Рішення друга чудова межа. Чудові межі: Перша та друга чудова межа

Знайти чудові межіважко не лише багатьом студентам першого, другого курсу навчання, які вивчають теорію меж, а й деяким викладачам.

Формула першої чудової межі

Наслідки першої чудової межі запишемо формулами
1. 2. 3. 4. Але власними силами загальні формули чудових меж нікому на іспиті чи тесті не допомагають. Суть у тому, що реальні завдання побудовані так що до вищезаписаних формул потрібно ще прийти. І більшість студентів, які пропускають пари, заочно вивчають цей курс або мають викладачів, які самі не завжди розуміють, про що пояснюють, не можуть вирахувати найелементарніших прикладів на чудові межі. З формул першої чудової межі бачимо, що з їхньою допомогою можна дослідити невизначеності типу нуль розділити на нуль для виразів із тригонометричними функціями. Розглянемо спочатку ряд прикладів на першу чудову межу, а потім вивчимо другу чудову межу.

Приклад 1. Знайти межу функції sin(7*x)/(5*x)
Рішення: Як бачите функція під межею близька до першої чудової межі, але сама межа функції точно не дорівнює одиниці. У таких завданнях на межі слід у знаменнику виділити змінну з таким самим коефіцієнтом, який міститься при змінній під синусом. У цьому випадку слід розділити та помножити на 7

Деяким така деталізація здасться зайвою, але більшості студентів, яким важко даються межі, допоможе краще зрозуміти правила і засвоїти теоретичний матеріал.
Також, якщо є зворотний вид функції – це також перша чудова межа. А все тому, що чудова межа дорівнює одиниці

Це правило стосується і наслідків 1 чудової межі. Тому якщо Вас запитають "Чому дорівнює перша чудова межа?" Ви без вагань повинні відповісти, що це одиниця.

Приклад 2. Знайти межу функції sin(6x)/tan(11x)
Рішення: Для розуміння кінцевого результату розпишемо функцію у вигляді

Щоб застосувати правила чудової межі помножимо та розділимо на множники

Далі межу добутку функцій розпишемо через добуток меж

Без складних формул ми виявили межу частки тригонометричних функцій. Для засвоєння простих формул спробуйте придумати та знайти межу на 2 та 4 формулу слідства 1 чудової межі. Ми розглянемо складніші завдання.

Приклад 3. Обчислити межу (1-cos(x))/x^2
Рішення: Під час перевірки підстановкою отримаємо невизначеність 0/0 . Багатьом невідомо, як звести такий приклад до 1 чудової межі. Тут слід використовувати тригонометричну формулу

При цьому межа перетвориться на зрозумілий вигляд

Нам удалося звести функцію до квадрата чудової межі.

Приклад 4. Знайти межу
Рішення: При підстановці отримаємо знайому особливість 0/0. Однак змінна прагне Pi, а не нуля. Тому для застосування першої чудової межі виконаємо таку заміну змінної х, щоб нова змінна прямувала до нуля. Для цього знаменник позначимо за нову змінну Pi-x=y

Таким чином, використавши тригонометричну формулу, яка наведена в попередньому завданні, приклад зведений до 1 чудової межі.

Приклад 5. Обчислити межу
Рішення: Спочатку неясно, як спростити межі. Але якщо є приклад, то має бути і відповідь. Те, що змінна прямує до одиниці, дає при підстановці особливість виду нуль помножити на нескінченність, тому тангенс потрібно замінити за формулою.

Після цього отримаємо необхідність 0/0. Далі виконуємо заміну змінних у межі, і використовуємо періодичність котангенсу

Останні заміни дозволяють використовувати наслідок 1 чудової межі.

Друга чудова межа дорівнює експоненту

Це класика до якої реальних завданнях межі який завжди легко прийти.
У обчисленнях Вам знадобляться межі - наслідки другої чудової межі:
1. 2. 3. 4.
Завдяки другій чудовій межі та її наслідків можна дослідити невизначеності типу нуль розділити на нуль, одиниця в ступеня нескінченність, і нескінченність розділити на нескінченність, та ще й у такому ж ступені

Почнемо для ознайомлення із простих прикладів.

Приклад 6. Знайти межу функції
Рішення: Безпосередньо застосувати 2 чудові межі не вийде. Спочатку слід перетворити показник, щоб він мав вигляд зворотний до доданку в дужках

Це і є техніка зведення до 2 чудової межі та по суті - виведення 2 формули слідства межі.

Приклад 7. Знайти межу функції
Рішення: Маємо завдання на 3 формулу слідства 2 чудової межі. Підстановка нуля дає особливість 0/0. Для зведення межі під правило перетворимо знаменник, щоб при змінній був той самий коефіцієнт що і на логарифм

Це також легко зрозуміти та виконати на іспиті. Труднощі у студентів при обчисленні меж починаються з наступних завдань.

Приклад 8. Обчислити межу функції[(x+7)/(x-3)]^(x-2)
Рішення: Маємо особливість типу 1 ступеня нескінченність. Якщо не вірите, можете скрізь замість "ікс" підставити нескінченність і переконатись у цьому. Для зведення під правило поділимо в дужках чисельник на знаменник, для цього заздалегідь виконаємо маніпуляції

Підставимо вираз у межу і перетворимо до 2 чудової межі

Межа дорівнює експоненті 10 ступеня. Константи, які є доданками при змінній як у дужках так і ступеня ніякої "погоди" не вносять - слід пам'ятати. А якщо Вас спитають викладачі - "Чому не перетворюєте показник?" (Для цього прикладу в x-3), то скажіть що "Коли змінна прагне до нескінченності то до неї хоч додай 100 хоч забирай 1000, а межа залишиться такою як і був!".
Існує і другий спосіб обчислювати межі такого типу. Про нього розповімо у наступному завданні.

Приклад 9. Знайти межу
Рішення: Тепер винесемо змінну в чисельнику і знаменнику і перетворимо особливість на іншу. Для отримання кінцевого значення використовуємо формулу слідства 2 чудової межі

приклад 10. Знайти межу функції
Рішення: Задана межа знайти під силу не кожному. Для зведення під 2 межу уявімо, що sin (3x) це змінна, а потрібно перетворити показник

Далі показник запишемо як ступінь ступеня


У дужках описані проміжні міркування. В результаті використання першої та другої чудової межі отримали експоненту в кубі.

Приклад 11. Обчислити межу функції sin(2*x)/ln(3*x+1)
Рішення: Маємо невизначеність 0/0. Крім цього бачимо, що функцію слід перетворювати на використання обох чудових меж. Виконаємо попередні математичні перетворення

Далі легко межа прийме значення

Ось так вільно Ви почуватиметеся на контрольних роботах, тестах, модулях, якщо навчитеся швидко розписувати функції і зводити під першу чи другу чудову межу. Якщо вивчити наведені методики знаходження меж Вам важко, завжди можете замовити контрольну роботу межі в нас.
Для цього заповніть форму, вкажіть дані та вкладіть файл із прикладами. Ми допомогли багатьом студентам – зможемо допомогти і Вам!

З вищевказаної статті Ви зможете дізнатися, що ж таке межа, і з чим її їдять – це дуже важливо. Чому? Можна не розуміти, що таке визначники та успішно їх вирішувати, можна зовсім не розуміти, що таке похідна та знаходити їх на «п'ятірку». Але якщо Ви не розумієте, що таке межа, то з вирішенням практичних завдань доведеться туго. Також не зайвим буде ознайомитись із зразками оформлення рішень та моїми рекомендаціями щодо оформлення. Вся інформація викладена у простій та доступній формі.

А для цілей цього уроку нам знадобляться такі методичні матеріали: Чудові межіі Тригонометричні формули. Їх можна знайти на сторінці. Найкраще методички роздрукувати - це значно зручніше, до того ж до них часто доведеться звертатися в офлайні.

Чим чудові межі? Чудовість цих меж полягає в тому, що вони доведені найбільшими розумами знаменитих математиків, і вдячним нащадкам не доводиться страждати страшними межами з нагромадженням тригонометричних функцій, логарифмів, ступенів. Тобто при знаходженні меж ми користуватимемося готовими результатами, які доведені теоретично.

Чудових меж існує кілька, але на практиці у студентів-заочників у 95% випадків фігурують дві чудові межі: Перша чудова межа, Друга чудова межа. Слід зазначити, що це назви, що історично склалися, і, коли, наприклад, говорять про «першу чудову межу», то мають на увазі під цим цілком певну річ, а не якусь випадкову, взяту зі стелі межу.

Перша чудова межа

Розглянемо наступну межу: (замість рідної літери «хе» я використовуватиму грецьку літеру «альфа», це зручніше з погляду подачі матеріалу).

Згідно з нашим правилом знаходження меж (див. статтю Межі. Приклади рішень) Пробуємо підставити нуль у функцію: в чисельнику у нас виходить нуль (синус нуля дорівнює нулю), у знаменнику, очевидно, теж нуль. Таким чином, ми стикаємося з невизначеністю виду, яку, на щастя, не треба розкривати. У курсі математичного аналізу доводиться, що:

Цей математичний факт зветься Першої чудової межі. Аналітичний доказ межі наводити не буду, а ось його геометричний зміст розглянемо на уроці про нескінченно малих функціях.

Нерідко в практичних завданнях функції можуть бути по-іншому, це нічого не змінює:

– та сама перша чудова межа.

Але самостійно переставляти чисельник та знаменник не можна! Якщо дана межа у вигляді , то і вирішувати його потрібно в такому вигляді, нічого не переставляючи.

Насправді як параметра може бути як змінна , а й елементарна функція, складна функція. Важливо лише, щоб вона прагнула нуля.

Приклади:
, , ,

Тут , , , , і все гуд - перша чудова межа застосовується.

А ось наступний запис – єресь:

Чому? Тому що багаточлен не прагне нуля, він прагне п'ятірки.

До речі, питання на засипку, а чому дорівнює межа ? Відповідь можна знайти наприкінці уроку.

На практиці не все так гладко, майже ніколи студенту не запропонують вирішити халявну межу та отримати легкий залік. Хммм… Пишу ці рядки, і спала на думку дуже важлива думка – все-таки «халявні» математичні визначення та формули начебто краще пам'ятати напам'ять, це може надати неоціненну допомогу на заліку, коли питання вирішуватиметься між «двійкою» та «трійкою», і викладач вирішить поставити студенту якесь просте питання або запропонувати вирішити найпростіший приклад («а може він(а) все-таки знає чого?!»).

Переходимо до розгляду практичних прикладів:

Приклад 1

Знайти межу

Якщо ми помічаємо в межі синус, то це нас відразу має наштовхувати на думку про можливість застосування першої чудової межі.

Спочатку пробуємо підставити 0 у вираз під знак межі (робимо це подумки або на чернетці):

Отже, у нас є невизначеність виду, її обов'язково вказуємов оформленні рішення. Вираз під знаком межі у нас схоже на першу чудову межу, але це не зовсім він, під синусом знаходиться , а в знаменнику.

У подібних випадках перша чудова межа нам потрібно організувати самостійно, використовуючи штучний прийом. Хід міркувань може бути таким: "під синусом у нас, значить, у знаменнику нам теж потрібно отримати".
А робиться це дуже просто:

Тобто знаменник штучно множиться в даному випадку на 7 і ділиться на ту ж сімку. Тепер запис у нас набув знайомих обрисів.
Коли завдання оформляється від руки, то перша чудова межа бажано помітити простим олівцем:


Що сталося? По суті, обведений вираз у нас перетворився на одиницю і зник у творі:

Тепер тільки залишилося позбутися триповерховості дробу:

Хто забув спрощення багатоповерхових дробів, будь ласка, освіжіть матеріал у довіднику Гарячі формули шкільного курсу математики .

Готово. Остаточна відповідь:

Якщо не хочеться використовувати позначки олівцем, то рішення можна оформити так:



Використовуємо першу чудову межу

Приклад 2

Знайти межу

Знову ми бачимо межі дріб і синус. Пробуємо підставити в чисельник і знаменник нуль:

Справді, у нас невизначеність і, отже, треба спробувати організувати першу чудову межу. На уроці Межі. Приклади рішеньми розглядали правило, що коли у нас є невизначеність, то потрібно розкласти чисельник та знаменник на множники. Тут – те саме, ступеня ми представимо як твори (множників):

Аналогічно попередньому прикладу, обводимо олівцем чудові межі (тут їх дві), і вказуємо, що вони прагнуть одиниці:

Власне, відповідь готова:

У наступних прикладах, я не займатимуся мистецтвами в Пейнті, думаю, як правильно оформляти рішення у зошиті – Вам вже зрозуміло.

Приклад 3

Знайти межу

Підставляємо нуль у вираз під знаком межі:

Отримано невизначеність, яку потрібно розкривати. Якщо в межі є тангенс, то майже завжди його перетворюють на синус і косинус за відомою тригонометричною формулою (до речі, з котангенсом роблять приблизно те саме, див. методичний матеріал Гарячі тригонометричні формулина сторінці Математичні формули, таблиці та довідкові матеріали).

В даному випадку:

Косинус нуля дорівнює одиниці, і його легко позбутися (не забуваємо помітити, що він прагне одиниці):

Отже, якщо межі косинус є МНОЖИТЕЛЕМ, його, грубо кажучи, треба перетворити на одиницю, що зникає у творі.

Тут все вийшло простіше, без жодних помножень і поділів. Перша чудова межа теж перетворюється на одиницю і зникає у творі:

У результаті отримано нескінченність, буває таке.

Приклад 4

Знайти межу

Пробуємо підставити нуль у чисельник та знаменник:

Отримана невизначеність (косинус нуля, як ми пам'ятаємо, дорівнює одиниці)

Використовуємо тригонометричну формулу. Візьміть на замітку! Межі із застосуванням цієї формули чомусь зустрічаються дуже часто.

Постійні множники винесемо за значок межі:

Організуємо першу чудову межу:


Тут у нас тільки одна чудова межа, яка перетворюється на одиницю і зникає у творі:

Позбавимося триповерховості:

Межа фактично вирішена, вказуємо, що синус, що залишився, прагне до нуля:

Приклад 5

Знайти межу

Цей приклад складніший, спробуйте розібратися самостійно:

Деякі межі можна звести до 1-ї чудової межі шляхом заміни змінної, про це можна прочитати трохи пізніше в статті Методи розв'язання меж.

Друга чудова межа

Теоретично математичного аналізу доведено, що:

Цей факт має назву другої чудової межі.

Довідка: - Це ірраціональне число.

Як параметр може бути як змінна , а й складна функція. Важливо лише, щоб вона прагнула нескінченності.

Приклад 6

Знайти межу

Коли вираз під знаком межі перебуває у ступені – це перша ознака того, що потрібно спробувати застосувати другу чудову межу.

Але спочатку, як завжди, пробуємо підставити нескінченно велике число у вираз, за ​​яким принципом це робиться, розібрано на уроці. Межі. Приклади рішень.

Неважко помітити, що за основа ступеня , а показник – , тобто є, невизначеність виду:

Ця невизначеність якраз і розкривається за допомогою другої чудової межі. Але, як часто буває, друга чудова межа не лежить на блюдечку з блакитною облямівкою, і його потрібно штучно організувати. Розмірковувати можна так: у цьому прикладі параметр , отже, у показнику нам теж треба організувати . Для цього зводимо основу в ступінь , і щоб вираз не змінилося - зводимо в ступінь :

Коли завдання оформляється від руки, позначаємо олівцем:


Практично все готово, страшний ступінь перетворився на симпатичну букву:

При цьому сам значок межі переміщуємо до показника:

Приклад 7

Знайти межу

Увага! Межа подібного типу зустрічається дуже часто, будь ласка, дуже уважно вивчіть цей приклад.

Пробуємо підставити нескінченно велике число у вираз, що стоїть під знаком межі:

В результаті отримано невизначеність. Але друга чудова межа застосовується до невизначеності виду. Що робити? Потрібно перетворити основу ступеня. Розмірковуємо так: у знаменнику у нас, значить, у чисельнику теж потрібно організувати.

Ця стаття: «Друга чудова межа» присвячена розкриттю в межах невизначеностей виду:

$ \bigg[\frac(\infty)(\infty)\bigg]^\infty $ і $^\infty $.

Так само такі невизначеності можна розкривати за допомогою логарифмування показово-ступеневої функції, але це вже інший метод рішення, про який буде висвітлено в іншій статті.

Формула та наслідки

Формуладругої чудової межі записується наступним чином: $$ \lim_(x \to \infty) \bigg (1+\frac(1)(x)\bigg)^x = e, \text( де ) e \approx 2.718 $$

З формули випливають слідства, які дуже зручно застосовувати для вирішення прикладів з межами: $$ \lim_(x \to \infty) \bigg (1 + \frac(k)(x) \bigg)^x = e^k, \text( де ) k \in \mathbb(R) $$ $$ \lim_(x \to \infty) \bigg (1 + \frac(1)(f(x)) \bigg)^(f(x)) = e $ $ $$ \lim_(x \to 0) \bigg (1 + x \bigg)^\frac(1)(x) = e $$

Варто зауважити, що друга чудова межа можна застосовувати не завжди до показово-ступеневої функції, а лише у випадках коли основа прагне одиниці. Для цього спочатку в розумі обчислюють межу основи, а потім роблять висновки. Все це буде розглянуто у прикладах рішень.

Приклади рішень

Розглянемо приклади рішень із використанням прямої формули та її наслідків. Також розберемо випадки, у яких формула не потрібна. Достатньо записати лише готову відповідь.

Приклад 1
Знайти межу $ \lim_(x\to\infty) \bigg(\frac(x+4)(x+3) \bigg)^(x+3) $
Рішення

Підставимо нескінченність у межу і подивимося на невизначеність: $$ \lim_(x\to\infty) \bigg(\frac(x+4)(x+3) \bigg)^(x+3) = \bigg(\frac (\infty)(\infty)\bigg)^\infty $$

Знайдемо межу основи: $$ \lim_(x\to\infty) \frac(x+4)(x+3)= \lim_(x\to\infty) \frac(x(1+\frac(4)( x)))(x(1+\frac(3)(x))) = 1 $$

Отримали основу рівну одиниці, а це вже можна застосувати другий чудовий кордон. Для цього підженемо основу функції під формулу шляхом віднімання та додавання одиниці:

$$ \lim_(x\to\infty) \bigg(1 + \frac(x+4)(x+3) - 1 \bigg)^(x+3) = \lim_(x\to\infty) \ bigg(1 + \frac(1)(x+3) \bigg)^(x+3) = $$

Дивимося на друге слідство та записуємо відповідь:

$$ \lim_(x\to\infty) \bigg(1 + \frac(1)(x+3) \bigg)^(x+3) = e $$

Якщо не вдається вирішити своє завдання, то надсилайте його до нас. Ми надамо детальне рішення. Ви зможете ознайомитися з ходом обчислення та отримати інформацію. Це допоможе вчасно отримати залік у викладача!

Відповідь
$$ \lim_(x\to\infty) \bigg(1 + \frac(1)(x+3) \bigg)^(x+3) = e $$
Приклад 4
Вирішити межу $ \lim_(x\to \infty) \bigg (\frac(3x^2+4)(3x^2-2) \bigg) ^(3x) $
Рішення

Знаходимо межу основи і бачимо, що $ \lim_(x\to\infty) \frac(3x^2+4)(3x^2-2) = 1 $, отже можна застосувати другу чудову межу. Стандартно за планом додаємо та віднімаємо одиницю з основи ступеня:

$$ \lim_(x\to \infty) \bigg (1+\frac(3x^2+4)(3x^2-2)-1 \bigg) ^(3x) = \lim_(x\to \infty ) \bigg (1+\frac(6)(3x^2-2) \bigg) ^(3x) = $$

Підганяємо дріб під формулу 2-го зауваж. межі:

$$ = \lim_(x\to \infty) \bigg (1+\frac(1)(\frac(3x^2-2)(6)) \bigg) ^(3x) = $$

Тепер підганяємо ступінь. У ступеня має бути дріб рівний знаменнику основи $ \frac(3x^2-2)(6) $. Для цього помножимо та розділимо ступінь на неї, і продовжимо вирішувати:

$$ = \lim_(x\to \infty) \bigg (1+\frac(1)(\frac(3x^2-2)(6)) \bigg) ^(\frac(3x^2-2) (6) \cdot \frac(6)(3x^2-2)\cdot 3x) = \lim_(x\to \infty) e^(\frac(18x)(3x^2-2)) = $$

Межа, розташована в ступені при $ e $ дорівнює: $ \lim_(x\to \infty) \frac(18x)(3x^2-2) = 0$. Тому продовжуючи рішення маємо:

Відповідь
$$ \lim_(x\to \infty) \bigg (\frac(3x^2+4)(3x^2-2) \bigg) ^(3x) = 1 $$

Розберемо випадки, коли завдання схоже на другу чудову межу, але вирішується без неї.

У статті: «Друга чудова межа: приклади рішень» було розібрано формулу, її наслідки та наведено часті типи завдань на цю тему.

Формула другої чудової межі має вигляд lim x → ∞ 1 + 1 x x = e. Інша форма запису має такий вигляд: lim x → 0 (1 + x) 1 x = e .

Коли говоримо про другий чудовому межі, нам доводиться мати справу з невизначеністю виду 1 ∞ , тобто. одиницею нескінченною мірою.

Yandex.RTB R-A-339285-1

Розглянемо завдання, у яких нам знадобиться вміння обчислювати другу чудову межу.

Приклад 1

Знайдіть межу lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 .

Рішення

Підставимо потрібну формулу і виконаємо обчислення.

lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = 1 - 2 ∞ 2 + 1 ∞ 2 + 1 4 = 1 - 0 ∞ = 1 ∞

У нас у відповіді вийшла одиниця в міру нескінченність. Щоб визначитися з методом розв'язання, використовуємо таблицю невизначеностей. Виберемо другу чудову межу і зробимо заміну змінних.

t = - x 2 + 1 2 ⇔ x 2 + 1 4 = - t 2

Якщо x → ∞ , то t → - ∞ .

Подивимося, що в нас вийшло після заміни:

lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = 1 ∞ = lim x → ∞ 1 + 1 t - 1 2 t = lim t → ∞ 1 + 1 t t - 1 2 = e - 1 2

Відповідь: lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = e - 1 2 .

Приклад 2

Обчисліть межу lim x → ∞ x - 1 x + 1 x.

Рішення

Підставимо нескінченність і отримаємо таке.

lim x → ∞ x - 1 x + 1 x = lim x → ∞ 1 - 1 x 1 + 1 x x = 1 - 0 1 + 0 ∞ = 1 ∞

У відповіді у нас знову вийшло те саме, що й у попередньому завданні, отже, ми можемо знову скористатися другою чудовою межею. Далі нам потрібно виділити в основі статечної функції цілу частину:

x - 1 x + 1 = x + 1 - 2 x + 1 = x + 1 x + 1 - 2 x + 1 = 1 - 2 x + 1

Після цього межа набуває наступного вигляду:

lim x → ∞ x - 1 x + 1 x = 1 ∞ = lim x → ∞ 1 - 2 x + 1 x

Замінюємо змінні. Припустимо, що t = - x + 1 2 ⇒ 2 t = - x - 1 ⇒ x = - 2 t - 1; якщо x → ∞, то t → ∞.

Після цього записуємо, що в нас вийшло у вихідній межі:

lim x → ∞ x - 1 x + 1 x = 1 ∞ = lim x → ∞ 1 - 2 x + 1 x = lim x → ∞ 1 + 1 t - 2 t - 1 = = lim x → ∞ 1 + 1 t - 2 t · 1 + 1 t - 1 = lim x → ∞ 1 + 1 t - 2 t · lim x → ∞ 1 + 1 t - 1 = = lim x → ∞ 1 + 1 t t - 2 · 1 + 1 ∞ = e - 2 · (1 + 0) - 1 = e - 2

Щоб виконати це перетворення, ми використовували основні властивості меж і ступенів.

Відповідь: lim x → ∞ x - 1 x + 1 x = e-2.

Приклад 3

Обчисліть межу lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 .

Рішення

lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = lim x → ∞ 1 + 1 x 3 1 + 2 x - 1 x 3 3 2 x - 5 x 4 = = 1 + 0 1 + 0 - 0 3 0 - 0 = 1 ∞

Після цього нам потрібно виконати перетворення функції для застосування другої чудової межі. У нас вийшло таке:

lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = 1 ∞ = lim x → ∞ x 3 - 2 x 2 - 1 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5

Оскільки зараз у нас є однакові показники ступеня в чисельнику і знаменнику дробу (рівні шести), то межа дробу на нескінченності дорівнюватиме відношенню даних коефіцієнтів при старших ступенях.

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 6 2 = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 3

При заміні t = x 2 + 2 x 2 – 1 – 2 x 2 + 2 у нас вийде друга чудова межа. Значить, що:

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 3 = lim x → ∞ 1 + 1 t t - 3 = e - 3

Відповідь: lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = e-3.

Висновки

Невизначеність 1 ∞, тобто. одиниця в нескінченній мірі, є статечною невизначеністю, отже, її можна розкрити, використовуючи правила знаходження меж показово статечних функцій.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Тепер зі спокійною душею переходимо до розгляду чудових меж.
має вигляд .

Замість змінної х можуть бути різні функції, головне, щоб вони прагнули до 0.

Необхідно обчислити межу

Як видно, ця межа дуже схожа на першу чудову, але це не зовсім так. Взагалі, якщо Ви помічаєте в межі sin, то треба відразу подумати про те, чи можливе застосування першої чудової межі.

Згідно з нашим правилом №1 підставимо замість хнуль:

Отримуємо невизначеність.

Тепер спробуємо самостійно організувати першу чудову межу. Для цього проведемо нехитру комбінацію:

Таким чином ми організовуємо чисельник та знаменник так, щоб виділити 7х. Ось уже і виявилася знайома чудова межа. Бажано при рішенні виділяти його:

Підставимо рішення першого чудового прикладу та отримуємо:

Спрощуємо дріб:

Відповідь: 7/3.

Як бачите, все дуже просто.

Має вигляд , де e = 2,718281828 ... - Це ірраціональне число.

Замість змінної х можуть бути різні функції, головне, щоб вони прагнули до .

Необхідно обчислити межу

Тут ми бачимо наявність ступеня під знаком межі, отже можливе застосування другої чудової межі.

Як завжди скористаємося правилом №1 – підставимо замість х:

Видно, що з х основу ступеня , а показник – 4x > , тобто. отримуємо невизначеність виду:

Скористаємося другою чудовою межею для розкриття нашої невизначеності, але спочатку треба її організувати. Як видно - треба домогтися присутності в показнику, для чого зведемо основу в ступінь 3х, і одночасно в ступінь 1/3x, щоб вираз не змінювався:

Не забуваємо виділяти нашу чудову межу:

Ось такі справді чудові межі!
Якщо у вас залишилися якісь питання щодо першому та другому чудовим межам, то сміливо задавайте їх у коментарях.
Всім наскільки можна відповімо.

Також ви можете порозумітися з педагогом з цієї теми.
Ми раді запропонувати Вам послуги підбору кваліфікованого репетитора у Вашому місті. Наші партнери оперативно підберуть для вас хорошого викладача на вигідних для вас умовах.

Мало інформації? - Ви можете !

Можна писати математичні обчислення у блокнотах. У блокноти з логотипом (http://www.blocnot.ru) індивідуальним писати набагато приємніше.



Останні матеріали розділу:

Федір Ємельяненко розкритикував турнір у грізному за бої дітей Омеляненко висловився про бої в чечні
Федір Ємельяненко розкритикував турнір у грізному за бої дітей Омеляненко висловився про бої в чечні

Заява уславленого спортсмена та президента Союзу ММА Росії Федора Омеляненка про неприпустимість дитячих боїв після бою дітей Рамзана Кадирова...

Саша пивоварова - біографія, інформація, особисте життя
Саша пивоварова - біографія, інформація, особисте життя

Ті часи, коли моделлю обов'язково мала бути дівчина з ляльковим личком, суворо відповідна параметрам 90-60-90, давно минули.

Міфологічні картини.  Головні герої та символи.  Картини на сюжет з історії стародавньої греції.
Міфологічні картини. Головні герої та символи. Картини на сюжет з історії стародавньої греції.

Вік вищого розквіту скульптури в період класики був і віком розквіту грецького живопису. Саме до цього часу відноситься чудове...