frac(1)( 6) $. І якщо з чисел $x$ і $z$ ми в даний момент не можемо отримати $y$, то з кінцями прогресії справа інакша. Згадуємо про середнє арифметичне:

Тепер, знаючи $y$, ми знайдемо числа, що залишилися. Зауважимо, що $x$ лежить між числами $-\frac(1)(2)$ і щойно знайденим $y=-\frac(1)(3)$. Тому

Аналогічно розмірковуючи, знаходимо число, що залишилося:

Готово! Ми знайшли усі три числа. Запишемо їх у відповіді у тому порядку, в якому вони мають бути вставлені між вихідними числами.

Відповідь: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Завдання №10. Між числами 2 і 42 вставте кілька чисел, які разом із даними числами утворюють арифметичну прогресію, якщо відомо, що сума першого, другого та останнього із вставлених чисел дорівнює 56.

Рішення. Ще більш складне завдання, яке, однак, вирішується за тією ж схемою, що й попередні через середнє арифметичне. Проблема в тому, що нам невідомо скільки конкретно чисел треба вставити. Тому припустимо для певності, що після вставки всього буде рівно $n$ чисел, причому перше з них - це 2, а останнє - 42. У цьому випадку шукана арифметична прогресія представима у вигляді:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Зауважимо, проте, що числа $((a)_(2))$ і $((a)_(n-1))$ виходять із чисел 2 і 42, що стоять по краях, шляхом одного кроку назустріч один одному, тобто . до центру послідовності. А це означає, що

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Але тоді записане вище вираз можна переписати так:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \ & 44+((a)_(3))=56; \ & ((a)_(3)) = 56-44 = 12. \\ \end(align)\]

Знаючи $((a)_(3))$ і $((a)_(1))$, ми легко знайдемо різницю прогресії:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \& ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \ & 2d = 10 \ Rightarrow d = 5. \\ \end(align)\]

Залишилося лише знайти інші члени:

\[\begin(align) & ((a)_(1))=2; \ & ((a)_(2))=2+5=7; \ & ((a)_(3)) = 12; \ & ((a)_(4)) = 2 +3 \ cdot 5 = 17; \ & ((a)_(5))=2+4\cdot 5=22; \ & ((a)_(6))=2+5\cdot 5=27; \ & ((a)_(7))=2+6\cdot 5=32; \ & ((a)_(8)) = 2 +7 \ cdot 5 = 37; \ & ((a)_(9)) = 2 +8 \ cdot 5 = 42; \\ \end(align)\]

Таким чином, вже на 9-му кроці ми прийдемо в лівий кінець послідовності — число 42. Усього потрібно було вставити лише 7 чисел: 7; 12; 17; 22; 27; 32; 37.

Відповідь: 7; 12; 17; 22; 27; 32; 37

Текстові завдання з прогресіями

Насамкінець хотілося б розглянути парочку щодо простих завдань. Ну, як простих: для більшості учнів, які вивчають математику в школі і не читали того, що написано вище, ці завдання можуть здатися жерстю. Проте саме такі завдання трапляються в ОДЕ та ЄДІ з математики, тому рекомендую ознайомитися з ними.

Завдання №11. Бригада виготовила у січні 62 деталі, а кожного наступного місяця виготовляла на 14 деталей більше, ніж у попередній. Скільки деталей виготовила бригада у листопаді?

Рішення. Очевидно, кількість деталей, розписана по місяцях, являтиме собою зростаючу арифметичну прогресію. Причому:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Листопад - це 11-й місяць на рік, тому нам потрібно знайти $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Отже, у листопаді буде виготовлено 202 деталі.

Завдання №12. Палітурна майстерня переплела в січні 216 книг, а кожного наступного місяця вона переплітала на 4 книги більше, ніж у попередній. Скільки книг переплела майстерня у грудні?

Рішення. Все теж саме:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Грудень - це останній, 12-й місяць на рік, тому шукаємо $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Це і є відповідь – 260 книг буде переплетено у грудні.

Що ж, якщо ви дочитали до сюди, поспішаю вас привітати: «курс молодого бійця» арифметичними прогресіями ви успішно пройшли. Можна сміливо переходити до наступного уроку, де вивчимо формулу суми прогресії, а також важливі і дуже корисні наслідки з неї.

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Арифметична прогресія - це ряд чисел, в якому кожне число більше (або менше) попереднього на одну й ту саму величину.

Ця тема часто представляється складною і незрозумілою. Індекси у літер, n-й член прогресії, різниця прогресії - все це якось бентежить, так ... Розберемося зі змістом арифметичної прогресії і все відразу налагодиться.)

Концепція арифметичної прогресії.

Арифметична прогресія - поняття дуже просте та чітке. Сумніваєтесь? Даремно.) Дивіться самі.

Я напишу незакінчений ряд чисел:

1, 2, 3, 4, 5, ...

Чи зможете продовжити цей ряд? Які числа підуть далі, за п'ятіркою? Кожен... е-е-е..., коротше, кожен зрозуміє, що далі підуть числа 6, 7, 8, 9 тощо.

Ускладнимо завдання. Даю незакінчений ряд чисел:

2, 5, 8, 11, 14, ...

Чи зможете вловити закономірність, продовжити ряд, і назвати сьомеЧисло ряду?

Якщо зрозуміли, що це число 20 – я вас вітаю! Ви не тільки відчули ключові моменти арифметичної прогресії,але й успішно вжили їх у справу! Якщо не зрозуміли – читаємо далі.

А тепер переведемо ключові моменти із відчуттів у математику.)

Перший ключовий момент.

Арифметична прогресія має справу з рядами чисел.Це і бентежить спочатку. Ми звикли рівняння вирішувати, графіки будувати і таке інше... А тут продовжити ряд, знайти число ряду...

Нічого страшного. Просто прогресії – це перше знайомство з новим розділом математики. Розділ називається "Ряди" і працює саме з рядами чисел та виразів. Звикайте.)

Другий ключовий момент.

В арифметичній прогресії будь-яке число відрізняється від попереднього на одну й ту саму величину.

У першому прикладі ця різниця – одиниця. Яке число не візьми, воно більше попереднього на один. У другому – трійка. Будь-яке число більше попереднього на трійку. Власне, саме цей момент дає нам можливість вловити закономірність і розрахувати наступні числа.

Третій ключовий момент.

Цей момент не впадає у вічі, так... Але дуже, дуже важливий. Ось він: кожне число прогресії стоїть своєму місці.Є перше число, є сьоме, є сорок п'яте і т.д. Якщо їх переплутати абияк, закономірність зникне. Зникне й арифметична прогресія. Залишиться просто ряд чисел.

Ось і вся суть.

Зрозуміло, у новій темі з'являються нові терміни та позначення. Їх треба знати. Інакше й завдання не зрозумієш. Наприклад, доведеться вирішувати, що-небудь, типу:

Випишіть перші шість членів арифметичної прогресії (a n), якщо a 2 = 5, d = -2,5.

Вселяє?) Літери, індекси якісь... А завдання, між іншим - простіше нікуди. Просто потрібно зрозуміти зміст термінів та позначень. Зараз ми цю справу опануємо і повернемося до завдання.

Терміни та позначення.

Арифметична прогресія- це ряд чисел, у якому кожне число відрізняється від попереднього на одну й ту саму величину.

Ця величина називається . Розберемося з цим поняттям детальніше.

Різниця арифметичної прогресії.

Різниця арифметичної прогресії- це величина, на яку будь-яке число прогресії більшепопереднього.

Один важливий момент. Прошу звернути увагу на слово "Більше".Математично це означає, що кожне число прогресії виходить додаткомрізниці арифметичної прогресії до попереднього числа.

Для розрахунку, скажімо, другогочисла ряду, треба до першомучислу додатицю саму різницю арифметичної прогресії. Для розрахунку п'ятого- Різниця треба додатидо четвертому,ну і т.п.

Різниця арифметичної прогресіїможе бути позитивною,тоді кожне число ряду вийде реально більше за попередній.Така прогресія називається зростаючою.Наприклад:

8; 13; 18; 23; 28; .....

Тут кожне число виходить додаткомпозитивного числа +5 до попереднього.

Різниця може бути і негативною,тоді кожне число ряду вийде менше за попередній.Така прогресія називається (ви не повірите!) спадаючою.

Наприклад:

8; 3; -2; -7; -12; .....

Тут кожне число виходить теж додаткомдо попереднього, але негативного числа, -5.

До речі, під час роботи з прогресією дуже корисно буває відразу визначити її характер - зростаюча вона, чи спадна. Це чудово допомагає зорієнтуватися у вирішенні, засікти свої помилки та виправити їх, поки не пізно.

Різниця арифметичної прогресіїпозначається, як правило, літерою d.

Як знайти d? Дуже просто. Треба від будь-якого числа ряду відібрати попереднєчисло. Відняти. До речі, результат віднімання називається "різниця".)

Визначимо, наприклад, dдля зростаючої арифметичної прогресії:

2, 5, 8, 11, 14, ...

Беремо будь-яке число ряду, яке хочемо, наприклад, 11. Віднімаємо від нього попереднє число,тобто. 8:

Це правильна відповідь. Для цієї арифметичної прогресії різниця дорівнює трьом.

Брати можна саме будь-яке число прогресії,т.к. для конкретної прогресії d -завжди одне й те саме.Хоч десь на початку ряду, хоч у середині, хоч де завгодно. Брати не можна тільки перше число. Просто тому, що у першого числа немає попереднього.)

До речі, знаючи, що d = 3знайти сьоме число цієї прогресії дуже просто. Додамо 3 до п'ятого числа - отримаємо шосте, це буде 17. Додамо до шостого числа трійку, отримаємо сьоме - двадцять.

Визначимо dдля спадної арифметичної прогресії:

8; 3; -2; -7; -12; .....

Нагадую, що, незалежно від символів, для визначення dтреба від будь-якого числа відібрати попереднє.Вибираємо будь-яку кількість прогресії, наприклад -7. Попереднє у нього – число -2. Тоді:

d = -7 - (-2) = -7 + 2 = -5

Різниця арифметичної прогресії може бути будь-яким числом: цілим, дрібним, ірраціональним, всяким.

Інші терміни та позначення.

Кожне число ряду називається членом арифметичної прогресії.

Кожен член прогресії має свій номер.Номери йдуть строго по порядку, без жодних фокусів. Перший, другий, третій, четвертий і т.д. Наприклад, у прогресії 2, 5, 8, 11, 14, ... двійка - це перший член, п'ятірка - другий, одинадцять - четвертий, ну, ви зрозуміли...) Прошу чітко усвідомити - самі числаможуть бути абсолютно будь-які, цілі, дробові, негативні, які завгодно, але нумерація чисел- суворо по порядку!

Як записати прогресію у загальному вигляді? Не питання! Кожне число ряду записується як букви. Для позначення арифметичної прогресії використовується, як правило, літера a. Номер члена вказується індексом внизу праворуч. Члени пишемо через кому (або крапку з комою), ось так:

a 1, a 2, a 3, a 4, a 5, .....

a 1- це перше число, a 3- третє, тощо. Нічого хитрого. Записати цей ряд коротко можна ось так: (a n).

Прогресії бувають кінцеві та нескінченні.

Кінцевапрогресія має обмежену кількість членів. П'ять, тридцять вісім, скільки завгодно. Але – кінцеве число.

Нескінченнапрогресія - має безліч членів, як можна здогадатися.)

Записати кінцеву прогресію через ряд можна ось так, всі члени та крапка в кінці:

a 1 , 2 , 3 , 4 , 5 .

Або так, якщо членів багато:

a 1 , a 2 , ... a 14 , a 15 .

У короткому записі доведеться додатково вказувати кількість членів. Наприклад (для двадцяти членів), ось так:

(a n), n = 20

Нескінченну прогресію можна дізнатися по трьома крапками в кінці ряду, як у прикладах цього уроку.

Тепер можна вирішити завдання. Завдання нескладні, чисто розуміння сенсу арифметичної прогресії.

Приклади завдань з арифметичної прогресії.

Розберемо детально завдання, що наведено вище:

1. Випишіть перші шість членів арифметичної прогресії (a n), якщо a 2 = 5, d = -2,5.

Перекладаємо завдання зрозумілою мовою. Дана нескінченна арифметична прогресія. Відоме друге число цієї прогресії: a 2 = 5.Відома різниця прогресії: d = -2,5.Потрібно знайти перший, третій, четвертий, п'ятий та шостий члени цієї прогресії.

Для наочності запишу ряд за умовою завдання. Перші шість членів, де другий член – п'ятірка:

a 1, 5, a 3, a 4, a 5, a 6,....

a 3 = a 2 + d

Підставляємо у вираз a 2 = 5і d = -2,5. Не забуваймо про мінус!

a 3=5+(-2,5)=5 - 2,5 = 2,5

Третій член вийшов меншим за другий. Все логічно. Якщо число більше попереднього на негативнувеличину, отже, саме число вийде менше попереднього. Прогресія – спадна. Гаразд, врахуємо.) Вважаємо четвертий член нашого ряду:

a 4 = a 3 + d

a 4=2,5+(-2,5)=2,5 - 2,5 = 0

a 5 = a 4 + d

a 5=0+(-2,5)= - 2,5

a 6 = a 5 + d

a 6=-2,5+(-2,5)=-2,5 - 2,5 = -5

Так, члени з третього до шостого вирахували. Вийшов такий ряд:

a 1, 5, 2,5, 0, -2,5, -5, ....

Залишається знайти перший член a 1за відомим другим. Це крок в інший бік, вліво.) Отже, різниця арифметичної прогресії dтреба не додати до a 2, а відібрати:

a 1 = a 2 - d

a 1=5-(-2,5)=5 + 2,5=7,5

Ось і всі справи. Відповідь завдання:

7,5, 5, 2,5, 0, -2,5, -5, ...

Принагідно зауважу, що це завдання ми вирішували рекурентнимспособом. Це страшне слово означає, лише, пошук члена прогресії за попереднім (сусіднім) числом.Інші методи роботи з прогресією ми розглянемо далі.

З цього простого завдання можна зробити один важливий висновок.

Запам'ятовуємо:

Якщо нам відомий хоча б один член та різниця арифметичної прогресії, ми можемо знайти будь-який член цієї прогресії.

Запам'ятали? Цей нескладний висновок дозволяє вирішувати більшість завдань шкільного курсу на цю тему. Всі завдання крутяться навколо трьох основних параметрів: член арифметичної прогресії, різницю прогресії, номер члена прогресії.Усе.

Зрозуміло, вся попередня алгебра не скасовується.) До прогресії причіплюються і нерівності, і рівняння, та інші речі. Але по самій прогресії- все крутиться довкола трьох параметрів.

Наприклад розглянемо деякі популярні завдання з цієї теми.

2. Запишіть кінцеву арифметичну прогресію у вигляді ряду, якщо n=5, d = 0,4 та a 1 = 3,6.

Тут все просто. Все вже дано. Потрібно згадати, як вважаються члени арифметичної прогресії, порахувати та й записати. Бажано не пропустити слова за умови завдання: "кінцеву" і " n=5". Щоб не рахувати до повного посиніння.) У цій прогресії всього 5 (п'ять) членів:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

a 4 = a 3 + d = 4,4 + 0,4 = 4,8

a 5 = a 4 + d = 4,8 + 0,4 = 5,2

Залишається записати відповідь:

3,6; 4; 4,4; 4,8; 5,2.

Ще завдання:

3. Визначте, чи буде число 7 членом арифметичної прогресії (a n), якщо a 1 = 4,1; d = 1,2.

Хм... Хто ж його знає? Як визначити?

Як-не-як... Та записати прогресію у вигляді ряду і подивитися, буде там сімка, чи ні! Вважаємо:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

a 4 = a 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Зараз чітко видно, що сімку ми просто проскочилиміж 6,5 та 7,7! Не потрапила сімка до нашого ряду чисел, і, отже, сімка не буде членом заданої прогресії.

Відповідь: ні.

А ось завдання на основі реального варіанту ГІА:

4. Виписано кілька послідовних членів арифметичної прогресії:

...; 15; х; 9; 6; ...

Тут записаний ряд без кінця та початку. Немає ні номерів членів, ні різниці d. Нічого страшного. Аби вирішити завдання досить розуміти сенс арифметичної прогресії. Дивимося і розуміємо, що можна дізнатисяіз цього ряду? Які параметри із трьох головних?

Номери членів? Немає тут жодного номера.

Зате є три числа і – увага! - Слово "послідовних"за умови. Це означає, що числа йдуть по порядку, без перепусток. А чи є в цьому ряду два сусідніхвідомі числа? Так є! Це 9 і 6. Отже, ми можемо обчислити різницю арифметичної прогресії! Від шістки віднімаємо попереднєчисло, тобто. дев'ятку:

Залишилися дрібниці. Яка кількість буде попередньою для ікса? П'ятнадцять. Отже, ікс можна легко знайти простим додаванням. До 15 додати різницю арифметичної прогресії:

От і все. Відповідь: х = 12

Наступні завдання вирішуємо самостійно. Зауваження: ці завдання - не так на формули. Чисто на розуміння сенсу арифметичної прогресії.) Просто записуємо ряд з числами-літерами, дивимось і розуміємо.

5. Знайдіть перший позитивний член арифметичної прогресії, якщо a 5 = -3; d = 1,1.

6. Відомо, що число 5,5 є членом арифметичної прогресії (a n), де a 1 = 1,6; d = 1,3. Визначте номер n цього члена.

7. Відомо, що у арифметичній прогресії a 2 = 4; a 5 = 15,1. Знайдіть a3.

8. Виписано кілька послідовних членів арифметичної прогресії:

...; 15,6; х; 3,4; ...

Знайдіть член прогресії, позначений літерою х.

9. Потяг почав рух від станції, поступово збільшуючи швидкість на 30 метрів за хвилину. Якою буде швидкість поїзда через п'ять хвилин? Відповідь дайте за км/год.

10. Відомо, що в арифметичній прогресії a 2 = 5; a 6 = -5. Знайдіть a 1.

Відповіді (безладно): 7,7; 7,5; 9,5; 9; 0,3; 4.

Все вийшло? Чудово! Можна освоювати арифметичну прогресію на рівні, у наступних уроках.

Чи не все вийшло? Не біда. У Особливому розділі 555 всі ці завдання розібрані по кісточках.) І, звичайно, описаний простий практичний прийом, який відразу висвічує вирішення подібних завдань чітко, ясно, як на долоні!

До речі, у завданні про поїзд є дві проблемки, на яких нерідко спотикається народ. Одна – чисто за прогресією, а друга – загальна для будь-яких завдань з математики, та й фізики теж. Це переклад розмірності з однієї в іншу. В показано, як треба ці проблеми вирішувати.

У цьому вся уроці ми розглянули елементарний сенс арифметичної прогресії та її основні параметри. Цього достатньо для вирішення практично всіх завдань на цю тему. Додай dдо числа, пиши ряд, все і вирішиться.

Рішення "на пальцях" добре підходить для дуже коротких шматочків ряду, як у прикладах цього уроку. Якщо ряд довше, обчислення ускладнюються. Наприклад, якщо в задачі 9 у питанні замінити "п'ять хвилин"на "тридцять п'ять хвилин",завдання стане значно зліше.)

А ще бувають завдання прості по суті, але несусвітні за обчисленнями, наприклад:

Дана арифметична прогресія (a n). Знайти a 121 якщо a 1 =3, а d=1/6.

І що, будемо багато разів додавати по 1/6?! Це ж убитися можна!

Можна.) Якщо не знати просту формулу, за якою вирішувати подібні завдання можна за хвилину. Ця формула буде у наступному уроці. І завдання ця там вирішена. За хвилину.)

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Поняття числової послідовності має на увазі відповідність кожному натуральному числу деякого дійсного значення. Такий ряд чисел може бути як довільним, так і мати певні властивості - прогресія. У разі кожен наступний елемент (член) послідовності можна обчислити з допомогою попереднього.

Арифметична прогресія - послідовність числових значень, в якій її сусідні члени відрізняються між собою на однакове число (подібною властивістю мають всі елементи ряду, починаючи з другого). Це число - різниця між попереднім і наступним членом - постійно і називається різницею прогресії.

Різниця прогресії: визначення

Розглянемо послідовність, що складається з j значень A = a(1), a(2), a(3), a(4) … a(j), j належить множині натуральних чисел N. Арифметична прогресія, згідно свого визначення, – послідовність , в якій a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. Величина d - потрібна різниця даної прогресії.

d = a(j) – a(j-1).

Виділяють:

  • Зростаючу прогресію, у разі d > 0. Приклад: 4, 8, 12, 16, 20, …
  • Зменшуючу прогресію, тоді d< 0. Пример: 18, 13, 8, 3, -2, …

Різниця прогресії та її довільні елементи

Якщо відомі 2 довільних члена прогресії (i-ий, k-ий), то встановити різницю для даної послідовності можна на основі співвідношення:

a(i) = a(k) + (i – k)*d, отже d = (a(i) – a(k))/(i-k).

Різниця прогресії та її перший член

Цей вираз допоможе визначити невідому величину лише у випадках, коли відомий номер елемента послідовності.

Різниця прогресії та її сума

Сума прогресії – це сума її членів. Для обчислення сумарного значення її перших j елементів скористайтеся відповідною формулою:

S(j) =((a(1) + a(j))/2)*j, але т.к. a(j) = a(1) + d(j – 1), то S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(–1))/2)*j.

Сума арифметичної прогресії.

Сума арифметичної прогресії – штука проста. І за змістом, і за формулою. Але завдання з цієї теми бувають усілякі. Від елементарних до цілком солідних.

Спочатку розберемося із змістом та формулою суми. А потім і вирішуємо. На своє задоволення.) Сенс суми простий, як мукання. Щоб знайти суму арифметичної прогресії, треба просто акуратно скласти всі її члени. Якщо цих членів мало, можна складати без будь-яких формул. Але якщо багато, або дуже багато... додавання напружує.) У цьому випадку рятує формула.

Формула суми виглядає просто:

Розберемося, що за літери входять у формулу. Це багато чого прояснить.

S n - Сума арифметичної прогресії. Результат додавання всіхчленів, з першогопо останній.Це важливо. Складаються саме Усечлени поспіль, без перепусток та перескоків. І, саме, починаючи з першого.У завданнях типу знайти суму третього і восьмого членів, або суму членів з п'ятого по двадцятий - пряме застосування формули розчарує.)

a 1 - першийчлен прогресії. Тут все зрозуміло, це просто першеЧисло ряду.

a n- Останнійчлен прогресії. Остання кількість ряду. Не дуже звична назва, але, у застосуванні до суми, дуже годиться. Далі самі побачите.

n - Номер останнього члена. Важливо розуміти, що у формулі цей номер збігається з кількістю членів, що складаються.

Визначимося з поняттям останньогочлена a n. Питання на засипку: який член буде останнім,якщо дана нескінченнаарифметична прогресія?)

Для впевненої відповіді потрібно розуміти елементарний зміст арифметичної прогресії та... уважно читати завдання!)

У завданні на пошук суми арифметичної прогресії завжди фігурує (прямо чи опосередковано) останній член, яким слід обмежитися.Інакше кінцевої, конкретної суми просто не існує.Для вирішення не має значення, яка задана прогресія: кінцева, або нескінченна. Не має значення, як вона задана: поруч чисел, або формулою n-го члена.

Найголовніше - розуміти, що формула працює з першого члена прогресії до члена з номером n.Власне, повна назва формули виглядає так: сума n перших членів арифметичної прогресії.Кількість цих перших членів, тобто. n, Визначається виключно завданням. У завданні вся ця цінна інформація часто зашифровується, так ... Але нічого, в прикладах нижче ми ці секрети розкриваємо.)

Приклади завдань у сумі арифметичної прогресії.

Насамперед, корисна інформація:

Основна складність у завданнях на суму арифметичної прогресії полягає у правильному визначенні елементів формули.

Ці елементи укладачі завдань шифрують з безмежною фантазією.) Тут головне - не боятися. Розуміючи суть елементів, просто їх розшифрувати. Докладно розберемо кілька прикладів. Почнемо із завдання на основі реального ДІА.

1. Арифметична прогресія задана умовою: an = 2n-3,5. Знайдіть суму перших 10 її членів.

Гарне завдання. Легке.) Нам визначення суми за формулою чого треба знати? Перший член a 1, останній член a n, та номер останнього члена n.

Де взяти номер останнього члена n? Та там же, за умови! Там сказано: знайти суму перших 10 членів.Ну і з яким номером буде останній,десятий член?) Ви не повірите, його номер - десятий!) Отже, замість a nу формулу будемо підставляти a 10, а замість n- десятку. Повторюю, номер останнього члена збігається з кількістю членів.

Залишилось визначити a 1і a 10. Це легко вважається за формулою n-го члена, яка дана за умови завдання. Чи не знаєте, як це зробити? Завітайте до попереднього уроку, без цього - ніяк.

a 1= 2 · 1 - 3,5 = -1,5

a 10= 2 · 10 - 3,5 = 16,5

S n = S 10.

Ми з'ясували значення всіх елементів формули суми арифметичної прогресії. Залишається підставити їх, та порахувати:

Ось і всі справи. Відповідь: 75.

Ще завдання з урахуванням ГИА. Трохи складніше:

2. Дана арифметична прогресія (a n), різниця якої дорівнює 3,7; a 1 = 2,3. Знайти суму перших 15 її членів.

Відразу пишемо формулу суми:

Ця формулка дозволяє нам знайти значення будь-якого члена за його номером. Шукаємо простою підстановкою:

a 15 = 2,3 + (15-1) · 3,7 = 54,1

Залишилося підставити всі елементи у формулу суми арифметичної прогресії та порахувати відповідь:

Відповідь: 423.

До речі, якщо у формулу суми замість a nпросто підставимо формулу n-го члена, отримаємо:

Наведемо подібні, отримаємо нову формулу суми членів арифметичної прогресії:

Як бачимо, тут не потрібно n-й член a n. У деяких завданнях ця формула чудово рятує, так... Можна цю формулу запам'ятати. А можна в потрібний момент просто вивести її, як тут. Адже формулу суми і формулу n-го члена треба пам'ятати.)

Тепер завдання у вигляді короткого шифрування):

3. Знайти суму всіх позитивних двоцифрових чисел, кратних трьом.

ВО як! Ні тобі першого члена, ні останнього, ні прогресії взагалі... Як жити?

Прийде думати головою і витягати з умови всі елементи суми арифметичної прогресії. Що таке двоцифрові числа - знаємо. З двох циферок складаються.) Яке двозначне число буде першим? 10, треба думати.) А останнєдвоцифрове число? 99, зрозуміло! За ним уже тризначні підуть...

Кратні трьом... Гм... Це такі числа, які діляться на три націло, ось! Десятка не ділиться на три, 11 не ділиться... 12... ділиться! Так, дещо вимальовується. Вже можна записати ряд за умовою завдання:

12, 15, 18, 21, ... 96, 99.

Чи буде цей ряд арифметичною прогресією? Звичайно! Кожен член відрізняється від попереднього на трійку. Якщо члену додати 2, чи 4, скажімо, результат, тобто. нове число, що вже не поділиться націло на 3. До купи можна відразу і різницю арифметичної прогресії визначити: d=3.Стане в нагоді!)

Отже, можна сміливо записати деякі параметри прогресії:

А який буде номер nостаннього члена? Той, хто думає, що 99 – фатально помиляється... Номери – вони завжди поспіль йдуть, а члени у нас – через трійку перескакують. Чи не збігаються вони.

Тут два шляхи вирішення. Один шлях – для надпрацьовитих. Можна розписати прогресію, весь ряд чисел, і порахувати пальчиком кількість членів. Другий шлях - для вдумливих. Потрібно згадати формулу n-го члена. Якщо формулу застосувати до нашого завдання, то отримаємо, що 99 - це тридцятий член прогресії. Тобто. n = 30.

Дивимося на формулу суми арифметичної прогресії:

Дивимося, і радіємо.) Ми витягли з умови завдання все необхідне розрахунку суми:

a 1= 12.

a 30= 99.

S n = S 30.

Залишається елементарна арифметика. Підставляємо числа у формулу та вважаємо:

Відповідь: 1665

Ще один тип популярних завдань:

4. Дана арифметична прогресія:

-21,5; -20; -18,5; -17; ...

Знайти суму членів із двадцятого по тридцять четвертий.

Дивимося на формулу суми і... засмучуємось.) Формула, нагадаю, вважає суму з першогочлена. А в завданні треба рахувати суму з двадцятого...Чи не спрацює формула.

Можна, звичайно, розписати всю прогресію до ряду, та поскладувати члени з 20 по 34. Але... якось тупо і довго виходить, правда?)

Є елегантніше рішення. Розіб'ємо наш ряд на дві частини. Перша частина буде з першого члена до дев'ятнадцятого.Друга частина - з двадцятого до тридцять четвертого.Зрозуміло, що якщо ми порахуємо суму членів першої частини S 1-19, та складемо із сумою членів другої частини S 20-34, отримаємо суму прогресії з першого члена по тридцять четвертий S 1-34. Ось так:

S 1-19 + S 20-34 = S 1-34

Звідси видно, що знайти суму S 20-34можна простим відніманням

S 20-34 = S 1-34 - S 1-19

Обидві суми у правій частині вважаються з першогочлена, тобто. до них цілком застосовна стандартна формула суми. Приступаємо?

Витягуємо з умови завдання парметри прогресії:

d = 1,5.

a 1= -21,5.

Для розрахунку сум перших 19 та перших 34 членів нам потрібні будуть 19-й та 34-й члени. Вважаємо їх за формулою n-го члена, як у задачі 2:

a 19= -21,5 + (19-1) · 1,5 = 5,5

a 34= -21,5 + (34-1) · 1,5 = 28

Залишається нічого. Від суми 34 членів відібрати суму 19 членів:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Відповідь: 262,5

Одне важливе зауваження! У вирішенні цього завдання є дуже корисна фішка. Замість прямого розрахунку того, що потрібно (S 20-34),ми порахували те, що, здавалося б, не потрібне - S 1-19 .А вже потім визначили і S 20-34, Відкинувши від повного результату непотрібне. Такий "фінт вухами" часто рятує в злих завданнях.)

У цьому уроці ми розглянули завдання, на вирішення яких достатньо розуміти сенс суми арифметичної прогресії. Ну і пару формул знати треба.)

Практична порада:

При вирішенні будь-якого завдання на суму арифметичної прогресії рекомендую відразу виписувати дві основні формули цієї теми.

Формулу n-го члена:

Ці формули одразу підкажуть, що потрібно шукати, у якому напрямку думати, щоб вирішити завдання. Допомагає.

А тепер – завдання для самостійного вирішення.

5. Знайти суму всіх двоцифрових чисел, які не діляться націло на три.

Круто?) Підказка прихована у зауваженні до завдання 4. Та й завдання 3 допоможе.

6. Арифметична прогресія задана умовою: a 1 = -5,5; an+1 = an+0,5. Знайдіть суму перших 24 її членів.

Незвично?) Це рекурентна формула. Про неї можна прочитати у попередньому уроці. Не ігноруйте посилання, такі завдання в ДПА часто зустрічаються.

7. Вася накопичив до Свята грошей. Цілих 4550 рублів! І вирішив подарувати найулюбленішій людині (собі) кілька днів щастя). Пожити гарно, ні в чому не відмовляючи. Витратити в перший день 500 рублів, а кожного наступного дня витрачати на 50 рублів більше, ніж у попередній! Поки не скінчиться запас грошей. Скільки днів щастя вийшло у Васі?

Складно?) Допоможе додаткова формула із завдання 2.

Відповіді (безладно): 7, 3240, 6.

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Арифметичною прогресієюназивають послідовність чисел (членів прогресії)

У якій кожен наступний член відрізняється від попереднього на постійне доданок, яке ще називають кроком чи різницею прогресії.

Таким чином, задаючи крок прогресії та її перший член можна знайти будь-який її елемент за формулою

Властивості арифметичної прогресії

1) Кожен член арифметичної прогресії, починаючи з другого номера, є середнім арифметичним від попереднього та наступного члена прогресії

Зворотне твердження також є вірним. Якщо середнє арифметичне сусідніх непарних (парних) членів прогресії дорівнює члену, який стоїть між ними, то дана послідовність чисел є арифметичною прогресією. За цим твердженням дуже просто перевірити будь-яку послідовність.

Також за якістю арифметичної прогресії, наведену вище формулу можна узагальнити до наступної

У цьому легко переконатися, якщо розписати доданки праворуч від знака рівності

Її часто застосовують на практиці для спрощення обчислень у завданнях.

2) Сума n перших членів арифметичної прогресії обчислюється за такою формулою

Запам'ятайте добре формулу суми арифметичної прогресії, вона незамінна при обчисленнях і часто зустрічається в простих життєвих ситуаціях.

3) Якщо потрібно знайти не всю суму, а частину послідовності починаючи з k-го її члена, то Вам знадобиться наступна формула суми

4) Практичний інтерес представляє відшукання суми n членів арифметичної прогресії починаючи з k-го номера. Для цього використовуйте формулу

На цьому теоретичний матеріал закінчується і переходимо до вирішення поширених на практиці завдань.

Приклад 1. Знайти сороковий член арифметичної прогресії 4; 7;

Рішення:

Згідно з умовою маємо

Визначимо крок прогресії

За відомою формулою знаходимо сороковий член прогресії

Приклад2. Арифметична прогресія задана третім та сьомим її членом. Знайти перший член прогресії та суму десяти.

Рішення:

Розпишемо задані елементи прогресії за формулами

Від другого рівняння віднімемо перше, в результаті знайдемо крок прогресії

Знайдене значення підставляємо у будь-яке з рівнянь для відшукання першого члена арифметичної прогресії

Обчислюємо суму перших десяти членів прогресії

Не застосовуючи складних обчислень ми знайшли всі шукані величини.

Приклад 3. Арифметичну прогресію задано знаменником та одним із її членів. Знайти перший член прогресії, суму 50 її членів, починаючи з 50 і суму 100 перших.

Рішення:

Запишемо формулу сотого елемента прогресії

і знайдемо перший

На основі першого знаходимо 50 член прогресії

Знаходимо суму частини прогресії

та суму перших 100

Сума прогресії дорівнює 250.

приклад 4.

Знайти число членів арифметичної прогресії, якщо:

а3-а1 = 8, а2 + а4 = 14, Sn = 111.

Рішення:

Запишемо рівняння через перший член та крок прогресії та визначимо їх

Отримані значення підставляємо у формулу суми для визначення кількості членів у сумі

Виконуємо спрощення

і розв'язуємо квадратне рівняння

Зі знайдених двох значень умові задачі підходить лише число 8 . Таким чином, сума перших восьми членів прогресії становить 111.

Приклад 5.

Розв'язати рівняння

1+3+5+...+х=307.

Рішення: Це рівняння є сумою арифметичної прогресії. Випишемо перший її член та знайдемо різницю прогресії



Останні матеріали розділу:

Отримання нітросполук нітруванням
Отримання нітросполук нітруванням

Електронна будова нітрогрупи характеризується наявність семи полярного (напівполярного) зв'язку: Нітросполуки жирного ряду – рідини, що не...

Хроміт, їх відновлювальні властивості
Хроміт, їх відновлювальні властивості

Окисно-відновні властивості сполук хрому з різним ступенем окиснення. Хром. Будова атома. Можливі ступені окислення.

Чинники, що впливають на швидкість хімічної реакції
Чинники, що впливають на швидкість хімічної реакції

Питання №3 Від яких чинників залежить константа швидкості хімічної реакції? Константа швидкості реакції (питома швидкість реакції) - коефіцієнт...