Вирішення нерівностей онлайн з графіком. Лінійні нерівності

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Що таке "квадратна нерівність"?Не питання!) Якщо взяти будь-якеквадратне рівняння та замінити в ньому знак "=" (рівно) на будь-який значок нерівності ( > ≥ < ≤ ≠ ), вийде квадратна нерівність. Наприклад:

1. x 2 -8x+12 0

2. -x 2 +3x > 0

3. x 2 4

Ну ви зрозуміли...)

Я не дарма тут зв'язав рівняння та нерівності. Справа в тому, що перший крок у вирішенні будь-якогоквадратної нерівності - вирішити рівняння, з якого ця нерівність зроблена.З цієї причини - нездатність вирішувати квадратні рівняння автоматично призводить до повного провалу та в нерівностях. Натяки зрозумілі?) Якщо що, подивіться, як вирішувати будь-які квадратні рівняння. Там все докладно розписано. А у цьому уроці ми займемося саме нерівностями.

Готова для вирішення нерівність має вигляд: ліворуч - квадратний тричлен ax 2 +bx+c, праворуч - нуль.Знак нерівності може бути абсолютно будь-яким. Перші два приклади тут вже готові до вирішення.Третій приклад треба ще підготувати.

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

А сьогодні раціональні нерівності не всі можуть вирішувати. Точніше, вирішувати можуть не тільки всі. Мало хто може це робити.
Кличко

Цей урок буде жорстким. Настільки жорстким, що до кінця його дійдуть лише Вибрані. Тому перед початком читання рекомендую прибрати від екранів жінок, кішок, вагітних дітей та...

Та гаразд, насправді все просто. Припустимо, ви освоїли метод інтервалів (якщо не освоїли - рекомендую повернутися і прочитати) і навчилися вирішувати нерівності виду $P\left(x \right) \gt 0$, де $P\left(x \right)$ - який-небудь багаточлен або добуток багаточленів.

Вважаю, що для вас не важко вирішити, наприклад, ось таку дичину (до речі, спробуйте для розминки):

\[\begin(align) & \left(2((x)^(2))+3x+4 \right)\left(4x+25 \right) \gt 0; \\ & x\left(2((x)^(2))-3x-20 \right)\left(x-1 \right)\ge 0; \\ & \left(8x-((x)^(4)) \right)((\left(x-5 \right))^(6))\le 0. \\ \end(align)\]

Тепер трохи ускладнимо завдання і розглянемо не просто багаточлени, а так звані раціональні дроби виду:

де $P\left(x \right)$ і $Q\left(x \right)$ — ті самі багаточлени виду $((a)_(n))((x)^(n))+(( a)_(n-1))((x)^(n-1))+...+((a)_(0))$, або добуток таких многочленів.

Це і буде раціональна нерівність. Принциповим моментом є наявність змінної $x$ у знаменнику. Наприклад, ось це раціональні нерівності:

\[\begin(align) & \frac(x-3)(x+7) \lt 0; \\ & \frac(\left(7x+1 \right)\left(11x+2 \right))(13x-4)\ge 0; \\ & \frac(3((x)^(2))+10x+3)(((\left(3-x \right))^(2))\left(4-((x)^( 2)) \right))\ge 0. \\\end(align)\]

А це — не раціональна, а звичайнісінька нерівність, яка вирішується методом інтервалів:

\[\frac(((x)^(2))+6x+9)(5)\ge 0\]

Забігаючи вперед, відразу скажу: існує як мінімум два способи розв'язання раціональних нерівностей, але вони так чи інакше зводяться до вже відомого нам методу інтервалів. Тому перш ніж розбирати ці способи, давайте згадаємо старі факти, інакше користі від нового матеріалу не буде ніякого.

Що вже треба знати

Важливих фактів не буває багато. Справді знадобиться нам лише чотири.

Формули скороченого множення

Так, так: вони будуть переслідувати нас протягом усієї шкільної програми математики. І в університеті також. Цих формул досить багато, але нам знадобляться лише такі:

\[\begin(align) & ((a)^(2))\pm 2ab+((b)^(2))=((\left(a\pm b \right))^(2)); \\ & ((a)^(2))-((b)^(2))=\left(a-b \right)\left(a+b \right); \\ & ((a)^(3))+((b)^(3))=\left(a+b \right)\left(((a)^(2))-ab+((b) ^(2)) \right); \\ & ((a)^(3))-((b)^(3))=\left(a-b \right)\left(((a)^(2))+ab+((b)^( 2)) \right). \\ \end(align)\]

Зверніть увагу на останні дві формули – це сума та різниця кубів (а не куб суми чи різниці!). Їх легко запам'ятати, якщо помітити, що знак у першій дужці збігається зі знаком у вихідному виразі, а в другій протилежний знаку вихідного виразу.

Лінійні рівняння

Це найпростіші рівняння виду $ax+b=0$, де $a$ і $b$ — це звичайні числа, причому $a\ne 0$. Таке рівняння вирішується просто:

\[\begin(align) & ax+b=0; \\ & ax=-b; \ & x = - \ frac (b) (a). \\ \end(align)\]

Зазначу, що маємо право ділити на коефіцієнт $a$, адже $a\ne 0$. Ця вимога цілком логічна, оскільки за $a=0$ ми отримаємо ось що:

По-перше, у цьому рівнянні немає змінної $x$. Це, взагалі кажучи, не повинно нас бентежити (таке трапляється, скажімо, в геометрії, причому досить часто), але все ж таки перед нами вже не лінійне рівняння.

По-друге, рішення цього рівняння залежить лише від коефіцієнта $b$. Якщо $b$ теж нуль, то наше рівняння має вигляд $0=0$. Ця рівність вірна завжди; отже, $x$ — будь-яке число (зазвичай це записується так: $x\in \mathbb(R)$). Якщо коефіцієнт $b$ не дорівнює нулю, то рівність $b=0$ будь-коли виконується, тобто. відповідей немає (записується $x\in \varnothing$ і читається «безліч рішень порожньо»).

Щоб уникнути всіх цих складнощів, просто вважають $a\ne 0$, що анітрохи не обмежує нас у подальших роздумах.

Квадратні рівняння

Нагадаю, що квадратним рівнянням називається ось це:

Тут зліва многочлен другого ступеня, причому знову $a\ne 0$ (інакше замість квадратного рівняння отримаємо лінійне). Вирішуються такі рівняння через дискримінант:

  1. Якщо $D \gt 0$, ми отримаємо два різні корені;
  2. Якщо $ D = 0 $, то корінь буде один, але другий кратності (що це за кратність і як її враховувати про це трохи пізніше). Або можна сказати, що рівняння має два однакові корені;
  3. При $D \lt 0$ коріння взагалі немає, а знак багаточлена $a((x)^(2))+bx+c$ за будь-якого $x$ збігається зі знаком коефіцієнта $a$. Це, до речі, дуже корисний факт, про який чомусь забувають розповісти під час уроків алгебри.

Саме коріння вважається за всією відомою формулою:

\[((x)_(1,2))=\frac(-b\pm \sqrt(D))(2a)\]

Звідси, до речі, обмеження на дискримінант. Адже квадратний корінь із негативного числа не існує. З приводу коріння у багатьох учнів моторошна каша в голові, тому я спеціально записав цілий урок: що таке корінь в алгебрі і як його рахувати — дуже рекомендую почитати.

Дії з раціональними дробами

Все, що було написано вище, ви знаєте, якщо вивчали метод інтервалів. А ось те, що ми розберемо зараз, не має аналогів у минулому, — це зовсім новий факт.

Визначення. Раціональний дріб - це вираз виду

\[\frac(P\left(x \right))(Q\left(x \right))\]

де $P\left(x \right)$ і $Q\left(x \right)$ - багаточлени.

Очевидно, що з такого дробу легко отримати нерівність — достатньо лише приписати знак «більше» або «менше» праворуч. І трохи далі ми виявимо, що вирішувати такі завдання – одне задоволення, там усе дуже просто.

Проблеми починаються тоді, як у одному вираженні кілька таких дробів. Їх доводиться призводити до спільного знаменника — і саме в цей момент допускається велика кількість образливих помилок.

Тому для успішного вирішення раціональних рівнянь необхідно твердо засвоїти дві навички:

  1. Розкладання многочлена $P\left(x \right)$ на множники;
  2. Власне, приведення дробів до спільного знаменника.

Як розкласти багаточлени на множники? Дуже просто. Нехай у нас є багаточлена виду

Прирівнюємо його до нуля. Отримаємо рівняння $n$-го ступеня:

\[((a)_(n))((x)^(n))+((a)_(n-1))((x)^(n-1))+...+(( a)_(1))x+((a)_(0))=0\]

Припустимо, ми вирішили це рівняння і отримали коріння $((x)_(1)),\ ...,\ ((x)_(n))$ (не лякайтеся: у більшості випадків цього коріння буде не більше двох) . У такому разі наш вихідний багаточлен можна переписати так:

\[\begin(align) & P\left(x \right)=((a)_(n))((x)^(n))+((a)_(n-1))((x )^(n-1))+...+((a)_(1))x+((a)_(0))= \\ & =((a)_(n))\left(x -((x)_(1)) \right)\cdot \left(x-((x)_(2)) \right)\cdot ...\cdot \left(x-((x)_( n)) \right) \end(align)\]

От і все! Зверніть увагу: старший коефіцієнт $((a)_(n))$ нікуди не зник - він буде окремим множником перед дужками, і при необхідності його можна внести в будь-яку з цих дужок (практика показує, що при $((a)_ (n))\ne \pm 1$ серед коренів майже завжди є дроби).

Завдання. Спростіть вираз:

\[\frac(((x)^(2))+x-20)(x-4)-\frac(2((x)^(2))-5x+3)(2x-3)-\ frac(4-8x-5((x)^(2)))(x+2)\]

Рішення. Спочатку подивимося на знаменники: всі вони — лінійні двочлени, і розкладати на множники тут нічого. Тому давайте розкладемо на множники чисельники:

\[\begin(align) & ((x)^(2))+x-20=\left(x+5 \right)\left(x-4 \right); \\ & 2((x)^(2))-5x+3=2\left(x-\frac(3)(2) \right)\left(x-1 \right)=\left(2x- 3 \right)\left(x-1 \right); \\ & 4-8x-5((x)^(2))=-5\left(x+2 \right)\left(x-\frac(2)(5) \right)=\left(x +2 \right)\left(2-5x \right). \\end(align)\]

Зверніть увагу: у другому багаточлені старший коефіцієнт «2» у повній відповідності до нашої схеми спочатку опинився перед дужкою, а потім був внесений до першої дужки, оскільки там виліз дріб.

Те саме сталося і в третьому багаточлені, тільки там ще й порядок переплутаних доданків. Однак коефіцієнт «−5» у результаті виявився внесений у другу дужку (пам'ятайте: вносити множник можна в одну і тільки в одну дужку!), що позбавило нас незручностей, пов'язаних з дробовим корінням.

Щодо першого багаточлена, там все просто: його коріння шукається або стандартно через дискримінант, або за теоремою Вієта.

Повернемося до вихідного виразу та перепишемо його з розкладеними на множники чисельниками:

\[\begin(matrix) \frac(\left(x+5 \right)\left(x-4 \right))(x-4)-\frac(\left(2x-3 \right)\left( x-1 \right))(2x-3)-\frac(\left(x+2 \right)\left(2-5x \right))(x+2)= \\ =\left(x+5 \right)-\left(x-1 \right)-\left(2-5x \right)= \\ =x+5-x+1-2+5x= \\ =5x+4. \\ \end(matrix)\]

Відповідь: $5x+4$.

Як бачите, нічого складного. Небагато математики 7-8 класу - і все. Сенс всіх перетворень у тому й полягає, щоб отримати зі складного і страшного виразу щось просте, з чим легко працювати.

Однак, так буде не завжди. Тому зараз ми розглянемо більш серйозне завдання.

Але спочатку розберемося з тим, як привести два дроби до спільного знаменника. Алгоритм гранично простий:

  1. Розкласти на множники обидва знаменники;
  2. Розглянути перший знаменник і додати до нього множники, що є у другому знаменнику, проте відсутні у першому. Отриманий твір буде спільним знаменником;
  3. З'ясувати, яких множників не вистачає кожного з вихідних дробів, щоб знаменники стали рівними загальному.

Можливо, цей алгоритм вам здасться просто текстом, в якому багато літер. Тому розберемо все на конкретному прикладі.

Завдання. Спростіть вираз:

\[\left(\frac(x)(((x)^(2))+2x+4)+\frac(((x)^(2))+8)(((x)^(3) )-8)-\frac(1)(x-2) \right)\cdot \left(\frac(((x)^(2)))(((x)^(2))-4)- \frac(2)(2-x) \right)\]

Рішення. Такі об'ємні завдання краще вирішувати частинами. Випишемо те, що стоїть у першій дужці:

\[\frac(x)(((x)^(2))+2x+4)+\frac(((x)^(2))+8)(((x)^(3))-8 )-\frac(1)(x-2)\]

На відміну від попереднього завдання, тут із знаменниками все не так просто. Розкладемо на множники кожен із них.

Квадратний тричлен $((x)^(2))+2x+4$ на множники не розкладається, оскільки рівняння $((x)^(2))+2x+4=0$ не має коріння (дискримінант негативний). Залишаємо його без змін.

Другий знаменник - кубічний багаточлен $((x)^(3))-8$ - при уважному розгляді є різницею кубів і легко розкладається за формулами скороченого множення:

\[((x)^(3))-8=((x)^(3))-((2)^(3))=\left(x-2 \right)\left(((x) ^(2))+2x+4 \right)\]

Більше нічого розкласти на множники не можна, оскільки в першій дужці стоїть лінійний двочлен, а в другій — вже знайома нам конструкція, яка не має дійсних коренів.

Нарешті, третій знаменник є лінійний двочлен, який не можна розкласти. Таким чином, наше рівняння набуде вигляду:

\[\frac(x)(((x)^(2))+2x+4)+\frac(((x)^(2))+8)(\left(x-2 \right)\left (((x)^(2))+2x+4 \right))-\frac(1)(x-2)\]

Цілком очевидно, що спільним знаменником буде саме $\left(x-2 \right)\left(((x)^(2))+2x+4 \right)$, і для приведення до нього всіх дробів необхідно перший дроб домножити на $\left(x-2 \right)$, а останню - на $\left(((x)^(2))+2x+4 \right)$. Потім залишиться лише навести такі:

\[\begin(matrix) \frac(x\cdot \left(x-2 \right))(\left(x-2 \right)\left(((x)^(2))+2x+4 \ right))+\frac(((x)^(2))+8)(\left(x-2 \right)\left(((x)^(2))+2x+4 \right))- \frac(1\cdot \left(((x)^(2))+2x+4 \right))(\left(x-2 \right)\left(((x)^(2))+2x +4 \right))= \\ =\frac(x\cdot \left(x-2 \right)+\left(((x)^(2))+8 \right)-\left(((x )^(2))+2x+4 \right))(\left(x-2 \right)\left(((x)^(2))+2x+4 \right))= \\ =\frac (((x)^(2))-2x+((x)^(2))+8-((x)^(2))-2x-4)(\left(x-2 \right)\left (((x)^(2))+2x+4 \right))= \\ =\frac(((x)^(2))-4x+4)(\left(x-2 \right)\ left(((x)^(2))+2x+4 \right)). \\ \end(matrix)\]

Зверніть увагу до другий рядок: коли знаменник вже загальний, тобто. замість трьох окремих дробів ми написали один великий, не варто відразу позбавлятися дужок. Краще напишіть зайвий рядок і відзначте, що, скажімо, перед третім дробом стояв мінус — і він нікуди не подінеться, а «висітиме» в чисельнику перед дужкою. Це позбавить вас безлічі помилок.

Ну і в останньому рядку корисно розкласти на множники чисельник. Тим більше, що це точний квадрат, і нам на допомогу знову приходять формули скороченого множення. Маємо:

\[\frac(((x)^(2))-4x+4)(\left(x-2 \right)\left(((x)^(2))+2x+4 \right))= \frac(((\left(x-2 \right))^(2)))(\left(x-2 \right)\left(((x)^(2))+2x+4 \right) )=\frac(x-2)(((x)^(2))+2x+4)\]

Тепер так само розберемося з другою дужкою. Тут я просто напишу ланцюжок рівностей:

\[\begin(matrix) \frac(((x)^(2)))(((x)^(2))-4)-\frac(2)(2-x)=\frac((( x)^(2)))(\left(x-2 \right)\left(x+2 \right))-\frac(2)(2-x)= \\ =\frac(((x) ^(2)))(\left(x-2 \right)\left(x+2 \right))+\frac(2)(x-2)= \\ =\frac(((x)^( 2)))(\left(x-2 \right)\left(x+2 \right))+\frac(2\cdot \left(x+2 \right))(\left(x-2 \right) )\cdot \left(x+2 \right))= \\ =\frac(((x)^(2))+2\cdot \left(x+2 \right))(\left(x-2 \right)\left(x+2 \right))=\frac(((x)^(2))+2x+4)(\left(x-2 \right)\left(x+2 \right) ). \\ \end(matrix)\]

Повертаємося до вихідного завдання та дивимося на твір:

\[\frac(x-2)((((x)^(2))+2x+4)\cdot \frac(((x)^(2))+2x+4)(\left(x-2) \right)\left(x+2 \right))=\frac(1)(x+2)\]

Відповідь: \[\frac(1)(x+2)\].

Сенс цього завдання такий самий, як і в попередньої: показати, наскільки можуть спрощуватися раціональні вислови, якщо підійти до їхнього перетворення з розумом.

І ось тепер, коли ви все це знаєте, давайте перейдемо до основної теми сьогоднішнього уроку — розв'язання дрібних раціональних нерівностей. Тим більше що після такої підготовки самі нерівності ви клацатимете як горішки.:)

Основний спосіб розв'язання раціональних нерівностей

Існує щонайменше два підходи до вирішення раціональних нерівностей. Зараз ми розглянемо один із них — той, який є загальноприйнятим у шкільному курсі математики.

Але спочатку відзначимо важливу деталь. Усі нерівності поділяються на два типи:

  1. Суворі: $f\left(x \right) \gt 0$ або $f\left(x \right) \lt 0$;
  2. Нестрогі: $ f \ left (x \ right) \ ge 0 $ або $ f \ left (x \ right) \ le 0 $.

Нерівності другого типу легко зводяться до першого, а також рівняння:

Це невелике «доповнення» $f\left(x \right)=0$ призводить до такої неприємної штуки, як зафарбовані точки - ми познайомилися з ними ще в методі інтервалів. В іншому ніяких відмінностей між строгими та нестрогими нерівностями немає, тому давайте розберемо універсальний алгоритм:

  1. Зібрати всі ненульові елементи з одного боку знаку нерівності. Наприклад, ліворуч;
  2. Привести всі дроби до спільного знаменника (якщо таких дробів виявиться кілька), навести подібні. Потім по можливості розкласти на чисельник та знаменник на множники. Так чи інакше ми отримаємо нерівність виду $ \ frac (P \ left (x \ right)) (Q \ left (x \ right)) \ vee 0 $, де "галочка" - знак нерівності.
  3. Прирівнюємо чисельник до нуля: $ P \ left (x \ right) = 0 $. Вирішуємо це рівняння і отримуємо коріння $((x)_(1))$, $((x)_(2))$, $((x)_(3))$, ... Потім вимагаємо, щоб знаменник дорівнював нулю: $Q\left(x \right)\ne 0$. Зрозуміло, насправді доводиться вирішити рівняння $Q\left(x \right)=0$, і ми отримаємо коріння $x_(1)^(*)$, $x_(2)^(*)$, $x_(3 )^(*)$, ... (у справжніх завданнях такого коріння навряд чи буде більше трьох).
  4. Відзначаємо все це коріння (і зі зірочками, і без) на єдиній числовій прямій, причому коріння без зірок зафарбоване, а зі зірками — виколоте.
  5. Розставляємо знаки «плюс» та «мінус», вибираємо ті інтервали, які нам потрібні. Якщо нерівність має вигляд $f\left(x \right) \gt 0$, то у відповідь підуть інтервали, відзначені плюсом. Якщо $f\left(x \right) \lt 0$, то дивимося на інтервали з мінусами.

Практика показує, що найбільші труднощі викликають пункти 2 і 4 - грамотні перетворення та правильне розміщення чисел у порядку зростання. Ну, і на останньому кроці будьте дуже уважні: ми завжди розставляємо знаки, спираючись на остання нерівність, записана перед переходом до рівнянь. Це універсальне правило, успадковане ще методу інтервалів.

Отже, схема є. Давайте потренуємось.

Завдання. Розв'яжіть нерівність:

\[\frac(x-3)(x+7) \lt 0\]

Рішення. Перед нами сувора нерівність виду $f \ left (x \ right) \ lt 0 $. Очевидно, пункти 1 і 2 із нашої схеми вже виконані: всі елементи нерівності зібрані зліва, до спільного знаменника нічого не треба приводити. Тому переходимо одразу до третього пункту.

Прирівнюємо до нуля чисельник:

\[\begin(align) & x-3=0; \ & x = 3. \end(align)\]

І знаменник:

\[\begin(align) & x+7=0; \&((x)^(*))=-7. \\ \end(align)\]

У цьому місці багато хто залипає, адже за ідеєю потрібно записати $x+7\ne 0$, як того вимагає ОДЗ (на нуль ділити не можна, ось це все). Але ж надалі ми виколюватимемо точки, що прийшли зі знаменника, тому зайвий раз ускладнювати свої викладки не варто — скрізь пишіть знак рівності і не парьтеся. Ніхто за це бали не знизить.

Четвертий пункт. Відзначаємо отримане коріння на числовій прямій:

Усі точки виколоті, оскільки нерівність — сувора

Зверніть увагу: всі точки виколоти, оскільки вихідна нерівність сувора. І тут уже неважливо: з чисельника ці точки прийшли чи зі знаменника.

Та й дивимося знаки. Візьмемо будь-яке число $((x)_(0)) \gt 3$. Наприклад, $((x)_(0))=100$ (але з тим самим успіхом можна було взяти $((x)_(0))=3,1$ або $((x)_(0)) = 1 \ 000 \ 000 $). Отримаємо:

Отже, праворуч від усіх коренів у нас позитивна область. А при переході через кожен корінь знак змінюється (так буде не завжди, але це пізніше). Тому переходимо до п'ятого пункту: розставляємо знаки та обираємо необхідне:

Повертаємося до останньої нерівності, яка була перед розв'язанням рівнянь. Власне, воно збігається з вихідним, адже жодних перетворень у цьому ми не виконували.

Оскільки потрібно вирішити нерівність виду $f\left(x \right) \lt 0$, я заштрихував інтервал $x\in \left(-7;3 \right)$ - він єдиний відзначений знаком "мінус". Це є відповідь.

Відповідь: $x\in \left(-7;3 \right)$

От і все! Хіба складно? Ні, не складно. Щоправда, і завдання було легке. Зараз трохи ускладнимо місію і розглянемо «навороченішу» нерівність. При його вирішенні я вже не даватиму таких докладних викладок — просто позначу ключові моменти. Загалом, оформимо його так, як оформляли б на самостійній роботі чи іспиті.

Завдання. Розв'яжіть нерівність:

\[\frac(\left(7x+1 \right)\left(11x+2 \right))(13x-4)\ge 0\]

Рішення. Це несувора нерівність виду $ f \ left (x \ right) \ ge 0 $. Усі ненульові елементи зібрані зліва, різних знаменників немає. Переходимо до рівнянь.

Чисельник:

\[\begin(align) & \left(7x+1 \right)\left(11x+2 \right)=0 \\ & 7x+1=0\Rightarrow ((x)_(1))=-\ frac(1)(7); \\ & 11x+2=0\Rightarrow ((x)_(2))=-\frac(2)(11). \\ \end(align)\]

Знаменник:

\[\begin(align) & 13x-4=0; \ & 13x = 4; \ & ((x) ^ (*)) = \ frac (4) (13). \\ \end(align)\]

Не знаю, що за збоченець становив це завдання, але коріння вийшло не дуже: їх буде важко розставити на числовій прямій. І якщо з коренем $((x)^(*))=(4)/(13)\;$ все більш-менш ясно (це єдине позитивне число - воно буде праворуч), то $((x)_(1) ))=-(1)/(7)\;$ і $((x)_(2))=-(2)/(11)\;$ вимагають додаткового дослідження: яке з них більше?

З'ясувати це можна, наприклад, так:

\[((x)_(1))=-\frac(1)(7)=-\frac(2)(14) \gt -\frac(2)(11)=((x)_(2) ))\]

Сподіваюся, не треба пояснювати, чому числовий дріб $-(2)/(14); \gt -(2)/(11)\;$? Якщо потрібно, рекомендую згадати, як виконувати дії з дробами.

А ми відзначаємо всі три корені на числовій прямій:

Крапки з чисельника зафарбовані, зі знаменника - виколоти

Розставляємо знаки. Наприклад, можна взяти $((x)_(0))=1$ і з'ясувати знак у цій точці:

\[\begin(align) & f\left(x \right)=\frac(\left(7x+1 \right)\left(11x+2 \right))(13x-4); \\ & f\left(1 \right)=\frac(\left(7\cdot 1+1 \right)\left(11\cdot 1+2 \right))(13\cdot 1-4)=\ frac(8\cdot 13)(9) \gt 0. \\\end(align)\]

Остання нерівність перед рівняннями була $f\left(x \right)\ge 0$, тому нас цікавить знак «плюс».

Отримали дві множини: один — звичайний відрізок, а інший — відкритий промінь на числовій прямій.

Відповідь: $x\in \left[ -\frac(2)(11);-\frac(1)(7) \right]\bigcup \left(\frac(4)(13);+\infty \right )$

Важливе зауваження щодо чисел, які ми підставляємо для з'ясування знака на правому інтервалі. Зовсім необов'язково підставляти число, близьке до правого кореня. Можна брати мільярди або навіть «плюс-нескінченність» — у цьому випадку знак багаточлена стоїть у дужці, чисельнику чи знаменнику, визначається виключно знаком старшого коефіцієнта.

Давайте ще раз подивимося на функцію $f\left(x \right)$ з останньої нерівності:

У її записі присутні три багаточлени:

\[\begin(align) & ((P)_(1))\left(x \right)=7x+1; \& ((P)_(2))\left(x \right)=11x+2; \ & Q \ left (x \ right) = 13x-4. \end(align)\]

Усі вони є лінійними двочленами, і в усіх старші коефіцієнти (числа 7, 11 та 13) позитивні. Отже, при підстановці дуже великих чисел самі багаточлени також будуть позитивними.:)

Це може здатися надмірно складним, але спочатку, коли ми розуміємо дуже легкі завдання. У серйозних нерівностях підстановка «плюс-нескінченності» дозволить нам з'ясувати знаки набагато швидше, ніж стандартне $((x)_(0))=100$.

Ми дуже скоро зіткнемося з такими завданнями. Але спочатку розберемо альтернативний спосіб розв'язання дрібно-раціональних нерівностей.

Альтернативний спосіб

Цей прийом мені підказала одна з моїх учениць. Сам я ніколи ним не користувався, проте практика показала, що багатьом учням справді зручніше вирішувати нерівності саме в такий спосіб.

Отже, вихідні дані самі. Потрібно вирішити дробово-раціональну нерівність:

\[\frac(P\left(x \right))(Q\left(x \right)) \gt 0\]

Давайте подумаємо: чим багаточлен $Q\left(x \right)$ "гірше" багаточлена $P\left(x \right)$? Через що нам доводиться розглядати окремі групи коренів (зі зірочкою і без), думати про виколоті точки і т.д.? Все просто: у дробу є область визначення, згідно з якою дріб має сенс лише тоді, коли його знаменник відмінний від нуля.

В іншому ніяких відмінностей між чисельником і знаменником не простежується: ми так само прирівнюємо його до нуля, шукаємо коріння, потім відзначаємо їх на числовій прямій. То чому б не замінити дробову межу (фактично знак розподілу) звичайним множенням, а всі вимоги ОДЗ прописати у вигляді окремої нерівності? Наприклад, так:

\[\frac(P\left(x \right))(Q\left(x \right)) \gt 0\Rightarrow \left\( \begin(align) & P\left(x \right)\cdot Q \left(x \right) \gt 0, \\ & Q\left(x \right)\ne 0. \\ \end(align) \right.\]

Зверніть увагу: такий підхід дозволить звести завдання до методу інтервалів, але при цьому не ускладнить рішення. Адже все одно ми прирівнюватимемо багаточлен $Q\left(x \right)$ до нуля.

Погляньмо, як це працює на реальних завданнях.

Завдання. Розв'яжіть нерівність:

\[\frac(x+8)(x-11) \gt 0\]

Рішення. Отже, переходимо до методу інтервалів:

\[\frac(x+8)(x-11) \gt 0\Rightarrow \left\( \begin(align) & \left(x+8 \right)\left(x-11 \right) \gt 0 , \\ & x-11\ne 0. \\ \end(align) \right.\]

Перше нерівність вирішується елементарно. Просто прирівнюємо кожну дужку до нуля:

\[\begin(align) & x+8=0\Rightarrow ((x)_(1))=-8; \ & x-11 = 0 \ Rightarrow ((x)_ (2)) = 11. \\ \end(align)\]

З другою нерівністю теж все просто:

Зазначаємо точки $((x)_(1))$ і $((x)_(2))$ на числовій прямій. Всі вони виколоті, оскільки нерівність сувора:

Права крапка виявилася виколотою двічі. Це нормально.

Зверніть увагу на точку $x=11$. Виходить, що вона «двічі виколота»: з одного боку, ми виколюємо її через суворість нерівності, з іншого — через додаткову вимогу ОДЗ.

У будь-якому випадку, це буде просто виколота крапка. Тому розставляємо знаки для нерівності $\left(x+8 \right)\left(x-11 \right) \gt 0$ — останньої, яку ми бачили перед тим, як почали вирішувати рівняння:

Нас цікавлять позитивні області, оскільки ми вирішуємо нерівність виду $f\left(x \right) \gt 0$ - їх і зафарбуємо. Залишилося лише записати відповідь.

Відповідь. $x\in \left(-\infty ;-8 \right)\bigcup \left(11;+\infty \right)$

На прикладі цього рішення хотів би застерегти вас від поширеної помилки серед учнів-початківців. А саме: ніколи не розкривайте дужки у нерівностях! Навпаки, намагайтеся все розкласти на множники - це спростить рішення і позбавить вас багатьох проблем.

Тепер спробуємо дещо складніше.

Завдання. Розв'яжіть нерівність:

\[\frac(\left(2x-13 \right)\left(12x-9 \right))(15x+33)\le 0\]

Рішення. Це несувора нерівність виду $ f \ left (x \ right) \ le 0 $, тому тут потрібно уважно стежити за зафарбованими точками.

Переходимо до методу інтервалів:

\[\left\( \begin(align) & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)\le 0, \\ & 15x+33\ ne 0. \\\end(align) \right.\]

Переходимо до рівняння:

\[\begin(align) & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0 \\ & 2x-13=0\Rightarrow ((x )_(1)) = 6,5; \ \ & 12x-9 = 0 \ Rightarrow ((x)_ (2)) = 0,75; \& & 15x+33=0\Rightarrow ((x)_(3))=-2,2. \\ \end(align)\]

Враховуємо додаткову вимогу:

Відзначаємо всі отримані коріння на числовій прямій:

Якщо точка одночасно і виколота, і зафарбована, вона вважається виколотою

Знову дві точки «накладаються» одна на одну – це нормально, так буде завжди. Важливо лише розуміти, що точка, позначена одночасно виколотою та зафарбованою, насправді є виколотою. Тобто. «виколювання» — сильніша дія, ніж «зафарбовування».

Це абсолютно логічно, адже виколюванням ми відзначаємо точки, які впливають на знак функції, але самі не беруть участі у відповіді. І якщо в якийсь момент число перестає нас влаштовувати (наприклад, не потрапляє до ОДЗ), ми викреслюємо його з розгляду до кінця завдання.

Загалом, вистачить філософствувати. Розставляємо знаки та зафарбовуємо ті інтервали, які позначені знаком «мінус»:

Відповідь. $x\in \left(-\infty ;-2,2 \right)\bigcup \left[ 0,75;6,5 \right]$.

І знову хотів звернути вашу увагу на це рівняння:

\[\left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0\]

Ще раз: ніколи не розкривайте дужки у таких рівняннях! Ви лише ускладните собі завдання. Пам'ятайте: добуток дорівнює нулю, коли хоча б один із множників дорівнює нулю. Отже, дане рівняння просто «розвалюється» на кілька дрібніших, які ми вирішували в попередній задачі.

Облік кратності коренів

З попередніх завдань легко помітити, що найбільшу складність становлять саме несуворі нерівності, тому що доводиться стежити за зафарбованими точками.

Але в світі є ще більше зло - це кратне коріння в нерівностях. Тут уже доводиться стежити не за якимись там зафарбованими точками - тут знак нерівності може раптово не змінитись при переході через ці точки.

Нічого подібного ми у цьому уроці ще розглядали (хоча аналогічна проблема часто зустрічалася у методі інтервалів). Тому введемо нове визначення:

Визначення. Корінь рівняння $((\left(x-a \right))^(n))=0$ дорівнює $x=a$ і називається коренем $n$-ї кратності.

Власне, нас не дуже цікавить точне значення кратності. Важливо лише те, парним чи непарним є це число $n$. Тому що:

  1. Якщо $x=a$ корінь парної кратності, то знак функції при переході через нього не змінюється;
  2. І навпаки, якщо $x=a$ — корінь непарної кратності, знак функції зміниться.

Приватним випадком кореня непарної кратності є попередні завдання, розглянуті у цьому уроці: там скрізь кратність дорівнює одиниці.

І ще. Перед тим, як ми почнемо вирішувати завдання, хотів би звернути вашу увагу на одну тонкість, яка здасться очевидною для досвідченого учня, але вганяє в ступор багатьох початківців. А саме:

Корінь кратності $n$ виникає тільки в тому випадку, коли в цей ступінь зводиться весь вираз: $((\left(x-a \right))^(n))$, а не $\left(((x)^( n))-a \right)$.

Ще раз: дужка $((\left(x-a \right))^(n))$ дає нам корінь $x=a$ кратності $n$, а ось дужка $\left(((x)^(n)) -a \right)$ або, як часто буває, $(a-((x)^(n)))$ дає нам корінь (або два корені, якщо $n$ — парне) першої кратності незалежно від того, чому і $n$.

Порівняйте:

\[((\left(x-3 \right))^(5))=0\Rightarrow x=3\left(5k \right)\]

Тут все чітко: вся дужка зводилася на п'яту ступінь, тому на виході ми отримали корінь п'ятого ступеня. А зараз:

\[\left(((x)^(2))-4 \right)=0\Rightarrow ((x)^(2))=4\Rightarrow x=\pm 2\]

Ми отримали два корені, але обидва вони мають першу кратність. Або ось ще:

\[\left(((x)^(10))-1024 \right)=0\Rightarrow ((x)^(10))=1024\Rightarrow x=\pm 2\]

І нехай вас не бентежить десятий ступінь. Головне, що 10 — це парне число, тому на виході маємо два корені, і вони знову мають першу кратність.

Загалом будьте уважні: кратність виникає лише тоді, коли ступінь відноситься до всієї дужки, а не тільки до змінної.

Завдання. Розв'яжіть нерівність:

\[\frac(((x)^(2))((\left(6-x \right))^(3))\left(x+4 \right))(((\left(x+7) \right))^(5)))\ge 0\]

Рішення. Спробуємо вирішити її альтернативним способом через перехід від приватного до твору:

\[\left\( \begin(align) & ((x)^(2))((\left(6-x \right))^(3))\left(x+4 \right)\cdot ( (\left(x+7 \right))^(5))\ge 0, \\ & ((\left(x+7 \right))^(5))\ne 0. \\ \end(align ) \right.\]

Розбираємось з першою нерівністю методом інтервалів:

\[\begin(align) & ((x)^(2))((\left(6-x \right))^(3))\left(x+4 \right)\cdot ((\left( x+7 \right))^(5))=0; \ \ & ((x) ^ (2)) = 0 \ Rightarrow x = 0 \ left (2k \ right); \& ((\left(6-x \right))^(3))=0\Rightarrow x=6\left(3k \right); \\ & x + 4 = 0 \ Rightarrow x = -4; \\ & ((\left(x+7 \right))^(5))=0\Rightarrow x=-7\left(5k \right). \\ \end(align)\]

Додатково вирішуємо другу нерівність. Насправді ми вже вирішували його, але щоб перевіряючі не причепилися до рішення, краще вирішити його ще раз:

\[((\left(x+7 \right))^(5))\ne 0\Rightarrow x\ne -7\]

Зверніть увагу: жодних кратностей в останній нерівності немає. Справді: яка різниця, скільки разів викреслювати точку $x=-7$ на числовій прямій? Хоч один раз, хоч п'ять — результат буде той самий: виколота точка.

Зазначимо все, що ми отримали, на числовій прямій:

Як я й казав, точка $x=-7$ у результаті буде виколота. Кратності розставлені з рішення нерівності шляхом інтервалів.

Залишилося розставити знаки:

Оскільки точка $x=0$ є коренем парної кратності, знак під час переходу неї не змінюється. Інші точки мають непарну кратність, і з ними все просто.

Відповідь. $x\in \left(-\infty ;-7 \right)\bigcup \left[ -4;6 \right]$

Ще раз зверніть увагу на $x=0$. Через парну кратність виникає цікавий ефект: ліворуч від неї все зафарбовано, праворуч — теж, та й сама точка цілком зафарбована.

Як наслідок, її не потрібно відокремлювати під час запису відповіді. Тобто. не треба писати що-небудь на кшталт $x\in \left[ -4;0 \right]\bigcup \left[ 0;6 \right]$ (хоча формально така відповідь теж буде правильною). Натомість відразу пишемо $x\in \left[ -4;6 \right]$.

Такі ефекти можливі лише при коренях парної кратності. І в наступному завданні ми зіткнемося зі зворотним «виявом» цього ефекту. Чи готові?

Завдання. Розв'яжіть нерівність:

\[\frac(((\left(x-3 \right))^(4))\left(x-4 \right))(((\left(x-1 \right))^(2)) \left(7x-10-((x)^(2)) \right))\ge 0\]

Рішення. На цей раз підемо за стандартною схемою. Прирівнюємо до нуля чисельник:

\[\begin(align) & ((\left(x-3 \right))^(4))\left(x-4 \right)=0; \ & (( \ left (x-3 \ right)) ^ (4)) = 0 \ Rightarrow ((x)_ (1)) = 3 \ left (4k \ right); \ \ & x-4 = 0 \ Rightarrow ((x)_ (2)) = 4. \\ \end(align)\]

І знаменник:

\[\begin(align) & ((\left(x-1 \right))^(2))\left(7x-10-((x)^(2)) \right)=0; \\ & ((\left(x-1 \right))^(2))=0\Rightarrow x_(1)^(*)=1\left(2k \right); \\ & 7x-10-((x)^(2))=0\Rightarrow x_(2)^(*)=5;\ x_(3)^(*)=2. \\ \end(align)\]

Оскільки ми вирішуємо несувору нерівність виду $f\left(x \right)\ge 0$, коріння зі знаменника (яке зі зірочками) буде виколоте, а з чисельника — зафарбоване.

Розставляємо знаки та штрихуємо області, відзначені «плюсом»:

Крапка $ x = 3 $ - ізольована. Це частина відповіді

Перед тим, як записати остаточну відповідь, уважно подивимося на картинку:

  1. Крапка $x=1$ має парну кратність, але сама виколота. Отже, її доведеться відокремити у відповіді: потрібно записати $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)$, а не $x\in \left(-\ infty ;2 \right)$.
  2. Крапка $x=3$ теж має парну кратність і зафарбована. Розташування знаків свідчить, що сама точка нас влаштовує, але крок ліворуч-праворуч — і ми потрапляємо в область, яка нас точно не влаштовує. Такі точки називаються ізольованими і записуються як $x\in \left\( 3 \right\)$.

Об'єднуємо всі отримані шматочки в загальну кількість і записуємо відповідь.

Відповідь: $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)\bigcup \left\( 3 \right\)\bigcup \left[ 4;5 \right) $

Визначення. Вирішити нерівність - значить знайти безліч його рішень, або довести, що це безліч порожньо.

Здавалося б: що тут може бути незрозумілим? Та в тому й річ, що безлічі можна ставити по-різному. Давайте ще раз випишемо відповідь до останнього завдання:

Читаємо буквально, що написано. Змінна «ікс» належить нікому множині, що виходить об'єднанням (значок «U») чотирьох окремих множин:

  • Інтервал $\left(-\infty ;1 \right)$, який буквально означає "всі числа, менші одиниці, але не сама одиниця";
  • Інтервал $ \ left (1; 2 \ right) $, тобто. «всі числа не більше від 1 до 2, але з самі числа 1 і 2»;
  • Безліч $ \ left \ (3 \ right \) $, Що складається з одного-однини - трійки;
  • Інтервал $ \ left [4; 5 \ right) $, що містить всі числа в межах від 4 до 5, а також саму четвірку, але не п'ятірку.

Інтерес тут є третім пунктом. На відміну від інтервалів, які задають нескінченні набори чисел і лише позначають лише межі цих наборів, безліч $ \ left \ (3 \ right \) $ задає строго одне число шляхом перерахування.

Щоб зрозуміти, що ми саме перераховуємо конкретні числа, що входять до множини (а не задаємо межі або ще), використовуються фігурні дужки. Наприклад, запис $ \ left \ (1; 2 \ right \) $ означає саме «множина, що складається з двох чисел: 1 і 2», але ніяк не відрізок від 1 до 2. У жодному разі не плутайте ці поняття.

Правило складання кратностей

Ну і на закінчення сьогоднішнього уроку трохи бляхи від Павла Бердова.:)

Уважні учні вже напевно запитали: а що буде, якщо в чисельнику і знаменнику виявиться однакове коріння? Так ось, працює таке правило:

Кратності однакового коріння складаються. Завжди. Навіть якщо це коріння зустрічається і в чисельнику, і в знаменнику.

Іноді краще вирішувати, аніж говорити. Тому вирішуємо таке завдання:

Завдання. Розв'яжіть нерівність:

\[\frac(((x)^(2))+6x+8)(\left(((x)^(2))-16 \right)\left(((x)^(2))+ 9x+14 \right))\ge 0\]

\[\begin(align) & ((x)^(2))+6x+8=0 \\ & ((x)_(1))=-2;\ ((x)_(2))= -4. \\ \end(align)\]

Поки що нічого особливого. Прирівнюємо до нуля знаменник:

\[\begin(align) & \left(((x)^(2))-16 \right)\left(((x)^(2))+9x+14 \right)=0 \\ & ( (x)^(2))-16=0\Rightarrow x_(1)^(*)=4;\ x_(2)^(*)=-4; \\ & ((x)^(2))+9x+14=0\Rightarrow x_(3)^(*)=-7;\ x_(4)^(*)=-2. \\ \end(align)\]

Виявлено два однакові корені: $((x)_(1))=-2$ і $x_(4)^(*)=-2$. Обидва мають першу кратність. Отже, замінюємо їх одним коренем $x_(4)^(*)=-2$, але вже з кратністю 1+1=2.

Крім того, є ще однакові корені: $((x)_(2))=-4$ і $x_(2)^(*)=-4$. Вони також першої кратності, тому залишиться лише $x_(2)^(*)=-4$ кратності 1+1=2.

Зверніть увагу: в обох випадках ми залишили саме виколотий корінь, а зафарбований викинули з розгляду. Тому що ще на початку уроку домовилися: якщо точка одночасно і виколота, і зафарбована, ми все одно вважаємо її виколотою.

У результаті у нас є чотири корені, причому всі виявилися виколоті:

\[\begin(align) & x_(1)^(*)=4; \\ & x_(2)^(*)=-4\left(2k \right); \\ & x_(3)^(*)=-7; \\ & x_(4)^(*)=-2\left(2k \right). \\ \end(align)\]

Зазначаємо їх на числовій прямій з урахуванням кратності:

Розставляємо знаки і зафарбовуємо області, що цікавлять нас:

Всі. Жодних ізольованих точок та інших збочень. Можна записувати відповідь.

Відповідь. $x\in \left(-\infty ;-7 \right)\bigcup \left(4;+\infty \right)$.

Правило множення кратностей

Іноді зустрічається ще неприємніша ситуація: рівняння, що має кратне коріння, саме зводиться в деякий ступінь. При цьому змінюються кратності всіх вихідних коренів.

Таке зустрічається рідко, тому більшість учнів немає досвіду вирішення подібних завдань. А правило тут таке:

При зведенні рівняння ступінь $n$ кратності всіх його коренів теж збільшуються в $n$ разів.

Іншими словами, зведення у ступінь призводить до множення кратностей на цей же ступінь. Розглянемо це правило з прикладу:

Завдання. Розв'яжіть нерівність:

\[\frac(x((\left(((x)^(2))-6x+9 \right))^(2))((\left(x-4 \right))^(5)) )(((\left(2-x \right))^(3))((\left(x-1 \right))^(2)))\le 0\]

Рішення. Прирівнюємо до нуля чисельник:

Добуток дорівнює нулю, коли хоча б один із множників дорівнює нулю. З першим множником зрозуміло: $x=0$. А ось далі починаються проблеми:

\[\begin(align) & ((\left(((x)^(2))-6x+9 \right))^(2))=0; \&((x)^(2))-6x+9=0\left(2k \right); \\ & D=((6)^(3))-4\cdot 9=0 \\ & ((x)_(2))=3\left(2k \right)\left(2k \right) \ \ & ((x)_(2))=3\left(4k \right) \\ \end(align)\]

Як бачимо, рівняння $((x)^(2))-6x+9=0$ має єдиний корінь другої кратності: $x=3$. Потім усе це рівняння зводиться квадрат. Отже, кратність кореня становитиме $2\cdot 2=4$, що ми у результаті записали.

\[((\left(x-4 \right))^(5))=0\Rightarrow x=4\left(5k \right)\]

Зі знаменником теж жодних проблем:

\[\begin(align) & ((\left(2-x \right))^(3))((\left(x-1 \right))^(2))=0; \\ & ((\left(2-x \right))^(3))=0\Rightarrow x_(1)^(*)=2\left(3k \right); \\ & ((\left(x-1 \right))^(2))=0\Rightarrow x_(2)^(*)=1\left(2k \right). \\ \end(align)\]

У сумі у нас вийшло п'ять крапок: дві виколоті і три зафарбовані. Збігаються коріння в чисельнику і знаменнику не спостерігається, тому просто відзначаємо їх на числовій прямій:

Розставляємо знаки з урахуванням кратностей і зафарбовуємо інтервали, що цікавлять нас:

Знову одна ізольована точка та одна виколота

Через коріння парної кратності знову отримали пару «нестандартних» елементів. Це $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)$, а не $x\in \left[ 0;2 \right)$, а також ізольована точка $ x\in \left\(3 \right\)$.

Відповідь. $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)\bigcup \left\( 3 \right\)\bigcup \left[ 4;+\infty \right)$

Як бачите, все не так складно. Головне – уважність. Останній розділ цього уроку присвячений перетворенням - тим, які ми обговорювали на самому початку.

Попередні перетворення

Нерівності, які ми розберемо у цьому розділі, не можна назвати складними. Однак, на відміну від попередніх завдань, тут доведеться застосувати навички з теорії раціональних дробів — розкладання на множники та приведення до спільного знаменника.

Ми детально обговорювали це питання на початку сьогоднішнього уроку. Якщо ви не впевнені, що розумієте, про що мова — рекомендую повернутися і повторити. Тому що немає жодного сенсу зубрити методи розв'язання нерівностей, якщо ви «плаваєте» у перетворенні дробів.

У домашній роботі, до речі, також буде багато подібних завдань. Вони винесені до окремого підрозділу. І там на вас чекають дуже нетривіальні приклади. Але це буде в хаті, а зараз давайте розберемо кілька таких нерівностей.

Завдання. Розв'яжіть нерівність:

\[\frac(x)(x-1)\le \frac(x-2)(x)\]

Рішення. Переносимо все вліво:

\[\frac(x)(x-1)-\frac(x-2)(x)\le 0\]

Приводимо до спільного знаменника, розкриваємо дужки, наводимо подібні доданки в чисельнику:

\[\begin(align) & \frac(x\cdot x)(\left(x-1 \right)\cdot x)-\frac(\left(x-2 \right)\left(x-1 \) right))(x\cdot \left(x-1 \right))\le 0; \\ & \frac(((x)^(2))-\left(((x)^(2))-2x-x+2 \right))(x\left(x-1 \right)) \le 0; \\ & \frac(((x)^(2))-((x)^(2))+3x-2)(x\left(x-1 \right))\le 0; \\ & \frac(3x-2)(x\left(x-1 \right))\le 0. \\\end(align)\]

Тепер перед нами класична дробово-раціональна нерівність, вирішення якої вже не становить труднощів. Пропоную вирішити його альтернативним методом через метод інтервалів:

\[\begin(align) & \left(3x-2 \right)\cdot x\cdot \left(x-1 \right)=0; \\ ((x)_(1))=\frac(2)(3);\ ((x)_(2))=0;\ ((x)_(3))=1. \\ \end(align)\]

Не забуваємо обмеження, що прийшло зі знаменника:

Відзначаємо всі числа та обмеження на числовій прямій:

Усі коріння мають першу кратність. Ніяких проблем. Просто розставляємо знаки та зафарбовуємо потрібні нам області:

Це все. Можна записувати відповідь.

Відповідь. $x\in \left(-\infty ;0 \right)\bigcup \left[ (2)/(3)\;;1 \right)$.

Зрозуміло, це був зовсім просто приклад. Тому зараз розглянемо завдання серйозніше. І до речі, рівень цього завдання цілком відповідає самостійним та контрольним роботам з цієї теми у 8 класі.

Завдання. Розв'яжіть нерівність:

\[\frac(1)(((x)^(2))+8x-9)\ge \frac(1)(3((x)^(2))-5x+2)\]

Рішення. Переносимо все вліво:

\[\frac(1)(((x)^(2))+8x-9)-\frac(1)(3((x)^(2))-5x+2)\ge 0\]

Перед тим, як приводити обидва дроби до спільного знаменника, розкладемо ці знаменники на множники. Раптом вилізуть однакові дужки? З першим знаменником легко:

\[((x)^(2))+8x-9=\left(x-1 \right)\left(x+9 \right)\]

З другим трохи складніше. Не соромтеся вносити множник-константу в ту дужку, де виявився дріб. Пам'ятайте: вихідний багаточлен мав цілі коефіцієнти, тому велика ймовірність, що і розкладання на множники матиме цілі коефіцієнти (насправді так буде завжди, за винятком випадків, коли дискримінант є ірраціональним).

\[\begin(align) & 3((x)^(2))-5x+2=3\left(x-1 \right)\left(x-\frac(2)(3) \right)= \\ & =\left(x-1 \right)\left(3x-2 \right) \end(align)\]

Як бачимо, є загальна дужка: $ \ left (x-1 \ right) $. Повертаємося до нерівності та наводимо обидва дроби до спільного знаменника:

\[\begin(align) & \frac(1)(\left(x-1 \right)\left(x+9 \right))-\frac(1)(\left(x-1 \right)\ left(3x-2 \right))\ge 0; \\ & \frac(1\cdot \left(3x-2 \right)-1\cdot \left(x+9 \right))(\left(x-1 \right)\left(x+9 \right) )\left(3x-2 \right))\ge 0; \\ & \frac(3x-2-x-9)(\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right))\ge 0; \\ & \frac(2x-11)(\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right))\ge 0; \\ \end(align)\]

Прирівнюємо до нуля знаменник:

\[\begin(align) & \left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)=0; \\ & x_(1)^(*)=1;\ x_(2)^(*)=-9;\ x_(3)^(*)=\frac(2)(3) \\ \end( align)\]

Жодних кратностей і збігаються коріння. Зазначаємо чотири числа на прямій:

Розставляємо знаки:

Записуємо відповідь.

Відповідь: $x\in \left(-\infty ;-9 \right)\bigcup \left((2)/(3)\;;1 \right)\bigcup \left[ 5,5;+\infty \ right) $.

Всі! Лайк тому, то дочитав до цього рядка.

Виду ах 2 + bх + 0 0, де (замість знака > можливо, зрозуміло, будь-який інший знак нерівності). Всі необхідні для вирішення таких нерівностей фактами теорії ми з вами маємо, в чому зараз і переконаємося.

Приклад 1. Вирішити нерівність:

а) х 2 - 2х - 3> 0; б) х 2 - 2х - 3< 0;
в) х 2 - 2х - 3> 0; г) х 2 - 2х - 3< 0.
Рішення,

а) Розглянемо параболу у = х 2 - 2х - 3, зображену на рис. 117.

Вирішити нерівність х 2 - 2х - 3 > 0 - це означає відповісти на питання, за яких значень х ординати точок параболи позитивні.

Помічаємо, що у > 0, тобто графік функції розташований вище за осі х, при х< -1 или при х > 3.

Отже, рішеннями нерівності є всі точки відкритого променя(- 00 , - 1), і навіть всі точки відкритого променя (3, +00).

Використовуючи знак U (знак поєднання множин), відповідь можна записати так: (-00 , - 1) U (3, +00). Втім, відповідь можна записати й так: х< - 1; х > 3.

б) Нерівність х 2 - 2х - 3< 0, или у < 0, где у = х 2 - 2х - 3, также можно решить с помощью рис. 117: графікрозташований нижче за осі х, якщо -1< х < 3. Поэтому решениями данного неравенства служат все точки интервала (- 1, 3).

в) Нерівність х 2 - 2х - 3 > 0 відрізняється від нерівності х 2 - 2х - 3 > 0 тим, що у відповідь треба включити і коріння рівняння х 2 - 2х - 3 = 0, тобто точки х = -1

і х = 3. Таким чином, рішеннями даної не суворої нерівності є всі точки променя (-00 , - 1], а також усі точки променя .

Практичні математики зазвичай говорять так: навіщо нам, вирішуючи нерівність ах 2 + bх + с > 0, акуратно будувати параболу графік квадратичної функції

у = ах 2 + bх + с (як це було зроблено на прикладі 1)? Досить створити схематичний малюнок графіка, навіщо слід лише визначити корінняквадратного тричлена (точки перетину параболи з віссю х) і визначити, куди спрямовані гілки параболи – вгору чи вниз. Цей схематичний малюнок дасть наочне тлумачення розв'язання нерівності.

приклад 2.Вирішити нерівність - 2х 2 + Зх + 9< 0.
Рішення.

1) Знайдемо коріння квадратного тричлена – 2х2+Зх+9: х1=3; х 2 = - 1,5.

2) Парабола, що служить графіком функції у = -2х 2 + Зх + 9, перетинає вісь х у точках 3 і - 1,5, а гілки параболи спрямовані вниз, оскільки старший коефіцієнт- Негативне число - 2. На рис. 118 представлений малюнок графіка.

3) Використовуючи рис. 118, робимо висновок: у< 0 на тех промежутках оси х, где график расположен ниже оси х, т.е. на открытом луче (-оо, -1,5) или на открытом луче C, +оо).
Відповідь: х< -1,5; х > 3.

приклад 3.Вирішити нерівність 4х 2 - 4х + 1< 0.
Рішення.

1) З рівняння 4х 2 - 4х + 1 = 0 знаходимо.

2) Квадратний тричлен має один корінь; це означає, що парабола, яка є графіком квадратного тричлена, не перетинає вісь х, а стосується її в точці . Гілки параболи спрямовані нагору (рис. 119.)

3) За допомогою геометричної моделі, наведеної на рис. 119, встановлюємо, що задана нерівність виконується тільки в точці, оскільки при всіх інших значеннях х ординати графіка позитивні.
Відповідь: .
Ви, напевно, помітили, що фактично у прикладах 1, 2, 3 використовувався цілком певний алгоритмрозв'язання квадратних нерівностей, оформимо його.

Алгоритм розв'язання квадратної нерівності ах 2 + bх + 0 0 (ах 2 + bх + с< 0)

На першому етапі цього алгоритму потрібно знайти коріння квадратного тричлена. Але ж коріння може і не існувати, що ж робити? Тоді алгоритм не застосовується, отже, треба міркувати якось інакше. Ключ до цих міркувань дають такі теореми.

Іншими словами, якщо D< 0, а >0, то нерівність ах 2 + bх + с > 0 виконується за всіх х; навпаки, нерівність ах 2 + bх + с< 0 не имеет решений.
Доведення. Графіком функціїу = ах 2 + bх + с є парабола, гілки якої спрямовані вгору (оскільки а > 0) і яка не перетинає вісь х, тому що коріння у квадратного тричлена за умовою немає. Графік подано на рис. 120. Бачимо, що при всіх х графік розташований вище за осі х, а це означає, що при всіх х виконується нерівність ах 2 + bх + с > 0, що й вимагалося довести.

Іншими словами, якщо D< 0, а < 0, то неравенство ах 2 + bх + с < 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с >0 немає рішень.

Доведення. Графіком функції у = ах 2 + bх +с є парабола, гілки якої спрямовані вниз (оскільки а< 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 121. Видим, что при всех х график расположен ниже оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с < 0, что и требовалось доказать.

Приклад 4. Вирішити нерівність:

а) 2х 2 - х + 4> 0; б) -х 2 + Зх - 8> 0.

а) Знайдемо дискримінант квадратного тричлена 2х 2 - х + 4. Маємо D = (-1) 2 - 4 2 4 = - 31< 0.
Старший коефіцієнт тричлена (число 2) позитивний.

Значить, за теоремою 1, при всіх х виконується нерівність 2x 2 - х + 4> 0, тобто рішенням заданої нерівності служить вся (-00 + 00).

б) Знайдемо дискримінант квадратного тричлена - х 2 + Зх - 8. Маємо D = З2 - 4 (-1) (-8) = - 23< 0. Старший коэффициент трехчлена (число - 1) отрицателен. Следовательно, по теореме 2, при всех х выполняется неравенство - х 2 + Зx - 8 < 0. Это значит, что неравенство - х 2 + Зх - 8 0 не выполняется ни при каком значении х, т. е. заданное неравенство не имеет решений.

Відповідь: а) (-00 + 00); б) немає рішень.

У наступному прикладі ми познайомимося ще з одним способом міркувань, який застосовується під час вирішення квадратних нерівностей.

Приклад 5.Вирішити нерівність Зх 2 - 10х + 3< 0.
Рішення. Розкладемо квадратний тричлен Зx 2 – 10x + 3 на множники. Корінням тричлена є числа 3 і тому скориставшись ах 2 + bх + с = а (х - x 1) (x - х 2), отримаємо Зx 2 - 10х + 3 = 3 (х - 3) (х - )
Зазначимо на числовому прямому корені тричлена: 3 і (рис. 122).

Нехай х> 3; тоді x-3>0 і x->0, отже, і добуток 3(х - 3)(х - ) позитивно. Далі, нехай< х < 3; тогда x-3< 0, а х- >0. Отже, добуток 3(х-3)(х-) негативний. Нехай, нарешті, х<; тогда x-3< 0 и x- < 0. Но в таком случае произведение
3(x -3)(x -) позитивно.

Підсумовуючи міркуванням, приходимо до висновку: знаки квадратного тричлена Зx 2 - 10х + 3 змінюються так, як показано на рис. 122. Нас же цікавить, за яких квадратний тричлен приймає негативні значення. З рис. 122 робимо висновок: квадратний тричлен Зx 2 - 10х + 3 набуває негативних значень для будь-якого значення х з інтервалу (, 3)
Відповідь (, 3), або< х < 3.

Зауваження. Метод міркувань, який ми застосували на прикладі 5, зазвичай називають методом інтервалів (або методом проміжків). Він активно використовується в математиці для вирішення раціональнихнерівностей. У 9-му класі ми вивчимо метод інтервалів детальніше.

Приклад 6. За яких значень параметра р квадратне рівняння х 2 - 5х + р 2 = 0:
а) має два різні корені;

б) має один корінь;

в) не має -коріння?

Рішення. Число коренів квадратного рівняння залежить від знака його дискримінанта D. У цьому випадку знаходимо D = 25-4р2.

а) Квадратне рівняння має два різні корені, якщо D>0, отже, завдання зводиться до розв'язання нерівності 25 - 4р 2 > 0. Помножимо обидві частини цієї нерівності на -1 (не забувши змінити при цьому знак нерівності). Отримаємо рівносильну нерівність 4р 2 - 25< 0. Далее имеем 4 (р - 2,5) (р + 2,5) < 0.

Знаки виразу 4(р – 2,5) (р + 2,5) вказані на рис. 123.

Робимо висновок, що нерівність 4(р – 2,5)(р + 2,5)< 0 выполняется для всех значений р из интервала (-2,5; 2,5). Именно при этих значениях параметра р данное квадратное уравнение имеет два различных корня.

б) квадратне рівняннямає один корінь, якщо D – 0.
Як ми встановили вище, D = 0 за р = 2,5 або р = -2,5.

Саме при цих значеннях параметра дане квадратне рівняння має тільки один корінь.

в) Квадратне рівняння не має коріння, якщо D< 0. Решим неравенство 25 - 4р 2 < 0.

Отримуємо 4р 2 – 25 > 0; 4 (р-2,5) (р + 2,5)> 0, звідки (див. рис. 123) р< -2,5; р >2,5. При цих значеннях параметра дане квадратне рівняння не має коренів.

Відповідь: а) при р(-2,5, 2,5);

б) при р = 2,5 абор = -2,5;
в) при р< - 2,5 или р > 2,5.

Мордкович А. Г., Алгебра. 8 кл.: Навч. для загальноосвіт. установ.- 3-тє вид., доопрацювання. – М.: Мнемозіна, 2001. – 223 с: іл.

Допомога школяру онлайн , Математика для 8 класу скачати , календарно-тематичне планування

Лінійними називаються нерівностіліва і права частина яких є лінійними функціями щодо невідомої величини. До них відносяться, наприклад, нерівності:

2х-1-х +3; 7х0;

5 >4 - 6x 9- x< x + 5 .

1) Суворі нерівності: ax +b>0або ax + b<0

2) Нестрогі нерівності: ax +b≤0або ax + b0

Розберемо таке завдання. Одна із сторін паралелограма становить 7см. Якою має бути довжина іншої сторони, щоб периметр паралелограма був більшим за 44 см?

Нехай потрібна сторона складе хсм. У такому разі периметр паралелограма буде представлений (14 + 2х) см. Нерівність 14 + 2х > 44 є математичною моделлю задачі про периметр паралелограма. Якщо в цій нерівності замінити змінну хна, наприклад, число 16, то отримаємо правильну числову нерівність 14 + 32 > 44. У такому разі кажуть, що число 16 є розв'язком нерівності 14 + 2х > 44.

Розв'язанням нерівностіназивають значення змінної, яке звертає їх у вірну числову нерівність.

Отже, кожне із чисел 15,1; 20;73 виступають розв'язком нерівності 14 + 2х > 44, а число 10, наприклад, не є його розв'язком.

Розв'язати нерівністьозначає встановити всі рішення чи довести, що рішень немає.

Формулювання розв'язання нерівності подібне до формулювання кореня рівняння. І все ж таки не прийнято позначати «корінь нерівності».

Властивості числових рівностей допомагали вирішувати рівняння. Так само властивості числових нерівностей допоможуть вирішувати нерівності.

Вирішуючи рівняння, ми змінюємо його іншим, простішим рівнянням, але рівнозначним заданому. За такою схемою знаходять відповідь і нерівності. При зміні рівняння на рівнозначне йому рівняння користуються теоремою про перенесення доданків з однієї частини рівняння в протилежну і про множення обох частин рівняння на те саме відмінне від нуля число. При розв'язанні нерівності є суттєва відмінність його з рівнянням, яке полягає в тому, що будь-яке рішення рівняння можна перевірити просто підстановкою у вихідне рівняння. У нерівностях такий спосіб відсутній, оскільки незліченна безліч рішень підставити у вихідну нерівність неможливо. Тому є важливе поняття, ось ці стрілочки<=>- це знак еквівалентних, чи рівносильних, перетворень. Перетворення називаються рівносильними,або еквівалентнимиякщо вони не змінюють безліч рішень.

Подібні правила розв'язання нерівностей.

Якщо якесь доданок перемістити з однієї частини нерівності в іншу, замінивши при цьому його знак на протилежний, то отримаємо нерівність, еквівалентну даному.

Якщо обидві частини нерівності помножити (розділити) на те саме позитивне число, то отримаємо нерівність, еквівалентну даному.

Якщо обидві частини нерівності помножити (розділити) на те саме негативне число, замінивши при цьому знак нерівності на протилежний, то отримаємо нерівність, еквівалентну даному.

Використовуючи ці правилаобчислимо нижченаведені нерівності.

1) Розберемо нерівність 2x - 5 > 9.

Це лінійна нерівність, знайдемо його рішення та обговоримо основні поняття.

2x - 5 > 9<=>2x > 14(5 перенесли до лівої частини з протилежним знаком), далі поділили все на 2 і маємо x > 7. Нанесемо багато рішень на вісь x

Нами отримано позитивно спрямований промінь. Зазначимо безліч рішень або як нерівності x > 7, або як інтервалу х(7; ∞). А що є приватним рішенням цієї нерівності? Наприклад, x = 10- це приватне вирішення цієї нерівності, x = 12- це також приватне вирішення цієї нерівності.

Приватних рішень багато, але наше завдання знайти всі рішення. А рішень, як правило, безліч.

Розберемо приклад 2:

2) Вирішити нерівність 4a - 11 > a + 13.

Вирішимо його: аперемістимо в один бік, 11 перемістимо в інший бік, отримаємо 3a< 24, и в результате после деления обеих частей на 3 нерівність має вигляд a<8 .

4a - 11 > a + 13<=>3a< 24 <=>a< 8 .

Теж відобразимо безліч a< 8 , але вже на осі а.

Відповідь чи пишемо як нерівності a< 8, либо а(-∞;8), 8 не вмикається.

Нерівність - це числове співвідношення, що ілюструє величину чисел щодо один одного. Нерівності широко використовуються під час пошуку величин у прикладних науках. Наш калькулятор допоможе вам розібратися з такою складною темою, як розв'язання лінійних нерівностей.

Що таке нерівність

Нерівні співвідношення у реальному житті співвідносяться з постійним порівнянням різних об'єктів: вище чи нижче, далі чи ближче, важче чи легше. Інтуїтивно чи зорово ми можемо зрозуміти, що один об'єкт більший, вищий або важчий за інший, проте фактично мова завжди йде про порівняння чисел, які характеризують відповідні величини. Порівнювати об'єкти можна за будь-якою ознакою і в будь-якому випадку ми можемо скласти числову нерівність.

Якщо невідомі величини за конкретних умов рівні, то їх чисельного визначення ми становимо рівняння. Якщо ж ні, то замість знака «рівно» ми можемо вказати будь-яке інше співвідношення між цими величинами. Два числа або математичні об'єкти можуть бути більше «>», менше «<» или равны «=» относительно друг друга. В этом случае речь идет о строгих неравенствах. Если же в неравных соотношениях присутствует знак равно и числовые элементы больше или равны (a ≥ b) или меньше или равны (a ≤ b), то такие неравенства называются нестрогими.

Знаки нерівностей у їхньому сучасному вигляді вигадав британський математик Томас Гарріот, який у 1631 році випустив книгу про нерівні співвідношення. Знаки більше «>» та менше «<» представляли собой положенные на бок буквы V, поэтому пришлись по вкусу не только математикам, но и типографам.

Розв'язання нерівностей

Нерівності, як і рівняння, бувають різних типів. Лінійні, квадратні, логарифмічні чи показові нерівні співвідношення розв'язуються різними методами. Однак незалежно від методу будь-яка нерівність спочатку потрібно привести до стандартного вигляду. І тому використовуються тотожні перетворення, ідентичні видозмінам рівностей.

Тотожні перетворення нерівностей

Такі трансформації виразів дуже схожі на привид рівнянь, проте мають нюанси, які важливо враховувати при розв'язуванні нерівностей.

Перше тотожне перетворення ідентично аналогічної операції з рівностями. До обох сторін нерівного співвідношення можна додати або відібрати те саме число або вираз з невідомим іксом, при цьому знак нерівності залишиться колишнім. Найчастіше цей метод застосовується у спрощеній формі як перенесення членів виразу через знак нерівності зі зміною знака числа на протилежний. Йдеться про зміну знака самого члена, тобто +R при перенесенні через будь-який знак нерівності зміниться на – R і навпаки.

Друге перетворення має два пункти:

  1. Обидві сторони нерівного співвідношення дозволяється помножити або розділити на те саме позитивне число. Знак нерівності при цьому не зміниться.
  2. Обидві сторони нерівності дозволяється розділити або помножити на те саме негативне число. Знак самої нерівності зміниться на протилежний.

Друге тотожне перетворення нерівностей має серйозні відмінності із видозміною рівнянь. По-перше, при множенні/розподілі на негативне число знак нерівного виразу завжди змінюється зворотний. По-друге, розділити або помножити частини відношення дозволяється лише на число, а не на будь-який вираз, що містить невідоме. Справа в тому, що ми не можемо точно знати, число більше або менше за нуль ховається за невідомим, тому друге тотожне перетворення застосовується до нерівностей виключно з числами. Розглянемо ці правила на прикладах.

Приклади розв'язування нерівностей

У завданнях з алгебри зустрічаються різні завдання на тему нерівностей. Нехай нам дано вираз:

6x − 3(4x + 1) > 6.

Для початку розкриємо дужки і перенесемо всі невідомі ліворуч, а всі числа – праворуч.

6x − 12x > 6 + 3

Нам потрібно поділити обидві частини виразу на −6, тому при знаходженні невідомого ікса знак нерівності зміниться протилежний.

При вирішенні цієї нерівності ми використовували обидва тотожні перетворення: перенесли всі числа праворуч від знака і розділили обидві сторони співвідношення на негативне число.

Наша програма є калькулятор розв'язання числових нерівностей, які не містять невідомих. У програму закладено такі теореми для співвідношень трьох чисел:

  • якщо A< B то A–C< B–C;
  • якщо A> B, то A-C> B-C.

Замість віднімання членів A–C ви можете вказати будь-яку арифметичну дію: додавання, множення або поділ. Таким чином, калькулятор автоматично надасть нерівності сум, різниць, творів або дробів.

Висновок

У реальному житті нерівності зустрічаються так само часто, як і рівняння. Природно, що у побуті знання про розв'язання нерівностей можуть не знадобитися. Однак у прикладних науках нерівності та їх системи знаходять широке застосування. Наприклад, різні дослідження проблем глобальної економіки зводяться до складання і розв'язування систем лінійних або квадратних нерівностей, а деякі нерівні відносини є однозначним способом доказу існування певних об'єктів. Використовуйте наші програми для вирішення лінійних нерівностей або перевірки власних викладок.



Останні матеріали розділу:

Вираз цілі у німецькій мові Um zu damit у німецькій мові
Вираз цілі у німецькій мові Um zu damit у німецькій мові

Після союзів aber - але , und - і, а , sondern - але, а , denn - тому що , oder - або, або в придаткових реченнях використовується...

Характеристики головних героїв твору Білий пудель, Купрін
Характеристики головних героїв твору Білий пудель, Купрін

Бариня – другорядний персонаж у оповіданні; багата поміщиця, яка проводить літо на своїй дачі у Криму; мати примхливого та норовливого хлопчика.

У списках не значився, Васильєв Борис львович
У списках не значився, Васильєв Борис львович

Василь Володимирович Биков «У списках не значився» Частина перша Миколі Петровичу Плужнікову надали військове звання, видали форму лейтенанта...