Роберт броун внесок у біологію. Броунівський рух – історія розвитку колоїдної хімії

Танець під мікроскопом

На початку XIX століття мікроскопи вже були складними оптичними спорудами з кількох добре відполірованих лінз, що пересуваються відносно один одного.

З їхньою допомогою можна було отримати значне збільшення, і поле зору при цьому залишалося чистим, позбавленим будь-яких дефектів та спотворень.

Перед «світлими очима» такого вдосконаленого мікроскопа англійський ботанік Роберт Броун вирішив представити не лист рослини або зріз дерева, а… крихітну краплю води з розмішаним у ній пилком рослин. Подивившись у мікроскоп, Броун був вражений: пилок не розчинився у воді, а розбився на найдрібніші кульки, і ці кульки рухалися в якомусь фантастичному танці!

Тривалі спостереження переконали Броуна в тому, що рухи частинок пилку спричинені не «підводними течіями» в краплі рідини та не легкими струсами підставки мікроскопа. Ні, кожна частинка рухалася зовсім відокремлено від інших, у раптових пересуваннях частинок пилку не було жодної узгодженості. Невідомі й незрозумілі Броуну сили змушували їх так дивно поводитися…

Багато вчених повторювали досліди Броуна і спостерігали ту саму картину в мікроскоп. Таємничі переміщення пилку рослин у краплі рідини отримали назву броунівського руху.

Все частіше висловлювалося вченими обґрунтоване припущення: виявлений Броуном рух викликаний поштовхами невидимих ​​під мікроскопом молекул рідини. Атаковані молекулами з усіх боків, частинки пилку пересуваються в той бік, з якого в цю секунду менше ударів.

Броунівський рух було виявлено не тільки в рідині, а й у газах. До того ж виявилося, що і дрібні крупинки золота, розмішані у воді, при оптичних спостереженнях поводилися так само.

Квіти не тільки тішать наше око, а й корисно служать науці. Квітковий пилок допоміг відкрити броунівський рух, спричинений хаотичними переміщеннями молекул рідини.

Дослідники встановили, що при підвищенні температури рідини або газу частинки починають рухатися значно швидше, мабуть, поштовхи молекул стають все частіше.

Французький фізик Жан Перрен вирішив відтворити броунівський рух штучно, виготовивши дрібні кульки зі смоли-гуммігута, щоб із дослідів отримати відомості про розмір та кількість атомів та молекул рідини. І Перрен зумів це зробити!

Броун, Роберт (Brown, Robert) (1773-1858), англійський ботанік. Народився 21 грудня 1773 року в Монтрозі.

Вивчав медицину в Абердинському та Единбурзькому університетах (1789–1795). Протягом п'яти років працював помічником хірурга в Британській армії. У 1798 році під час перебування в Лондоні познайомився з Дж.Бенксом, президентом Королівського товариства, і в 1801 році за його рекомендацією був запрошений взяти участь в експедиції, що прямувала до Австралії. У 1805 повернувся до Англії з колекцією рослин, що налічувала понад 4000 видів.

У 1810 опублікував працю, присвячену флорі Австралії. Того ж року став особистим бібліотекарем Дж.Бенкса. Після смерті останнього в 1820 році його бібліотека і всі колекції перейшли за заповітом до довічного володіння Броуна. У 1827 році він передав їх Британському музею і став хранителем його ботанічного відділу. З 1849 по 1853 р. був президентом Ліннеївського товариства.

Основні наукові роботи Броуна присвячені морфології та систематиці рослин. Він вперше описав будову семяпочки і встановив різницю між голонасінними і покритонасінними рослинами (1825), виявив процес статевого схрещування (запилення) у вищих рослин.

Спостерігаючи під мікроскопом поведінку частинок пилку, зважених у воді, виявив, що вони здійснюють хаотичні зигзагоподібні рухи (1827). Згодом показав, що таким чином поводяться суспензії будь-яких інших речовин. Це пізніше отримало назву броунівського руху. У 1831 році Броун вивчив і описав ядро ​​рослинної клітини.

Список літератури

Генкель П.А. Роберт Броун. - Вісті АН СРСР, 1959 № 1


Броун, Роберт (Brown, Robert) (1773-1858), англійський ботанік. Народився 21 грудня 1773 року в Монтрозі. Вивчав медицину в Абердинському та Единбурзькому університетах (1789–1795). Протягом п'яти років працював помічником хірурга в Британській армії. В 1

Шотландський ботанік Роберт Броун (іноді його прізвище транскрибують як Браун) ще за життя як найкращий знавець рослин отримав титул «князя ботаніків». Він зробив багато чудових відкриттів. У 1805 після чотирирічної експедиції в Австралію привіз до Англії близько 4000 видів не відомих вченим австралійських рослин і багато років витратив на їхнє вивчення. Описав рослини, привезені з Індонезії та Центральної Африки. Вивчав фізіологію рослин, вперше описав ядро ​​рослинної клітини. Петербурзька Академія наук зробила його своїм почесним членом. Але ім'я вченого зараз широко відоме зовсім не через ці роботи.

У 1827 році Броун проводив дослідження пилку рослин. Він, зокрема, цікавився, як пилок бере участь у процесі запліднення. Якось він розглядав під мікроскопом виділені з клітин пилку північноамериканської рослини Clarkia pulchella(кларкії гарненької) зважені у воді подовжені цитоплазматичні зерна. Несподівано Броун побачив, що найдрібніші тверді крупинки, які ледве можна було розгледіти в краплі води, безперервно тремтять і пересуваються з місця на місце. Він встановив, що ці рухи, за його словами, "не пов'язані ні з потоками в рідині, ні з її поступовим випаром, а властиві самим частинкам".

Спостереження Броуна підтвердили інші вчені. Найдрібніші частинки поводилися, як живі, причому «танець» частинок прискорювався з підвищенням температури та зі зменшенням розміру частинок і явно сповільнювався при заміні води більш в'язким середовищем. Це дивовижне явище ніколи не припинялося: його можна було спостерігати як завгодно довго. Спочатку Броун подумав навіть, що в поле мікроскопа дійсно потрапили живі істоти, тим більше, що пилок – це чоловічі статеві клітини рослин, однак так само вели частинки з мертвих рослин, навіть із засушених за сто років до цього в гербаріях. Тоді Броун подумав, чи це не є «елементарні молекули живих істот», про які говорив знаменитий французький дослідник природи Жорж Бюффон (1707–1788), автор 36-томної Природна історія. Це припущення відпало, коли Броун почав досліджувати явно неживі об'єкти; спочатку це були дуже дрібні частинки вугілля, а також сажі та пилу лондонського повітря, потім тонко розтерті неорганічні речовини: скло, безліч різних мінералів. «Активні молекули» виявилися повсюди: «У кожному мінералі, – писав Броун, – який мені вдавалося подрібнити в пилюку до такої міри, щоб вона могла протягом якогось часу бути зваженою у воді, я знаходив, у більших чи менших кількостях, ці молекули».

Треба сказати, що Броун не мав якихось нових мікроскопів. У своїй статті він спеціально підкреслює, що у нього були звичайні двоопуклі лінзи, якими він користувався протягом декількох років. І далі пише: «У ході всього дослідження я продовжував використовувати ті ж лінзи, з якими почав роботу, щоб надати більше переконливості моїм твердженням і щоб зробити їх якомога доступнішими для звичайних спостережень».

Зараз, щоб повторити спостереження Броуна, достатньо мати не дуже сильний мікроскоп і розглянути з його допомогою дим у зачорненій коробочці, освітлений через боковий отвір променем інтенсивного світла. У газі явище проявляється значно яскравіше, ніж у рідині: видно маленькі клаптики попелу або сажі (залежно від джерела диму), що розсіюють світло, які безперервно скачуть туди і сюди.

Як це часто буває в науці, через багато років історики виявили, що ще в 1670 р. винахідник мікроскопа голландець Антоні Левенгук, мабуть, спостерігав аналогічне явище, але рідкість і недосконалість мікроскопів, зародковий стан молекулярного навчання в той час не привернули уваги до спостереження Левенгука. відкриття справедливо приписують Броуну, який уперше докладно його вивчив та описав.

Броунівський рух та атомно-молекулярна теорія.

Явище, що спостерігалося Броуном, швидко стало широко відомим. Він сам показував свої досліди численним колегам (Броун перераховує два десятки імен). Але пояснити це загадкове явище, яке назвали «броунівським рухом», не зміг ні сам Броун, ні багато інших вчених упродовж багатьох років. Переміщення частинок були абсолютно безладні: замальовки їхнього положення, зроблені в різні моменти часу (наприклад, щохвилини) не давали на перший погляд жодної можливості знайти в цих рухах будь-яку закономірність.

Пояснення броунівського руху (як назвали це явище) рухом невидимих ​​молекул було дано лише в останній чверті 19 ст, але далеко не відразу було прийнято всіма вченими. У 1863 викладач нарисної геометрії з Карлсруе (Німеччина) Людвіг Крістіан Вінер (1826-1896) припустив, що явище пов'язане з коливальними рухами невидимих ​​атомів. Це було перше, хоч і дуже далеке від сучасного, пояснення броунівського руху властивостями самих атомів та молекул. Важливо, що Вінер побачив можливість з допомогою цього явища поринути у таємниці будови матерії. Він уперше спробував виміряти швидкість переміщення броунівських частинок та її залежність від їхнього розміру. Цікаво, що у 1921 в Доповіді Національної Академії наук СШАбуло опубліковано роботу про броунівський рух іншого Вінера – Норберта, знаменитого засновника кібернетики.

Ідеї ​​Л.К.Винера були прийняті та розвинені рядом вчених – Зигмундом Екснером в Австрії (а через 33 роки – і його сином Феліксом), Джованні Кантоні в Італії, Карлом Вільгельмом Негелі в Німеччині, Луї Жоржем Гуї у Франції, трьома бельгійськими єзуїтами Карбонеллі, Дельсо та Тирйоном та іншими. Серед цих учених був і знаменитий згодом англійський фізик та хімік Вільям Рамзай. Поступово ставало зрозумілим, що дрібні крупинки речовини відчувають з усіх боків удари ще дрібніших частинок, які в мікроскоп вже не видно - як не видно з берега хвилі, що гойдають далекий човен, тоді як рухи самого човна видно цілком виразно. Як писали в одній із статей 1877, «...закон великих чисел не зводить тепер ефект зіткнень до середнього рівномірного тиску, їх рівнодіюча вже не дорівнюватиме нулю, а безперервно змінюватиме свій напрямок і свою величину».

Якісно картина була цілком правдоподібною і навіть наочною. Приблизно так само повинні переміщатися маленька гілочка або жучок, яких штовхають (або тягнуть) у різні боки безліч мурах. Ці дрібніші частинки насправді були у лексиконі вчених, тільки їх ніхто ніколи не бачив. Називали їх молекулами; у перекладі з латинської це слово і означає "маленька маса". Вражаюче, але саме таке пояснення дав схожому явищу римський філософ Тіт Лукрецій Кар (бл. 99–55 до н.е.) у своїй знаменитій поемі Про природу речей. У ній найдрібніші невидимі оком частинки він називає «першоначальниками» речей.

Спочатку речей спочатку рухаються самі,
Слідом за ними тіла з найдрібнішого їх поєднання,
Близькі, як би сказати, під силу до первинних початків,
Приховано від них отримуючи поштовхи, починають прагнути,
Самі до руху потім спонукаючи тіла більше.
Так, виходячи від початків, рух помалу
Наших стосується почуттів, і стає видимим також
Нам і в порошинках воно, що рухаються в сонячному світлі,
Хоч непомітні поштовхи, від яких воно походить...

Згодом виявилося, що Лукрецій помилявся: неозброєним оком спостерігати броунівський рух неможливо, а порошинки в сонячному промені, який проник у темну кімнату, «танцюють» через вихрові рухи повітря. Але зовні обидва явища мають деяку схожість. І лише у 19 ст. багатьом ученим стало очевидним, що рух броунівських частинок викликаний безладними ударами молекул середовища. Молекули, що рухаються, наштовхуються на порошинки та інші тверді частинки, які є у воді. Що температура, то швидше рух. Якщо порошинка велика, наприклад, має розмір 0,1 мм (діаметр у мільйон разів більший, ніж у молекули води), то безліч одночасних ударів по ній з усіх боків взаємно врівноважуються і вона їх практично не відчуває - приблизно так само, як шматок дерева розміром з тарілку не «відчує» зусиль безлічі мурах, які тягнути або штовхатимуть його в різні боки. Якщо ж порошинка порівняно невелика, вона під дією ударів навколишніх молекул рухатиметься то в одну, то в іншу сторону.

Броунівські частки мають обсяг порядку 0,1–1 мкм, тобто. від однієї тисячної до однієї десятитисячної частки міліметра, тому Броуну і вдалося розглянути їхнє переміщення, що він розглядав крихітні цитоплазматичні зернятка, а не саму пилок (про що часто помилково пишуть). Справа в тому, що клітини пилку надто великі. Так, у пилку лучних трав, що переноситься вітром і викликає алергічні захворювання у людей (поліноз), розмір клітин зазвичай знаходиться в межах 20 – 50 мкм, тобто. вони надто великі для спостереження броунівського руху. Важливо також, що окремі пересування броунівської частки відбуваються дуже часто і дуже малі відстані, отже побачити їх неможливо, а під мікроскопом видно переміщення, які відбулися якийсь проміжок часу.

Здавалося б, сам факт існування броунівського руху однозначно доводив молекулярну будову матерії, проте навіть на початку 20 ст. були вчені, і серед них – фізики та хіміки, які не вірили в існування молекул. Атомно-молекулярна теорія лише повільно і важко завойовувала визнання. Так, найбільший французький хімік-органік Марселен Бертло (1827–1907) писав: «Поняття молекули, з погляду наших знань, невизначено, тоді як інше поняття – атом – суто гіпотетичне». Ще виразніше висловився відомий французький хімік А.Сент-Клер Девілль (1818–1881): «Я не допускаю ні закону Авогадро, ні атома, ні молекули, бо я відмовляюся вірити в те, що не можу ні бачити, ні спостерігати». А німецький фізикохімік Вільгельм Оствальд (1853–1932), лауреат Нобелівської премії, один із засновників фізичної хімії, ще на початку 20 ст. рішуче заперечував існування атомів. Він примудрився написати тритомний підручник хімії, у якому слово «атом» жодного разу навіть не згадується. Виступаючи 19 квітня 1904 року з великою доповіддю в Королівському Інституті перед членами англійського Хімічного товариства, Оствальд намагався довести, що атомів не існує, а «те, що ми називаємо матерією, є лише сукупністю енергій, зібраної воєдино в цьому місці».

Але навіть ті фізики, які приймали молекулярну теорію, не могли повірити, що у такий простий спосіб доводиться справедливість атомно-молекулярного вчення, тому висувалися найрізноманітніші альтернативні причини, щоб пояснити явище. І це цілком у дусі науки: доки причина будь-якого явища не виявлена ​​однозначно, можна (і навіть необхідно) припускати різні гіпотези, які слід по можливості перевіряти експериментально чи теоретично. Так, ще в 1905 р. в Енциклопедичному словнику Брокгауза та Єфрона була опублікована невелика стаття петербурзького професора фізики Н.А.Гезехуса, вчителя знаменитого академіка А.Ф.Іоффе. Гезехус писав, що, на думку деяких учених, броунівський рух викликається світловими або тепловими променями, що проходять через рідину, зводиться до «простих потоків усередині рідини, що не мають нічого спільного з рухами молекул», причому ці потоки можуть викликатися «випаром, дифузією і іншими причинами». Адже вже було відомо, що дуже схожий рух порошин у повітрі викликається саме вихровими потоками. Але пояснення, наведене Гезехусом, легко можна було спростувати експериментально: якщо сильний мікроскоп розглядати дві броунівські частинки, що є дуже близько друг до друга, їх переміщення виявляться цілком незалежними. Якби ці рухи викликалися якими-небудь потоками в рідині, такі сусідні частинки рухалися б узгоджено.

Теорія броунівського руху.

На початку 20 ст. більшість вчених розуміли молекулярну природу броунівського руху. Але всі пояснення залишалися суто якісними, жодна кількісна теорія не витримувала експериментальної перевірки. Крім того, самі експериментальні результати були невиразні: фантастичне видовище часток, що невпинно кидаються, гіпнотизувало експериментаторів, і які саме характеристики явища потрібно вимірювати, вони не знали.

Незважаючи на повний безлад, що здається, випадкові переміщення броунівських частинок виявилося все ж можливим описати математичною залежністю. Вперше суворе пояснення броунівського руху дав 1904 року польський фізик Маріан Смолуховський (1872–1917), який у ті роки працював у Львівському університеті. Одночасно теорію цього явища розробляв Альберт Ейнштейн (1879–1955), мало кому відомий тоді експерт 2-го класу Патентному бюро швейцарського міста Берна. Його стаття, опублікована в травні 1905 року в німецькому журналі Annalen der Physik, називалася Про рух зважених рідини, що покоїться, частинок, необхідний молекулярно-кінетичною теорією теплоти. Цією назвою Ейнштейн хотів показати, що з молекулярно-кінетичної теорії будови матерії з необхідністю випливає існування випадкового руху найдрібніших твердих частинок у рідинах.

Цікаво, що на самому початку цієї статті Ейнштейн пише, що знайомий із самим явищем, хоча й поверхово: «Можливо, що рухи, що розглядаються, тотожні з так званим броунівським молекулярним рухом, проте доступні мені дані щодо останнього настільки неточні, що я не міг скласти про це певної думки». А через десятки років, вже на схилі життя, Ейнштейн написав у своїх спогадах щось інше – що взагалі не знав про броунівський рух і фактично наново «відкрив» його суто теоретично: «Не знаючи, що спостереження над „броунівським рухом” давно відомі, я відкрив, що атомістична теорія призводить до існування доступного спостереження руху мікроскопічних зважених частинок ". Як би там не було, а закінчувалася теоретична стаття Ейнштейна прямим закликом до експериментаторів перевірити його висновки на досвіді: "Якби якомусь досліднику вдалося невдовзі відповісти на підняті тут питання!» – таким незвичайним вигуком закінчує він свою статтю.

Відповідь на пристрасний заклик Ейнштейна не змусила довго чекати.

Відповідно до теорії Смолуховського-Ейнштейна, середнє значення квадрата зміщення броунівської частки ( s 2) за час tпрямо пропорційно температурі Ті обернено пропорційно в'язкості рідини h , розміру частинки rта постійної Авогадро

N A: s 2 = 2RTt/6ph rN A ,

де R- Постійна газова. Так, якщо за 1 хв частка діаметром 1 мкм зміститься на 10 мкм, то за 9 хв - на 10 = 30 мкм, за 25 хв - на 10 = 50 мкм і т.д. В аналогічних умовах частка діаметром 0,25 мкм за ті ж відрізки часу (1, 9 і 25 хв) зміститься відповідно на 20, 60 і 100 мкм, тому що = 2. Важливо, що в наведену формулу входить постійна Авогадро, яку таким чином , можна визначити шляхом кількісних вимірів переміщення броунівської частки, що зробив французький фізик Жан Батист Перрен (1870–1942).

У 1908 році Перрен почав кількісні спостереження за рухом броунівських частинок під мікроскопом. Він використовував винайдений у 1902 ультрамікроскоп, який дозволяв виявляти найдрібніші частинки завдяки розсіюванню на них світла від потужного бічного освітлювача. Крихітні кульки майже сферичної форми та приблизно однакового розміру Перрен отримував із гуммігуту – згущеного соку деяких тропічних дерев (він використовується як жовта акварельна фарба). Ці крихітні кульки були зважені у гліцерині, що містить 12% води; в'язка рідина перешкоджала появі в ній внутрішніх потоків, які б змастили картину. Озброївшись секундоміром, Перрен відзначав і потім замальовував (звісно, ​​у сильно збільшеному масштабі) на розграфленому аркуші паперу положення частинок через рівні інтервали, наприклад, через кожні півхвилини. Поєднуючи отримані точки прямими, він отримував хитромудрі траєкторії, деякі з них наведені на малюнку (вони взяті з книги Перрена Атоми, Опубліковано в 1920 в Парижі). Такий хаотичний, безладний рух частинок призводить до того, що переміщуються вони у просторі досить повільно: сума відрізків набагато більша за зміщення частинки від першої точки до останньої.

Послідовні положення через кожні 30 секунд трьох броунівських частинок – кульок гуммігуту розміром близько 1 мкм. Одна клітина відповідає відстані 3 мкм. Якби Перрен зміг визначати положення броунівських частинок не через 30, а через 3 секунди, то прямі між кожними сусідніми точками перетворилися б на таку ж складну ламану зигзагоподібну лінію, тільки меншого масштабу.

Використовуючи теоретичну формулу та свої результати, Перрен отримав досить точне для того часу значення числа Авогадро: 6,8 . 10 23 . Перрен досліджував також за допомогою мікроскопа розподіл броунівських частинок по вертикалі. см. АВОГАДРО ЗАКОН) і показав, що, незважаючи на дію земного тяжіння, вони залишаються в розчині у зваженому стані. Перрену належать інші важливі роботи. У 1895 році він довів, що катодні промені – це негативні електричні заряди (електрони), у 1901 році вперше запропонував планетарну модель атома. У 1926 році він був удостоєний Нобелівської премії з фізики.

Результати, отримані Перрен, підтвердили теоретичні висновки Ейнштейна. Це справило сильне враження. Як написав через багато років американський фізик А. Пайс, «не перестаєш дивуватися цьому результату, отриманому таким простим способом: достатньо приготувати завись кульок, розмір яких великий у порівнянні з розміром простих молекул, взяти секундомір і мікроскоп, і можна визначити постійну Авогадро!» Можна дивуватися й іншому: досі в наукових журналах (Nature, Science, Journal of Chemical Education) час від часу з'являються описи нових експериментів з броунівського руху! Після публікації результатів Перрена колишній противник атомізму Оствальд зізнався, що «збіг броунівського руху з вимогами кінетичної гіпотези... дає тепер право обережному вченому говорити про експериментальний доказ атомістичної теорії матерії. Таким чином, атомістична теорія зведена до рангу наукової, міцно обґрунтованої теорії». Йому вторить французький математик і фізик Анрі Пуанкаре: «Блискуче визначення числа атомів Перрен завершило тріумф атомізму ... Атом хіміків став тепер реальністю».

Броунівський рух та дифузія.

Переміщення броунівських частинок зовні дуже нагадує переміщення окремих молекул внаслідок їхнього теплового руху. Таке переміщення називається дифузією. Ще до робіт Смолуховського та Ейнштейна було встановлено закони руху молекул у найпростішому випадку газоподібного стану речовини. Виявилося, що молекули в газах рухаються дуже швидко - зі швидкістю кулі, але далеко "полетіти" не можуть, оскільки дуже часто стикаються з іншими молекулами. Наприклад, молекули кисню та азоту у повітрі, рухаючись у середньому зі швидкістю приблизно 500 м/с, відчувають кожну секунду понад мільярд зіткнень. Тому шлях молекули, якби могли за ним простежити, був би складною ламаною лінією. Подібну траєкторію описують і броунівські частки, якщо фіксувати їх положення через певні проміжки часу. І дифузія, і броунівський рух є наслідком хаотичного теплового руху молекул і тому описуються схожими математичними залежностями. Відмінність полягає в тому, що молекули в газах рухаються прямою, поки не зіткнуться з іншими молекулами, після чого змінюють напрямок руху. Броунівська ж частка ніяких «вільних польотів», на відміну молекули, не здійснює, а відчуває дуже часті дрібні і нерегулярні «тремтіння», у яких вона хаотично зміщується то одну, то інший бік. Як показали розрахунки, для частки розміром 0,1 мкм одне переміщення відбувається за три мільярдні частки секунди на відстань 0,5 нм (1 нм = 0,001 мкм). За влучним висловом одного автора, це нагадує переміщення порожньої банки з-під пива на площі, де зібрався натовп людей.

Дифузію спостерігати набагато простіше, ніж броунівський рух, оскільки для цього не потрібен мікроскоп: спостерігаються переміщення не окремих частинок, а величезної їхньої маси, потрібно лише забезпечити, щоб на дифузію не накладалося конвекція - перемішування речовини в результаті вихрових потоків (такі потоки легко помітити, крапну краплю забарвленого розчину, наприклад, чорнила, у склянку з гарячою водою).

Дифузію зручно спостерігати у густих гелях. Такий гель можна приготувати, наприклад, у баночці з-під пеніциліну, приготувавши в ній 4-5% розчин желатину. Желатин спочатку повинен кілька годин набухати, а потім повністю розчиняють при перемішуванні, опустивши баночку в гарячу воду. Після охолодження виходить неплинний гель у вигляді прозорої злегка каламутої маси. Якщо за допомогою гострого пінцету обережно ввести в центр цієї маси невеликий кристал перманганату калію («марганцівки»), то кристал залишиться висіти в тому місці, де його залишили, так як гель не дає йому впасти. Вже через кілька хвилин навколо кристалика почне рости пофарбований в Фіолетовий коліркулька, з часом вона стає все більше і більше, поки стінки баночки не спотворять його форму. Такий же результат можна отримати і за допомогою кристаліка мідного купоросу, тільки в цьому випадку кулька вийде не фіолетовою, а блакитною.

Чому вийшла кулька, зрозуміло: іони MnO 4 - , що утворюються при розчиненні кристала, переходять в розчин (гель - це, в основному, вода) і в результаті дифузії рівномірно рухаються на всі боки, при цьому сила тяжіння практично не впливає на швидкість дифузії. Дифузія в рідині йде дуже повільно: щоб кулька виросла на кілька сантиметрів, потрібно багато годин. У газах дифузія йде набагато швидше, але все одно якби повітря не перемішувалося, запах духів або нашатирного спирту поширювався в кімнаті годинами.

Теорія броунівського руху: випадкові блукання.

Теорія Смолуховського - Ейнштейна пояснює закономірності і дифузії, і броунівського руху. Можна розглядати ці закономірності з прикладу дифузії. Якщо швидкість молекули дорівнює u, то, рухаючись прямою, вона за час tпройде відстань L = utАле через зіткнення з іншими молекулами дана молекула не рухається по прямій, а безперервно змінює напрямок свого руху. Якби можна було замалювати шлях молекули, він принципово нічим не відрізнявся б від малюнків, отриманих Перреном. З таких малюнків видно, що через хаотичний рух молекула зміщується на відстань sзначно менше, ніж L. Ці величини пов'язані співвідношенням s= , де l – відстань, яку молекула пролітає від одного зіткнення до іншого, середня довжина вільного пробігу. Вимірювання показали, що для молекул повітря при нормальному атмосферному тиску l ~ 0,1 мкм, отже, при швидкості 500 м/с молекула азоту або кисню пролетить за 10 000 секунд (менше трьох годин) відстань L= 5000 км, а зміститься від первісного становища лише на s= 0,7 м (70 см), тому речовини за рахунок дифузії пересуваються так повільно навіть у газах.

Шлях молекули в результаті дифузії (або шлях броунівської частки) називається випадковим блуканням (англійською random walk). Дотепники-фізики переінакшили цей вислів у drunkard's walk – «шлях п'яниці». Дійсно, переміщення частинки від одного положення до іншого (або шлях молекули, що зазнає безліч зіткнень) нагадує рух нетверезої людини. Більше того, ця аналогія дозволяє також досить просто вивести основне рівняння такого процесу – на прикладі одновимірного руху, який легко узагальнити на тривимірному, що роблять так.

Нехай підпитий матрос вийшов пізно ввечері з кабачка і попрямував уздовж вулиці. Пройшовши шлях до найближчого ліхтаря, він відпочив і пішов... або далі, до наступного ліхтаря, або назад, до кабачка – адже він не пам'ятає, звідки прийшов. Питається, чи піде він колись від кабачка, чи так і бродитиме біля нього, то віддаляючись, то наближаючись до нього? (В іншому варіанті завдання говориться, що на обох кінцях вулиці, де закінчуються ліхтарі, знаходяться брудні канави, і питається, чи вдасться матросу не впасти в одну з них). Інтуїтивно здається, що правильна друга відповідь. Але він невірний: виявляється, матрос поступово все більше віддалятиметься від нульової точки, хоча й набагато повільніше, ніж якби він йшов тільки в один бік. Ось як це можна довести.

Пройшовши вперше до найближчого ліхтаря (вправо чи вліво), матрос опиниться на відстані s 1 = ± l від вихідної точки. Так як нас цікавить тільки його віддалення від цієї точки, але не напрямок, позбавимося знаків, звівши цей вислів у квадрат: s 1 2 = l 2. Через якийсь час, матрос, зробивши вже N«блукань», опиниться на відстані

s N= від початку. А пройшовши ще раз (в одну зі сторін) до найближчого ліхтаря, – на відстані s N+1 = s N± l , або, використовуючи квадрат зміщення, s 2 N+1 = s 2 N± 2 s N l + l 2. Якщо матрос багато разів повторить це переміщення (від Nдо N+ 1), то в результаті усереднення (він з рівною ймовірністю проходить N-ий крок вправо або вліво), член ± 2 s N l скоротиться, так що s 2 N+1 = s 2 N+ l 2> (кутовими дужками позначено усереднена величина). L = 3600 м = 3,6 км, тоді як зміщення від нульової точки за той же час буде одно s= = 190 м. За три години він пройде L= 10,8 км, а зміститься на s= 330 м і т.д.

твір u l в отриманій формулі можна порівняти з коефіцієнтом дифузії, який, як показав ірландський фізик і математик Джордж Габріел Стокс (1819-1903), залежить від розміру частки та в'язкості середовища. На підставі подібних міркувань Ейнштейн вивів своє рівняння.

Теорія броунівського руху у реальному житті.

Теорія випадкових блукань має важливий практичний додаток. Кажуть, що за відсутності орієнтирів (сонце, зірки, шум шосе чи залізниці тощо) людина бродить у лісі, полем у бурані чи густому тумані колами, постійно повертаючись на колишнє місце. Насправді він ходить не колами, а приблизно так, як рухаються молекули чи броунівські частки. На колишнє місце він може повернутися, але тільки випадково. А ось свій шлях він перетинає багато разів. Розповідають також, що замерзлих у завірюху людей знаходили «за якийсь кілометр» від найближчого житла чи дороги, проте насправді людина не мала жодних шансів пройти цей кілометр, і ось чому.

Щоб розрахувати, наскільки зміститься людина результаті випадкових блукань, треба знати величину l , тобто. відстань, яку людина може пройти прямою, не маючи жодних орієнтирів. Цю величину за допомогою студентів-добровольців виміряв доктор геолого-мінералогічних наук Б.С.Горобець. Він, звичайно, не залишав їх у дрімучому лісі чи на засніженому полі, все було простіше – студента ставили у центрі порожнього стадіону, зав'язували йому очі та просили у повній тиші (щоб виключити орієнтування зі звуків) пройти до кінця футбольного поля. Виявилося, що в середньому студент проходив по прямій лише близько 20 метрів (відхилення від ідеальної прямої не перевищувало 5°), а потім починав все більше відхилятися від початкового напрямку. Зрештою, він зупинявся, далеко не дійшовши до краю.

Нехай тепер людина йде (вірніше, блукає) у лісі зі швидкістю 2 кілометри на годину (для дороги це дуже повільно, але для густого лісу дуже швидко), тоді якщо величина l дорівнює 20 метрам, то за годину він пройде 2 км, але зміститься лише на 200 м, за дві години – приблизно на 280 м, за три години – 350 м, за 4 години – 400 м і т.д. Тому в інструкціях з техніки безпеки польових робіт є таке правило: якщо орієнтири втрачені, треба залишатися на місці, облаштовувати притулок і чекати закінчення негоди (може визирнути сонце) або допомоги. У лісі ж рухатися по прямій допоможуть орієнтири – дерева чи кущі, причому щоразу треба триматися двох таких орієнтирів – одного попереду, іншого позаду. Але, звичайно, найкраще брати з собою компас.

Ілля Леєнсон

Література:

Маріо Льоцці. Історія фізики. М., Світ, 1970
Kerker M. Brownian Movements and Molecular Reality Prior to 1900. Journal of Chemical Education, 1974, vol. 51, № 12
Леєнсон І.А. Хімічні реакції. М., Астрель, 2002



Броунівський рух- у природознавстві, безладний рух мікроскопічних, видимих, зважених у рідині (або газі) частинок (броунівські частинки) твердої речовини (пилки, крупинки суспензії, частинки пилку рослини і так далі), що викликається тепловим рухом частинок рідини (або газу). Не слід змішувати поняття «броунівський рух» та «тепловий рух»: броунівський рух є наслідком та свідченням існування теплового руху.

Сутність явища

Броунівський рух відбувається через те, що всі рідини та гази складаються з атомів або молекул - найдрібніших частинок, які знаходяться в постійному хаотичному тепловому русі, і тому безперервно штовхають броунівську частинку з різних боків. Було встановлено, що великі частинки з розмірами більше 5 мкм у броунівському русі практично не беруть участь (вони нерухомі або седиментують), дрібніші частинки (менше 3мкм) рухаються поступально по дуже складних траєкторіях або обертаються. Коли в середу занурене велике тіло, то поштовхи, що відбуваються у величезній кількості, усереднюються та формують постійний тиск. Якщо велике тіло оточене середовищем з усіх боків, тиск практично врівноважується, залишається тільки підйомна сила Архімеда - таке тіло плавно спливає або тоне. Якщо ж тіло дрібне, як броунівська частка, то стають помітні флуктуації тиску, які створюють помітну силу, що випадково змінюється, що призводить до коливань частки. Броунівські частки зазвичай не тонуть і спливають, а перебувають у середовищі у зваженому стані.

Відкриття броунівського руху

Це явище відкрито Р. Броуном у 1827 році, коли він проводив дослідження пилку рослин. Шотландський ботанік Роберт Броун (іноді його прізвище транскрибують як Браун) ще за життя як найкращий знавець рослин отримав титул «князя ботаніків». Він зробив багато чудових відкриттів. У 1805 після чотирирічної експедиції в Австралію привіз до Англії близько 4000 видів не відомих вченим австралійських рослин і багато років витратив на їхнє вивчення. Описав рослини, привезені з Індонезії та Центральної Африки. Вивчав фізіологію рослин, вперше описав ядро ​​рослинної клітини. Петербурзька Академія наук зробила його своїм почесним членом. Але ім'я вченого зараз широко відоме зовсім не через ці роботи.
У 1827 році Броун проводив дослідження пилку рослин. Він, зокрема, цікавився, як пилок бере участь у процесі запліднення. Якось він розглядав під мікроскопом виділені з клітин пилку північноамериканської рослини Clarkia pulchella (кларкії гарненької) зважені у воді подовжені цитоплазматичні зерна. Несподівано Броун побачив, що найдрібніші тверді крупинки, які ледве можна було розгледіти в краплі води, безперервно тремтять і пересуваються з місця на місце. Він встановив, що ці рухи, за його словами, "не пов'язані ні з потоками в рідині, ні з її поступовим випаром, а властиві самим частинкам".
Спостереження Броуна підтвердили інші вчені. Найдрібніші частинки поводилися, як живі, причому «танець» частинок прискорювався з підвищенням температури та зі зменшенням розміру частинок і явно сповільнювався при заміні води більш в'язким середовищем. Це дивовижне явище ніколи не припинялося: його можна було спостерігати як завгодно довго. Спочатку Броун подумав навіть, що в поле мікроскопа дійсно потрапили живі істоти, тим більше, що пилок – це чоловічі статеві клітини рослин, однак так само вели частинки з мертвих рослин, навіть із засушених за сто років до цього в гербаріях. Тоді Броун подумав, чи це не є «елементарні молекули живих істот», про які говорив знаменитий французький дослідник природи Жорж Бюффон (1707–1788), автор 36-томної Природної історії. Це припущення відпало, коли Броун почав досліджувати явно неживі об'єкти; спочатку це були дуже дрібні частинки вугілля, а також сажі та пилу лондонського повітря, потім тонко розтерті неорганічні речовини: скло, безліч різних мінералів. «Активні молекули» виявилися повсюди: «У кожному мінералі, – писав Броун, – який мені вдавалося подрібнити в пилюку до такої міри, щоб вона могла протягом якогось часу бути зваженою у воді, я знаходив, у більших чи менших кількостях, ці молекули».

Теорія броунівського руху

Побудова класичної теорії

У 1905 році було створено молекулярно-кінетичну теорію для кількісного опису броунівського руху. Зокрема, він вивів формулу для коефіцієнта дифузії сферичних броунівських частинок:

де D- Коефіцієнт дифузії, R- універсальна газова постійна, T- Абсолютна температура, N A- постійна Авогадро, a- радіус частинок, ξ - динамічна в'язкість.

Експериментальне підтвердження

Формула Ейнштейна була підтверджена дослідами а та його студентів у 1908-1909 pp. Як броунівські частки вони використовували зернятка смоли мастикового дерева і гуммігута - густого соку дерев роду гарцинію. Справедливість формули була встановлена ​​для різних розмірів частинок - від 0,212 до 5,5 мкм мкм, для різних розчинів (розчин цукру, гліцерин), в яких рухалися частинки.
http://ua.wikipedia.org/wiki/

Сторінка 1


Англійський ботанік Неемія Грю (1641 - 1712) описує анатомію квітки і висловлює ідею, що тичинки і пилок відповідають чоловічим, а пестико-жіночим органам.

Англійський ботанік Броун (1827) зауважив, що мікроскопічні частки ильці рослин знаходяться у воді в безперервному хаотичному русі і на його ім'я цей рух називається броунівським. Воно добре помітне й у протоплазмі клітин.

Англійський ботанік Роберт Броун звернув увагу на безперервний зигзагоподібний рух найдрібніших частинок пилку, зваженого в рідині, рух, який не був викликаний будь-якими зовнішніми факторами. Він виявив цей рух ще сімдесят вісім років тому, і на його честь він був названий броунівським.

У 1827 р. англійський ботанік Броун, спостерігаючи в мікроскоп завись квіткового пилку у воді, виявив, що крупинки пилку безперервно хаотично рухаються.

У 1827 р. англійський ботанік Броун, досліджуючи під мікроскопом рідкі препарати, випадково виявив таке цікаве явище. Зважені в рідині дрібні тверді частинки робили швидкі безладні рухи, ніби перескакуючи з місця на місце.

Схема броунівського руху.

У 1827 р. англійський ботанік Броун при спостереженні під мікроскопом виявив, що пилок рослин, що вивчався ним, будучи зважена у воді, знаходиться в безперервному коливальному русі.

У 1827 р. англійський ботанік Роберт Браун (Броун) спостерігав швидкий хаотичний рух дрібних частинок квіткового пилку у воді, а потім надійно встановив такий же енергійний рух у рідині та макроскопічних неорганічних частинок. Це вказувало на те, що браунівський (броунівський) рух не пов'язаний з рухом живих мікроорганізмів, хоча сам Браун, ґрунтуючись на універсальності явища, вважав, що він відкрив первинні молекули живої матерії. Протягом наступних сімдесяти років минулого століття було поставлено багато інших експериментів і висловлено велику кількість теоретичних гіпотез про сутність ефекту, що спостерігається. Браунівський рух незмінно виявлявся і після того, як зразок витримувався протягом тижня у темряві, і після нагрівання протягом багатьох годин. Ставало зрозумілим, що явище має фундаментальний характер.


У 1827 р. англійський ботанік Броун, розглядаючи в мікроскоп пилок рослини, поміщену в краплю води, помітив, що частки пилку не залишаються у спокої, а безперервно рухаються у різних напрямках.

У 1827 р. англійський ботанік Роберт Броун, спостерігаючи в мікроскоп за частинками пилку рослин, зваженими у воді, виявив, що вони перебувають у безперервному русі. Щоб перевірити, чи не є цей рух результатом життєдіяльності клітин пилку, Броун провів подібні дослідження з найдрібнішими крупинками різних речовин (мінеральних та органічних) та виявив, що незалежно від природи речовини при досить сильному подрібненні завжди спостерігається хаотичний рух частинок. Теорія цього явища, що дістала назву броунівського руху, була створена набагато пізніше Ейнштейном та Смолуховським на основі загальних молекулярно-кінетичних уявлень.

У 1827 р. англійський ботанік Бро-ун, досліджуючи під мікроскопом рідкі препарати, випадково виявив таке цікаве явище. Зважені в рідині дрібні тверді частинки робили швидкі безладні рухи, ніби перескакуючи з місця на місце.



Останні матеріали розділу:

Атф та її роль в обміні речовин У тварин атф синтезується в
Атф та її роль в обміні речовин У тварин атф синтезується в

Способи отримання енергії в клітці У клітці існують чотири основні процеси, що забезпечують вивільнення енергії з хімічних зв'язків при...

Вестерн блотінг (вестерн-блот, білковий імуноблот, Western bloting) Вестерн блоттинг помилки під час виконання
Вестерн блотінг (вестерн-блот, білковий імуноблот, Western bloting) Вестерн блоттинг помилки під час виконання

Блоттінг (від англ. "blot" - пляма) - перенесення НК, білків та ліпідів на тверду підкладку, наприклад, мембрану та їх іммобілізація. Методи...

Медіальний поздовжній пучок Введення в анатомію людини
Медіальний поздовжній пучок Введення в анатомію людини

Пучок поздовжній медіальний (f. longitudinalis medialis, PNA, BNA, JNA) П. нервових волокон, що починається від проміжного і центрального ядра.