Системи лінійних рівнянь. Несумісні системи


Рішення систем лінійних рівнянь алгебри (СЛАУ), безсумнівно, є найважливішою темою курсу лінійної алгебри. Величезна кількість завдань із усіх розділів математики зводиться до вирішення систем лінійних рівнянь. Цими чинниками пояснюється причина створення цієї статті. Матеріал статті підібраний та структурований так, що за його допомогою Ви зможете

  • підібрати оптимальний метод вирішення Вашої системи лінійних рівнянь алгебри,
  • вивчити теорію обраного методу,
  • вирішити Вашу систему лінійних рівнянь, розглянувши докладно розібрані рішення характерних прикладів та завдань.

Короткий опис статті.

Спочатку дамо всі необхідні визначення, поняття та введемо позначення.

Далі розглянемо методи розв'язання систем лінійних рівнянь алгебри, в яких число рівнянь дорівнює числу невідомих змінних і які мають єдине рішення. По-перше, зупинимося на методі Крамера, по-друге, покажемо матричний метод розв'язання таких систем рівнянь, по-третє, розберемо метод Гауса (метод послідовного виключення невідомих змінних). Для закріплення теорії обов'язково вирішимо кілька СЛАУ у різний спосіб.

Після цього перейдемо до вирішення систем лінійних рівнянь алгебри загального виду, в яких число рівнянь не збігається з числом невідомих змінних або основна матриця системи є виродженою. Сформулюємо теорему Кронекера – Капеллі, яка дозволяє встановити спільність СЛАУ. Розберемо рішення систем (у разі їхньої спільності) за допомогою поняття базисного мінору матриці. Також розглянемо метод Гауса і докладно опишемо рішення прикладів.

Обов'язково зупинимося на структурі загального рішення однорідних та неоднорідних систем лінійних рівнянь алгебри. Дамо поняття фундаментальної системи рішень та покажемо, як записується загальне рішення СЛАУ за допомогою векторів фундаментальної системи рішень. Для найкращого розуміння розберемо кілька прикладів.

Наприкінці розглянемо системи рівнянь, що зводяться до лінійних, і навіть різні завдання, під час вирішення яких виникають СЛАУ.

Навігація на сторінці.

Визначення, поняття, позначення.

Розглянемо системи з p лінійних алгебраїчних рівнянь з n невідомими змінними (p може дорівнювати n ) виду

Невідомі змінні, - коефіцієнти (деякі дійсні чи комплексні числа), - вільні члени (також дійсні чи комплексні числа).

Таку форму запису СЛАУ називають координатної.

У матричній формізапису ця система рівнянь має вигляд ,
де - основна матриця системи, - матриця-стовпець невідомих змінних, - матриця-стовпець вільних членів.

Якщо до матриці А додати як (n+1)-ого ​​стовпця матрицю-стовпець вільних членів, то отримаємо так звану розширену матрицюсистеми лінійних рівнянь Зазвичай розширену матрицю позначають буквою Т , а стовпець вільних членів відокремлюють вертикальною лінією від інших стовпців, тобто,

Рішенням системи лінійних рівнянь алгебриназивають набір значень невідомих змінних , що обертає всі рівняння системи у тотожності. Матричне рівняння за даних значень невідомих змінних також перетворюється на тотожність .

Якщо система рівнянь має хоча одне рішення, вона називається спільної.

Якщо система рівнянь рішень немає, вона називається несумісний.

Якщо СЛАУ має єдине рішення, її називають певною; якщо рішень більше одного, то – невизначеною.

Якщо вільні члени всіх рівнянь системи дорівнюють нулю , то система називається однорідний, в іншому випадку - неоднорідний.

Розв'язання елементарних систем лінійних рівнянь алгебри.

Якщо число рівнянь системи дорівнює кількості невідомих змінних і визначник її основної матриці не дорівнює нулю, то такі СЛАУ будемо називати елементарними. Такі системи рівнянь мають єдине рішення, причому у разі однорідної системи всі невідомі змінні дорівнюють нулю.

Такі СЛАУ ми починали вивчати у середній школі. При їх вирішенні ми брали якесь одне рівняння, висловлювали одну невідому змінну через інші і підставляли її в рівняння, що залишилися, потім брали наступне рівняння, висловлювали наступну невідому змінну і підставляли в інші рівняння і так далі. Або користувалися методом додавання, тобто складали два або більше рівнянь, щоб виключити деякі невідомі змінні. Не будемо докладно зупинятися цих методах, оскільки вони насправді є модифікаціями методу Гаусса.

Основними методами розв'язання елементарних систем лінійних рівнянь є метод Крамера, матричний метод та метод Гаусса. Розберемо їх.

Вирішення систем лінійних рівнянь методом Крамера.

Нехай нам потрібно вирішити систему лінійних рівнянь алгебри

в якій число рівнянь дорівнює числу невідомих змінних та визначник основної матриці системи відмінний від нуля, тобто .

Нехай – визначник основної матриці системи, а - визначники матриць, що виходять з А заміною 1-го, 2-го, …, n-огостовпця відповідно на стовпець вільних членів:

За таких позначень невідомі змінні обчислюються за формулами методу Крамера як . Так знаходиться рішення системи лінійних рівнянь алгебри методом Крамера.

приклад.

Методом Крамера .

Рішення.

Основна матриця системи має вигляд . Обчислимо її визначник (при необхідності дивіться статтю):

Так як визначник основної матриці системи відмінний від нуля, система має єдине рішення, яке може бути знайдено методом Крамера.

Складемо та обчислимо необхідні визначники (визначник отримуємо, замінивши в матриці А перший стовпець на стовпець вільних членів, визначник - замінивши другий стовпець на стовпець вільних членів, - замінивши третій стовпець матриці А на стовпець вільних членів):

Знаходимо невідомі змінні за формулами :

Відповідь:

Основним недоліком методу Крамера (якщо можна назвати недоліком) є трудомісткість обчислення визначників, коли кількість рівнянь системи більше трьох.

Вирішення систем лінійних рівнянь алгебри матричним методом (за допомогою зворотної матриці).

Нехай система лінійних рівнянь алгебри задана в матричній формі , де матриця A має розмірність n на n і її визначник відмінний від нуля.

Оскільки , то матриця А – оборотна, тобто існує зворотна матриця . Якщо помножити обидві частини рівності на ліворуч, то отримаємо формулу для знаходження матриці-стовпця невідомих змінних. Так ми отримали рішення системи лінійних рівнянь алгебри матричним методом.

приклад.

Розв'яжіть систему лінійних рівнянь матричним способом.

Рішення.

Перепишемо систему рівнянь у матричній формі:

Так як

то СЛАУ можна вирішувати матричним методом. За допомогою зворотної матриці рішення цієї системи може бути знайдено як .

Побудуємо зворотну матрицю за допомогою матриці з додатків алгебри елементів матриці А (при необхідності дивіться статтю ):

Залишилося обчислити - матрицю невідомих змінних, помноживши зворотну матрицю на матрицю-стовпець вільних членів (при необхідності дивіться статтю):

Відповідь:

або в іншому записі x 1 = 4, x 2 = 0, x 3 = -1.

Основна проблема при знаходженні рішення систем лінійних рівнянь алгебри матричним методом полягає в трудомісткості знаходження зворотної матриці, особливо для квадратних матриць порядку вище третього.

Вирішення систем лінійних рівнянь методом Гаусса.

Нехай нам потрібно знайти рішення системи з n лінійних рівнянь із n невідомими змінними
визначник основної матриці якої відмінний від нуля.

Суть методу Гаусаполягає у послідовному виключенні невідомих змінних: спочатку виключається x 1 з усіх рівнянь системи, починаючи з другого, далі виключається x 2 зі всіх рівнянь, починаючи з третього, і так далі, поки в останньому рівнянні залишиться тільки невідома змінна x n . Такий процес перетворення рівнянь системи для послідовного виключення невідомих змінних називається прямим ходом методу Гауса. Після завершення прямого ходу методу Гауса з останнього рівняння знаходиться x n, за допомогою цього значення з передостаннього рівняння обчислюється x n-1 і так далі з першого рівняння знаходиться x 1 . Процес обчислення невідомих змінних під час руху від останнього рівняння системи до першого називається зворотним ходом методу Гауса.

Коротко опишемо алгоритм виключення невідомих змінних.

Вважатимемо, що , оскільки ми можемо цього домогтися перестановкою місцями рівнянь системи. Виключимо невідому змінну x 1 зі всіх рівнянь системи, починаючи з другого. Для цього до другого рівняння системи додамо перше, помножене на , до третього рівняння додамо перше, помножене на , і так далі, до n-го рівняння додамо перше, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а .

До такого ж результату ми дійшли б, якби висловили x 1 через інші невідомі змінні в першому рівнянні системи і отриманий вираз підставили у всі інші рівняння. Таким чином, змінна x 1 виключена зі всіх рівнянь, починаючи з другого.

Далі діємо аналогічно, але лише з частиною отриманої системи, яка зазначена на малюнку

Для цього до третього рівняння системи додамо друге, помножене на , до четвертого рівняння додамо друге, помножене на , і так далі, до n-го рівняння додамо друге, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а . Таким чином, змінна x 2 виключена зі всіх рівнянь, починаючи з третього.

Далі приступаємо до виключення невідомої x 3 при цьому діємо аналогічно з зазначеною на малюнку частиною системи

Так продовжуємо прямий хід методу Гаусса доки система не набуде вигляду

З цього моменту починаємо зворотний хід методу Гауса: обчислюємо x n з останнього рівняння як за допомогою отриманого значення x n знаходимо x n-1 з передостаннього рівняння, і так далі, знаходимо x 1 з першого рівняння.

приклад.

Розв'яжіть систему лінійних рівнянь методом Гауса.

Рішення.

Виключимо невідому змінну x 1 з другого та третього рівняння системи. Для цього до обох частин другого та третього рівнянь додамо відповідні частини першого рівняння, помножені на і відповідно:

Тепер із третього рівняння виключимо x 2 , додавши до його лівої та правої частин ліву та праву частини другого рівняння, помножені на :

На цьому прямий хід методу Гауса закінчено, починаємо зворотний хід.

З останнього рівняння отриманої системи рівнянь знаходимо x 3 :

З другого рівняння отримуємо.

З першого рівняння знаходимо невідому змінну, що залишилася, і цим завершуємо зворотний хід методу Гауса.

Відповідь:

X 1 = 4, x 2 = 0, x 3 = -1.

Вирішення систем лінійних рівнянь алгебри загального виду.

У загальному випадку кількість рівнянь системи p не збігається з числом невідомих змінних n:

Такі СЛАУ можуть мати рішень, мати єдине рішення чи мати нескінченно багато рішень. Це твердження відноситься до систем рівнянь, основна матриця яких квадратна і вироджена.

Теорема Кронекер - Капеллі.

Перш ніж знаходити розв'язання системи лінійних рівнянь, необхідно встановити її спільність. Відповідь на питання, коли СЛАУ спільна, а коли несумісна, дає теорема Кронекера - Капеллі:
для того, щоб система з p рівнянь з n невідомими (p може бути одно n ) була спільна необхідно і достатньо, щоб ранг основної матриці системи дорівнював рангу розширеної матриці, тобто Rank (A) = Rank (T) .

Розглянемо з прикладу застосування теореми Кронекера – Капеллі визначення спільності системи лінійних рівнянь.

приклад.

З'ясуйте, чи має система лінійних рівнянь рішення.

Рішення.

. Скористаємося методом обрамляють мінорів. Мінор другого порядку відмінний від нуля. Переберемо його мінори третього порядку:

Так як всі мінори третього порядку, що облямовують, дорівнюють нулю, то ранг основної матриці дорівнює двом.

У свою чергу ранг розширеної матриці дорівнює трьом, оскільки мінор третього порядку

відмінний від нуля.

Таким чином, Rang(A) , отже, по теоремі Кронекера – Капеллі можна дійти невтішного висновку, що вихідна система лінійних рівнянь несовместна.

Відповідь:

Система рішень немає.

Отже, ми навчилися встановлювати несумісність системи з допомогою теореми Кронекера – Капеллі.

А як же знаходити рішення СЛАУ, якщо встановлено її спільність?

Для цього нам знадобиться поняття базисного мінору матриці та теорема про ранг матриці.

Мінор найвищого порядку матриці А, відмінний від нуля, називається базисним.

З визначення базисного мінору випливає, що його порядок дорівнює рангу матриці. Для ненульової матриці базисних мінорів А може бути кілька, один базисний мінор є завжди.

Наприклад розглянемо матрицю .

Всі мінори третього порядку цієї матриці дорівнюють нулю, так як елементи третього рядка цієї матриці є сумою відповідних елементів першого і другого рядків.

Базисними є такі мінори другого порядку, оскільки вони відмінні від нуля

Мінори базисними є, оскільки рівні нулю.

Теорема про ранг матриці.

Якщо ранг матриці порядку p на n дорівнює r то всі елементи рядків (і стовпців) матриці, що не утворюють обраний базисний мінор, лінійно виражаються через відповідні елементи рядків (і стовпців), що утворюють базисний мінор.

Що нам дає теорема про ранг матриці?

Якщо з теоремі Кронекера – Капеллі ми встановили спільність системи, то вибираємо будь-який базисний мінор основний матриці системи (його порядок дорівнює r ), і виключаємо з системи всі рівняння, які утворюють обраний базисний мінор. Отримана таким чином СЛАУ буде еквівалентна вихідної, оскільки відкинуті рівняння все одно зайві (вони згідно з теоремою про ранг матриці є лінійною комбінацією рівнянь, що залишилися).

У результаті після відкидання зайвих рівнянь системи можливі два випадки.

    Якщо кількість рівнянь r в отриманій системі дорівнюватиме кількості невідомих змінних, то вона буде певною і єдине рішення можна буде знайти методом Крамера, матричним методом або методом Гауса.

    приклад.

    .

    Рішення.

    Ранг основної матриці системи дорівнює двом, оскільки мінор другого порядку відмінний від нуля. Ранг розширеної матриці також дорівнює двом, оскільки єдиний мінор третього порядку дорівнює нулю

    а розглянутий вище мінор другого порядку відмінний від нуля. З теореми Кронекера – Капеллі можна стверджувати спільність вихідної системи лінійних рівнянь, оскільки Rank(A)=Rank(T)=2 .

    Як базисний мінор візьмемо . Його утворюють коефіцієнти першого та другого рівнянь:

    Третє рівняння системи не бере участі в освіті базисного мінору, тому виключимо його із системи на підставі теореми про ранг матриці:

    Так ми отримали елементарну систему лінійних рівнянь алгебри. Вирішимо її методом Крамера:

    Відповідь:

    x 1 = 1, x 2 = 2.

    Якщо число рівнянь r отриманої СЛАУ менше числа невідомих змінних n , то лівих частинах рівнянь залишаємо доданки, утворюють базисний мінор, інші доданки переносимо у праві частини рівнянь системи з протилежним знаком.

    Невідомі змінні (їх r штук), що залишилися в лівих частинах рівнянь, називаються основними.

    Невідомі змінні (їх n - r штук), які опинилися у правих частинах, називаються вільними.

    Тепер вважаємо, що вільні невідомі змінні можуть набувати довільних значень, при цьому r основних невідомих змінних висловлюватимуться через вільні невідомі змінні єдиним чином. Їх вираз можна знайти, вирішуючи отриману СЛАУ методом Крамера, матричним методом або методом Гауса.

    Розберемо з прикладу.

    приклад.

    Розв'яжіть систему лінійних алгебраїчних рівнянь .

    Рішення.

    Знайдемо ранг основної матриці системи методом обрамляють мінорів. Як ненульовий мінор першого порядку візьмемо a 1 1 = 1 . Почнемо пошук ненульового мінору другого порядку, що облямовує даний мінор:

    Так ми знайшли ненульовий мінор другого порядку. Почнемо пошук ненульового мінера третього порядку, що облямовує:

    Таким чином, ранг основної матриці дорівнює трьом. Ранг розширеної матриці також дорівнює трьом, тобто система спільна.

    Знайдений ненульовий мінор третього порядку візьмемо як базисний.

    Для наочності покажемо елементи, що утворюють базовий мінор:

    Залишаємо в лівій частині рівнянь системи доданки, що беруть участь у базисному мінорі, інші переносимо з протилежними знаками у праві частини:

    Надамо вільним невідомим змінним x 2 і x 5 довільні значення, тобто, приймемо де - довільні числа. При цьому СЛАУ набуде вигляду

    Отриману елементарну систему лінійних рівнянь алгебри вирішимо методом Крамера:

    Отже, .

    У відповіді не забуваємо зазначити вільні невідомі змінні.

    Відповідь:

    Де – довільні числа.

Підведемо підсумок.

Щоб вирішити систему лінійних рівнянь алгебри загального виду, спочатку з'ясовуємо її спільність, використовуючи теорему Кронекера - Капеллі. Якщо ранг основної матриці не дорівнює рангу розширеної матриці, то робимо висновок про несумісність системи.

Якщо ранг основної матриці дорівнює рангу розширеної матриці, вибираємо базисний мінор і відкидаємо рівняння системи, які беруть участь у освіті обраного базисного мінора.

Якщо порядок базисного мінору дорівнює кількості невідомих змінних, то СЛАУ має єдине рішення, яке знаходимо будь-яким відомим нам методом.

Якщо порядок базисного мінору менше числа невідомих змінних, то лівої частини рівнянь системи залишаємо доданки з основними невідомими змінними, інші доданки переносимо у праві частини і надаємо вільним невідомим змінним довільні значення. З отриманої системи лінійних рівнянь знаходимо основні невідомі змінні методом Крамера, матричним методом чи методом Гаусса.

Метод Гауса для вирішення систем лінійних рівнянь алгебри загального виду.

Методом Гауса можна вирішувати системи лінійних рівнянь алгебри будь-якого виду без попереднього їх дослідження на спільність. Процес послідовного виключення невідомих змінних дозволяє дійти невтішного висновку як про спільності, і про несумісності СЛАУ, а разі існування рішення дає можливість знайти його.

З погляду обчислювальної роботи метод Гауса є кращим.

Дивіться його докладний опис та розібрані приклади у статті метод Гауса для вирішення систем лінійних рівнянь алгебри загального виду .

Запис загального рішення однорідних та неоднорідних систем алгебраїчних ліній за допомогою векторів фундаментальної системи рішень.

У цьому розділі мова піде про спільні однорідні і неоднорідні системи лінійних рівнянь алгебри, що мають безліч рішень.

Розберемося спочатку з однорідними системами.

Фундаментальною системою рішеньоднорідної системи з p лінійних рівнянь алгебри з n невідомими змінними називають сукупність (n – r) лінійно незалежних рішень цієї системи, де r – порядок базисного мінору основної матриці системи.

Якщо визначити лінійно незалежні рішення однорідної СЛАУ як X (1) , X (2) , …, X (n-r) (X (1) , X (2) , …, X (n-r) – це матриці стовпці розмірності n на 1 ) , то загальне рішення цієї однорідної системи представляється як лінійної комбінації векторів фундаментальної системи рішень з довільними постійними коефіцієнтами З 1 , З 2 , …, З (n-r) , тобто, .

Що означає термін загальне рішення однорідної системи лінійних рівнянь алгебри (орослау)?

Сенс простий: формула задає всі можливі рішення вихідної СЛАУ, іншими словами, взявши будь-який набір значень довільних постійних С1, С2, …, С(n-r), за формулою ми отримаємо одне з рішень вихідної однорідної СЛАУ.

Таким чином, якщо ми знайдемо фундаментальну систему рішень, ми зможемо задати всі рішення цієї однорідної СЛАУ як .

Покажемо процес побудови фундаментальної системи рішень однорідної СЛАУ.

Вибираємо базовий мінор вихідної системи лінійних рівнянь, виключаємо всі інші рівняння із системи та переносимо у праві частини рівнянь системи з протилежними знаками всі складові, що містять вільні невідомі змінні. Надамо вільним невідомим змінним значення 1,0,0,...,0 і обчислимо основні невідомі, вирішивши отриману елементарну систему лінійних рівнянь будь-яким способом, наприклад, методом Крамера. Так буде отримано X(1) – перше рішення фундаментальної системи. Якщо надати вільним невідомим значення 0,1,0,0,…,0 і обчислити у своїй основні невідомі, отримаємо X (2) . І так далі. Якщо вільним невідомим змінним надамо значення 0,0, ..., 0,1 і обчислимо основні невідомі, то отримаємо X (n-r). Так буде побудовано фундаментальну систему рішень однорідної СЛАУ і може бути записано її загальне рішення у вигляді.

Для неоднорідних систем лінійних рівнянь алгебри загальне рішення подається у вигляді , де - загальне рішення відповідної однорідної системи, а - приватне рішення вихідної неоднорідної СЛАУ, яке ми отримуємо, надавши вільним невідомим значення 0,0, ..., 0 і обчисливши значення основних невідомих.

Розберемо з прикладів.

приклад.

Знайдіть фундаментальну систему рішень та загальне рішення однорідної системи лінійних рівнянь алгебри .

Рішення.

Ранг основної матриці однорідних систем лінійних рівнянь завжди дорівнює рангу розширеної матриці. Знайдемо ранг основної матриці методом обрамляють мінорів. Як ненульовий мінор першого порядку візьмемо елемент a 1 1 = 9 основний матриці системи. Знайдемо ненульовий мінор другого порядку, що облямовує:

Мінор другого порядку, відмінний від нуля, знайдено. Переберемо його мінори третього порядку в пошуках ненульового:

Всі обрамляють мінори третього порядку дорівнюють нулю, отже, ранг основної і розширеної матриці дорівнює двом. Базисним мінором візьмемо. Зазначимо для наочності елементи системи, що його утворюють:

Третє рівняння вихідної СЛАУ не бере участі в утворенні базисного мінору, тому може бути виключено:

Залишаємо у правих частинах рівнянь доданки, що містять основні невідомі, а у праві частини переносимо доданки з вільними невідомими:

Побудуємо фундаментальну систему розв'язків вихідної однорідної системи лінійних рівнянь. Фундаментальна система рішень даної СЛАУ складається з двох рішень, оскільки вихідна СЛАУ містить чотири невідомі змінні, а порядок її базисного мінору дорівнює двом. Для знаходження X (1) надамо вільним невідомим змінним значення x 2 = 1, x 4 = 0 тоді основні невідомі знайдемо з системи рівнянь
.

§1. Системи лінійних рівнянь.

Система виду

називається системою mлінійних рівнянь з nневідомими.

Тут
- невідомі, - Коефіцієнти при невідомих,
- Вільні члени рівнянь.

Якщо всі вільні члени рівнянь дорівнюють нулю, система називається однорідний.Рішеннямсистеми називається сукупність чисел
, при підстановці яких у систему замість невідомих усі рівняння звертаються до тотожності. Система називається спільноїякщо вона має хоча б одне рішення. Спільна система, що має єдине рішення, називається певною. Дві системи називаються еквівалентними, якщо безліч їхніх рішень збігаються.

Система (1) може бути представлена ​​в матричній формі за допомогою рівняння

(2)

.

§2. Спільність систем лінійних рівнянь.

Назвемо розширеною матрицею системи (1)

Теорема Кронекера - Капелі. Система (1) спільна тоді і лише тоді, коли ранг матриці системи дорівнює рангу розширеної матриці:

.

§3. Рішення системn лінійних рівнянь зn невідомими.

Розглянемо неоднорідну систему nлінійних рівнянь з nневідомими:

(3)

Теорема Крамера. Якщо головний визначник системи (3)
, то система має єдине рішення, що визначається за формулами:

тобто.
,

де - визначник, що отримується з визначника заміною -го стовпця на стовпець вільних членів

Якщо
, а хоча б один із ≠0, то система рішень не має.

Якщо
, то система має безліч рішень.

Систему (3) можна вирішити, використовуючи її матричну форму запису (2). Якщо ранг матриці Адорівнює n, тобто.
, то матриця Амає зворотну
. Помноживши матричне рівняння
на матрицю
зліва, отримаємо:

.

Остання рівність виражає спосіб розв'язання систем лінійних рівнянь за допомогою зворотної матриці.

приклад.Розв'язати систему рівнянь за допомогою зворотної матриці.

Рішення. Матриця
невироджена, оскільки
Отже, існує зворотна матриця. Обчислимо зворотну матрицю:
.


,

Завдання. Вирішити систему методом Крамера.

§4. Вирішення довільних систем лінійних рівнянь.

Нехай дано неоднорідну систему лінійних рівнянь виду (1).

Припустимо, що система спільна, тобто. виконано умову теореми Кронекера-Капеллі:
. Якщо ранг матриці
(числу невідомих), система має єдине рішення. Якщо
, то система має безліч рішень. Пояснимо.

Нехай ранг матриці r(A)= r< n. Оскільки
, то існує деякий ненульовий мінор порядку r. Назвемо його базовим мінором. Невідомі, коефіцієнти яких утворюють базовий мінор, назвемо базовими змінними. Інші невідомі назвемо вільними змінними. Переставимо рівняння та перенумеруємо змінні так, щоб цей мінор розташовувався у лівому верхньому кутку матриці системи:

.

Перші rрядків лінійно незалежні, інші виражаються них. Отже, ці рядки (рівняння) можна відкинути. Отримаємо:

Дамо вільним змінним довільні числові значення: . Залишимо в лівій частині лише базисні змінні, вільні перенесемо у праву частину.

Отримали систему rлінійних рівнянь з rневідомими, визначник якої відмінний від 0. Вона має єдине рішення.

Ця система називається загальним розв'язком системи лінійних рівнянь (1). Інакше: вираз базисних змінних через вільні називається загальним рішеннямсистеми. З нього можна отримати безліч приватних рішень, Надаючи вільним змінним довільні значення. Приватне рішення, отримане із загального при нульових значеннях вільних змінних називається базовим рішенням. Число різних базисних рішень не перевищує
. Базове рішення з невід'ємними компонентами називається опорнимрішенням системи.

приклад.

,r=2.

Змінні
- базисні,
- Вільні.

Складемо рівняння; висловимо
через
:

- загальне рішення.

- приватне рішення при
.

- базисне рішення, опорне.

§5. Метод Гауса.

Метод Гаусса - це універсальний метод дослідження та розв'язання довільних систем лінійних рівнянь. Він полягає у приведенні системи до діагонального (або трикутного) виду шляхом послідовного виключення невідомих за допомогою елементарних перетворень, що не порушують еквівалентність систем. Змінна вважається виключеною, якщо вона міститься лише в одному рівнянні системи з коефіцієнтом 1.

Елементарними перетвореннямисистеми є:

Розмноження рівняння на число, відмінне від нуля;

Додавання рівняння, помноженого на будь-яке число, з іншим рівнянням;

Перестановка рівнянь;

Відкидання рівняння 0 = 0.

Елементарні перетворення можна здійснювати не над рівняннями, а над розширеними матрицями еквівалентних систем, що виходять.

приклад.

Рішення.Випишемо розширену матрицю системи:

.

Виконуючи елементарні перетворення, наведемо ліву частину матриці до одиничного вигляду: на головній діагоналі створюватимемо одиниці, а поза нею - нулі.









Зауваження. Якщо під час виконання елементарних перетворень отримано рівняння виду 0 = до(де до0), то система несумісна.

Вирішення систем лінійних рівнянь методом послідовного виключення невідомих можна оформлювати у вигляді таблиці.

Лівий стовпець таблиці містить інформацію про виключені (базисні) змінні. Інші стовпці містять коефіцієнти при невідомих і вільні члени рівнянь.

У вихідну таблицю записують розширену матрицю системи. Далі приступають до виконання перетворень Жордана:

1. Вибирають змінну , яка стане базисною Відповідний стовпець називають ключовим. Вибирають рівняння, в якому ця змінна залишиться, виключеною з інших рівнянь. Відповідний рядок таблиці називають ключовим. Коефіцієнт , що стоїть на перетині ключового рядка та ключового стовпця, називають ключовим.

2. Елементи ключового рядка поділяють на ключовий елемент.

3. Ключовий стовпець заповнюють нулями.

4. Інші елементи обчислюють за правилом прямокутника. Складають прямокутник, у протилежних вершинах якого знаходяться ключовий елемент і елемент, що перераховується; з добутку елементів, що стоять на діагоналі прямокутника з ключовим елементом, віднімають добуток елементів іншої діагоналі, отриману різницю ділять на ключовий елемент.

приклад. Знайти загальне рішення та базисне рішення системи рівнянь:

Рішення.

Загальне рішення системи:

Базове рішення:
.

Перейти від одного базису системи до іншого дозволяє перетворення одноразового заміщення: замість однієї з основних змінних базис вводять одну з вільних змінних. Для цього в стовпці вільної змінної вибирають ключовий елемент і виконують перетворення за вказаним вище алгоритмом.

§6. Знаходження опорних рішень

Опорним рішенням системи лінійних рівнянь називається базисне рішення, що не містить негативних компонентів.

Опорні рішення системи знаходять методом Гауса під час наступних умов.

1. У вихідній системі всі вільні члени мають бути невід'ємними:
.

2. Ключовий елемент вибирають серед позитивних коефіцієнтів.

3. Якщо при змінній, що вводиться в базис, є кілька позитивних коефіцієнтів, то як ключовий рядок береться той, у якому відношення вільного члена до позитивного коефіцієнта буде найменшим.

Зауваження 1. Якщо в процесі виключення невідомих з'явиться рівняння, в якому всі коефіцієнти є непозитивними, а вільний член
, то система не має невід'ємних рішень.

Зауваження 2. Якщо в стовпцях коефіцієнтів при вільних змінних немає жодного позитивного елемента, то перехід до іншого опорного рішення неможливий.

приклад.

Системою m лінійних рівнянь із n невідомиминазивається система виду

де a ijі b i (i=1,…,m; b=1,…,n) – деякі відомі числа, а x 1, ..., x n- Невідомі. У позначенні коефіцієнтів a ijперший індекс iпозначає номер рівняння, а другий j- Номер невідомого, при якому стоїть цей коефіцієнт.

Коефіцієнти при невідомих записуватимемо у вигляді матриці , яку назвемо матрицею системи.

Числа, що стоять у правих частинах рівнянь, b 1 ..., b mназиваються вільними членами.

Сукупність nчисел c 1 ..., c nназивається рішеннямданої системи, якщо кожне рівняння системи перетворюється на рівність після підстановки до нього чисел c 1 ..., c nзамість відповідних невідомих x 1, ..., x n.

Наше завдання полягатиме у знаходженні рішень системи. При цьому можуть виникнути три ситуації:

Система лінійних рівнянь, що має хоча одне рішення, називається спільної. Інакше, тобто. якщо система не має рішень, то вона називається несумісний.

Розглянемо методи знаходження рішень системи.


МАТРИЧНИЙ МЕТОД РІШЕННЯ СИСТЕМ ЛІНІЙНИХ РІВНЯНЬ

Матриці дають змогу коротко записати систему лінійних рівнянь. Нехай дана система з 3-х рівнянь із трьома невідомими:

Розглянемо матрицю системи та матриці стовпці невідомих та вільних членів

Знайдемо твір

тобто. в результаті твору ми отримуємо ліві частини рівнянь цієї системи. Тоді користуючись визначенням рівності матриць цю систему можна записати як

або коротше AX=B.

Тут матриці Aі Bвідомі, а матриця Xневідома. Її треба знайти, т.к. її елементи є рішенням цієї системи. Це рівняння називають матричним рівнянням.

Нехай визначник матриці відмінний від нуля A| ≠ 0. Тоді матричне рівняння розв'язується в такий спосіб. Помножимо обидві частини рівняння зліва на матрицю A -1, зворотну матрицю A: . Оскільки A -1 A = Eі EX = X, то отримуємо рішення матричного рівняння у вигляді X = A -1 B .

Зауважимо, що оскільки зворотну матрицю можна знайти тільки для квадратних матриць, то матричним методом можна вирішувати ті системи, в яких кількість рівнянь збігається з кількістю невідомих. Однак, матричний запис системи можливий і у випадку, коли число рівнянь не дорівнює числу невідомих, тоді матриця Aне буде квадратною і тому не можна знайти рішення системи у вигляді X = A -1 B.

приклади.Розв'язати системи рівнянь.

ПРАВИЛО КРАМЕРА

Розглянемо систему 3-х лінійних рівнянь із трьома невідомими:

Визначник третього порядку, який відповідає матриці системи, тобто. складений з коефіцієнтів за невідомих,

називається визначником системи.

Складемо ще три визначники наступним чином: замінимо в визначнику D послідовно 1, 2 і 3 стовпці стовпцем вільних членів

Тоді можна довести наступний результат.

Теорема (правило Крамера).Якщо визначник системи Δ ≠ 0, то система, що розглядається, має одне і тільки одне рішення, причому

Доведення. Отже, розглянемо систему 3-х рівнянь із трьома невідомими. Помножимо перше рівняння системи на алгебраїчне доповнення A 11елемента a 11, Друге рівняння - на A 21і третє - на A 31:

Складемо ці рівняння:

Розглянемо кожну зі дужок та праву частину цього рівняння. По теоремі про розкладання визначника за елементами 1-го стовпця

Аналогічно можна показати, що і .

Нарешті неважко помітити, що

Отже, отримуємо рівність: .

Отже, .

Аналогічно виводяться рівність і , звідки і випливає твердження теореми.

Отже, зауважимо, що й визначник системи Δ ≠ 0, то система має єдине рішення і назад. Якщо ж визначник системи дорівнює нулю, то система або має безліч рішень, або немає рішень, тобто. несумісна.

приклади.Розв'язати систему рівнянь


МЕТОД ГАУСА

Раніше розглянуті методи можна застосовувати при вирішенні лише тих систем, у яких кількість рівнянь збігається з числом невідомих, причому визначник системи має бути відмінний від нуля. Метод Гауса є більш універсальним і придатний для систем із будь-яким числом рівнянь. Він полягає у послідовному виключенні невідомих із рівнянь системи.

Знову розглянемо систему із трьох рівнянь із трьома невідомими:

.

Перше рівняння залишимо без зміни, а з 2-го та 3-го виключимо доданки, що містять x 1. Для цього друге рівняння розділимо на а 21 і помножимо на – а 11 а потім складемо з 1-им рівнянням. Аналогічно третє рівняння розділимо на а 31 і помножимо на – а 11, а потім складемо з першим. В результаті вихідна система набуде вигляду:

Тепер з останнього рівняння виключимо доданок, що містить x 2. Для цього третє рівняння розділимо на , помножимо на і складемо з другим. Тоді матимемо систему рівнянь:

Звідси з останнього рівняння легко знайти x 3потім з 2-го рівняння x 2і, нарешті, з 1-го – x 1.

При використанні методу Гаусса рівняння за необхідності можна міняти місцями.

Часто замість того, щоб писати нову систему рівнянь, обмежуються тим, що виписують розширену матрицю системи:

і потім призводять до трикутного або діагонального вигляду за допомогою елементарних перетворень.

До елементарним перетвореннямматриці відносяться такі перетворення:

  1. перестановка рядків чи стовпців;
  2. множення рядка на число, відмінне від нуля;
  3. додаток до одного рядка інших рядків.

Приклади:Розв'язати системи рівнянь методом Гаусса.


Таким чином, система має безліч рішень.

За допомогою даної математичної програми ви можете вирішити систему двох лінійних рівнянь із двома змінними методом підстановки та методом складання.

Програма як дає відповідь завдання, а й наводить докладне рішення з поясненнями кроків рішення двома способами: методом підстановки і методом складання.

Дана програма може бути корисною учням старших класів загальноосвітніх шкіл при підготовці до контрольних робіт та іспитів, під час перевірки знань перед ЄДІ, батькам для контролю вирішення багатьох завдань з математики та алгебри. А може вам занадто накладно наймати репетитора чи купувати нові підручники? Або ви просто хочете якнайшвидше зробити домашнє завдання з математики чи алгебри? У цьому випадку ви можете скористатися нашими програмами з докладним рішенням.

Таким чином ви можете проводити своє власне навчання та/або навчання своїх молодших братів або сестер, при цьому рівень освіти в галузі розв'язуваних завдань підвищується.

Правила введення рівнянь

Як змінна може виступати будь-яка латинська буква.
Наприклад: (x, y, z, a, b, c, o, p, q \) і т.д.

При введенні рівнянь можна використовувати дужки. У цьому рівняння спочатку спрощуються. Рівняння після спрощень мають бути лінійними, тобто. виду ax+by+c=0 з точністю порядку прямування елементів.
Наприклад: 6x+1 = 5(x+y)+2

У рівняннях можна використовувати як цілі, а й дробові числа як десяткових і звичайних дробів.

Правила введення десяткових дробів.
Ціла і дрібна частина в десяткових дробах може розділятися як точкою так і комою.
Наприклад: 2.1n + 3,5m = 55

Правила введення звичайних дробів.
Як чисельник, знаменник і цілої частини дробу може виступати тільки ціле число.
Знаменник може бути негативним.
При введенні числового дробу чисельник відокремлюється від знаменника знаком розподілу: /
Ціла частина відокремлюється від дробу знаком амперсанд: &

приклади.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p - 2&1/8q)


Розв'язати систему рівнянь

Виявлено, що не завантажилися деякі скрипти, необхідні для вирішення цього завдання, і програма може не працювати.
Можливо у вас увімкнено AdBlock.
У цьому випадку вимкніть його та оновіть сторінку.

У браузері вимкнено виконання JavaScript.
Щоб рішення з'явилося, потрібно включити JavaScript.
Ось інструкції, як включити JavaScript у вашому браузері.

Т.к. охочих вирішити завдання дуже багато, ваш запит поставлено в чергу.
За кілька секунд рішення з'явиться нижче.
Будь ласка зачекайте сік...


Якщо ви помітили помилку у рішенні, то про це ви можете написати у Формі зворотного зв'язку.
Не забудьте вказати яке завданняви вирішуєте і що вводьте у поля.



Наші ігри, головоломки, емулятори:

Трохи теорії.

Вирішення систем лінійних рівнянь. Спосіб підстановки

Послідовність дій під час вирішення системи лінійних рівнянь способом підстановки:
1) виражають із якогось рівняння системи одну змінну через іншу;
2) підставляють в інше рівняння системи замість цієї змінної отриманий вираз;



$$ \left\( \begin(array)(l) 3x+y=7 \\ -5x+2y=3 \end(array) \right. $$

Виразимо з першого рівняння y через x: y = 7-3x. Підставивши у друге рівняння замість y вираз 7-Зx, отримаємо систему:
$$ \left\( \begin(array)(l) y = 7-3x \\ -5x+2(7-3x)=3 \end(array) \right. $$

Неважко показати, що перша і друга системи мають одні й самі рішення. У другій системі друге рівняння містить лише одну змінну. Розв'яжемо це рівняння:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Підставивши рівність y=7-3x замість x число 1, знайдемо відповідне значення y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1; 4) - рішення системи

Системи рівнянь із двома змінними, що мають одні й ті самі рішення, називаються рівносильними. Системи, які мають рішень, також вважають рівносильними.

Розв'язання систем лінійних рівнянь способом складання

Розглянемо ще один спосіб розв'язання систем лінійних рівнянь – спосіб складання. При розв'язанні систем цим способом, як і при вирішенні способом підстановки, ми переходимо від даної системи до іншої рівносильної їй системі, в якій одне з рівнянь містить тільки одну змінну.

Послідовність дій під час вирішення системи лінійних рівнянь способом складання:
1) помножують почленно рівняння системи, підбираючи множники так, щоб коефіцієнти при одній зі змінних стали протилежними числами;
2) складають почленно ліві та праві частини рівнянь системи;
3) вирішують рівняння, що вийшло, з однією змінною;
4) знаходять відповідне значення другої змінної.

приклад. Розв'яжемо систему рівнянь:
$$ \left\( \begin(array)(l) 2x+3y=-5 \\ x-3y=38 \end(array) \right. $$

У рівняннях цієї системи коефіцієнти за y є протилежними числами. Склавши почленно ліві та праві частини рівнянь, отримаємо рівняння з однією змінною 3x=33. Замінимо одне з рівнянь системи, наприклад, перше, рівнянням 3x=33. Отримаємо систему
$$ \left\( \begin(array)(l) 3x=33 \\ x-3y=38 \end(array) \right. $$

З рівняння 3x=33 знаходимо, що x=11. Підставивши це значення x до рівняння (x-3y = 38) отримаємо рівняння зі змінною y: (11-3y = 38). Розв'яжемо це рівняння:
\(-3y=27 \Rightarrow y=-9 \)

Таким чином ми знайшли рішення системи рівнянь способом додавання: \(x=11; y=-9 \) або \((11; -9) \)

Скориставшись тим, що у рівняннях системи коефіцієнти при y є протилежними числами, ми звели її рішення до вирішення рівносильної системи (підсумувавши обидві частини кожного з рівнянь вихідної симтеми), в якій одне із рівнянь містить лише одну змінну.

Книги (підручники) Реферати ЄДІ та ОДЕ тести онлайн Ігри, головоломки Побудова графіків функцій Орфографічний словник російської мови Словник молодіжного сленгу

Системи рівнянь набули широкого застосування в економічній галузі при математичному моделюванні різних процесів. Наприклад, під час вирішення завдань управління та планування виробництва, логістичних маршрутів (транспортне завдання) чи розміщення устаткування.

Системи рівняння використовуються у галузі математики, а й фізики, хімії та біології, під час вирішення завдань з знаходження чисельності популяції.

Системою лінійних рівнянь називають два і більше рівняння з кількома змінними, котрим необхідно знайти загальне рішення. Таку послідовність чисел, коли всі рівняння стануть вірними рівностями чи довести, що послідовності немає.

Лінійне рівняння

Рівняння виду ax+by=c називають лінійними. Позначення x, y – це невідомі, значення яких треба знайти, b, a – коефіцієнти при змінних, c – вільний член рівняння.
Рішення рівняння шляхом побудови його графіка матиме вигляд прямої, всі точки якої є рішенням багаточлена.

Види систем лінійних рівнянь

Найбільш простими вважаються приклади систем лінійних рівнянь із двома змінними X та Y.

F1(x, y) = 0 і F2(x, y) = 0, де F1,2 – функції, а (x, y) – змінні функцій.

Розв'язати систему рівнянь - це означає знайти такі значення (x, y), у яких система перетворюється на правильну рівність чи встановити, що відповідних значень x і y немає.

Пара значень (x, y), записана як координат точки, називається рішенням системи лінійних рівнянь.

Якщо системи мають одне загальне рішення чи рішення немає їх називають рівносильними.

Однорідними системами лінійних рівнянь є системи права частина яких дорівнює нулю. Якщо права після знака " рівність " частина має значення чи виражена функцією, така система неоднорідна.

Кількість змінних може бути набагато більше двох, тоді слід говорити про приклад системи лінійних рівнянь із трьома змінними або більше.

Зіткнувшись із системами школярі припускають, що кількість рівнянь обов'язково має збігатися з кількістю невідомих, але це не так. Кількість рівнянь у системі залежить від змінних, їх може бути скільки завгодно багато.

Прості та складні методи вирішення систем рівнянь

Немає загального аналітичного способу вирішення подібних систем, всі методи засновані на чисельних рішеннях. У шкільному курсі математики докладно описані такі методи як перестановка, складення алгебри, підстановка, а так само графічний і матричний спосіб, рішення методом Гауса.

Основне завдання під час навчання способам рішення - це навчити правильно аналізувати систему та знаходити оптимальний алгоритм рішення кожному за прикладу. Головне не визубрити систему правил та дій для кожного способу, а зрозуміти принципи застосування того чи іншого методу

Рішення прикладів систем лінійних рівнянь 7 класу програми загальноосвітньої школи досить просте і дуже докладно. У будь-якому підручнику математики цьому розділу приділяється достатньо уваги. Рішення прикладів систем лінійних рівнянь методом Гаусса і Крамера докладніше вивчають перших курсах вищих навчальних закладів.

Рішення систем методом підстановки

Дії методу підстановки спрямовані вираз значення однієї змінної через другу. Вираз підставляється в рівняння, що залишилося, потім його приводять до вигляду з однією змінною. Дія повторюється в залежності від кількості невідомих у системі

Наведемо рішення прикладу системи лінійних рівнянь 7 класу методом підстановки:

Як видно з прикладу, змінна x була виражена через F(X) = 7 + Y. Отриманий вираз, підставлений у 2-е рівняння системи на місце X, допоміг отримати одну змінну Y у 2-му рівнянні. Рішення цього прикладу не викликає труднощів і дозволяє отримати значення Y. Останній крок - це перевірка отриманих значень.

Вирішити приклад системи лінійних рівнянь підстановкою не завжди можливо. Рівняння можуть бути складними і вираз змінної через другу невідому виявиться надто громіздким для подальших обчислень. Коли невідомих у системі більше трьох рішень підстановкою також недоцільно.

Розв'язання прикладу системи лінійних неоднорідних рівнянь:

Рішення за допомогою алгебраїчної складання

При пошуку рішенні систем шляхом додавання роблять почленное складання і множення рівнянь різні числа. Кінцевою метою математичних процесів є рівняння з однією змінною.

Для застосування даного методу необхідна практика та спостережливість. Вирішити систему лінійних рівнянь шляхом додавання при кількості змінних 3 і більше складно. Алгебраїчне додавання зручно застосовувати коли в рівняннях присутні дроби та десяткові числа.

Алгоритм дій рішення:

  1. Помножити обидві частини рівняння деяке число. В результаті арифметичної дії один із коефіцієнтів при змінній повинен стати рівним 1.
  2. Почленно скласти отриманий вираз і знайти один із невідомих.
  3. Підставити отримане значення у 2-е рівняння системи для пошуку змінної, що залишилася.

Спосіб вирішення запровадженням нової змінної

Нову змінну можна вводити, якщо в системі потрібно знайти рішення не більше ніж для двох рівнянь, кількість невідомих теж має бути не більшою за два.

Спосіб використовується, щоб спростити одне із рівнянь, введенням нової змінної. Нове рівняння вирішується щодо введеної невідомої, а отримане значення використовується визначення початкової змінної.

З прикладу видно, що ввівши нову змінну t вдалося звести 1 рівняння системи до стандартного квадратного тричлену. Вирішити многочлен можна знайшовши дискримінант.

Необхідно знайти значення дискримінанта за відомою формулою: D = b2 - 4*a*c, де D - дискримінант, що шукається, b, a, c - множники многочлена. У заданому прикладі a=1, b=16, c=39, отже, D=100. Якщо дискримінант більший за нуль, то рішень два: t = -b±√D / 2*a, якщо дискримінант менший за нуль, то рішення одне: x= -b / 2*a.

Рішення для отриманих у результаті системи знаходять шляхом складання.

Наочний метод вирішення систем

Підходить для систем з трьома рівняннями. Метод полягає у побудові на координатній осі графіків кожного рівняння, що входить до системи. Координати точок перетину кривих і будуть загальним рішенням системи.

Графічний метод має низку аспектів. Розглянемо кілька прикладів розв'язання систем лінійних рівнянь наочним способом.

Як видно з прикладу, для кожної прямої було побудовано дві точки, значення змінної x були обрані довільно: 0 і 3. Виходячи із значень x, знайдені значення для y: 3 і 0. Точки з координатами (0, 3) та (3, 0) були відзначені на графіку та з'єднані лінією.

Події необхідно повторити для другого рівняння. Точка перетину прямих є розв'язком системи.

У наступному прикладі потрібно знайти графічне рішення системи лінійних рівнянь: 0,5x-y+2=0 та 0,5x-y-1=0.

Як видно з прикладу, система не має рішення, тому що графіки паралельні і не перетинаються по всьому своєму протязі.

Системи з прикладів 2 і 3 схожі, але при побудові стає очевидним, що їх рішення різні. Слід пам'ятати, що не завжди можна сказати, чи має система рішення чи ні, завжди необхідно побудувати графік.

Матриця та її різновиди

Матриці використовують для короткого запису системи лінійних рівнянь. Матрицею називають таблицю спеціального виду, заповнену числами. n*m має n - рядків та m - стовпців.

Матриця є квадратною, коли кількість стовпців і рядків дорівнює між собою. Матрицею - вектором називається матриця з одного стовпця з нескінченно можливою кількістю рядків. Матриця з одиницями по одній із діагоналей та іншими нульовими елементами називається одиничною.

Зворотна матриця - це така матриця при множенні на яку вихідна перетворюється на одиничну, така матриця існує тільки для вихідної квадратної.

Правила перетворення системи рівнянь на матрицю

Стосовно систем рівнянь як чисел матриці записують коефіцієнти і вільні члени рівнянь, одне рівняння - один рядок матриці.

Рядок матриці називається ненульовим, якщо хоча б один елемент рядка не дорівнює нулю. Тому якщо в якомусь із рівнянь кількість змінних відрізняється, то необхідно на місці відсутньої невідомої вписати нуль.

Стовпці матриці повинні суворо відповідати змінним. Це означає, що коефіцієнти змінної x можуть бути записані тільки в один стовпець, наприклад перший, коефіцієнт невідомої y - тільки в другий.

При множенні матриці всі елементи матриці послідовно множаться число.

Варіанти знаходження зворотної матриці

Формула знаходження зворотної матриці досить проста: K -1 = 1 / | K |, де K -1 - Зворотна матриця, а | K | - Визначник матриці. |K| не повинен дорівнювати нулю, тоді система має рішення.

Визначник легко обчислюється для матриці два на два, необхідно лише помножити один на одного елементи по діагоналі. Для варіанта "три на три" існує формула | K | b 2 c 1 . Можна скористатися формулою, а можна запам'ятати що необхідно взяти по одному елементу з кожного рядка та кожного стовпця так, щоб у творі не повторювалися номери стовпців та рядків елементів.

Розв'язання прикладів систем лінійних рівнянь матричним методом

Матричний спосіб пошуку рішення дозволяє скоротити громіздкі записи під час вирішення систем із великою кількістю змінних і рівнянь.

У прикладі a nm – коефіцієнти рівнянь, матриця – вектор x n – змінні, а b n – вільні члени.

Рішення систем методом Гауса

У вищій математиці метод Гаусса вивчають разом із методом Крамера, а процес пошуку рішення систем і називається метод рішення Гаусса - Крамера. Дані методи застосовують при знаходженні змінних систем з великою кількістю лінійних рівнянь.

Метод Гауса дуже схожий на рішення за допомогою підстановок та алгебраїчної складання, але більш систематичний. У шкільному курсі рішення способом Гаусса застосовується для систем із 3 та 4 рівнянь. Мета методу полягає у приведенні системи до виду перевернутої трапеції. Шляхом перетворень алгебри і підстановок знаходиться значення однієї змінної в одному з рівнянні системи. Друге рівняння є виразом з двома невідомими, а 3 і 4 - відповідно з трьома і чотирма змінними.

Після приведення системи до описаного виду, подальше рішення зводиться до послідовної підстановки відомих змінних рівняння системи.

У шкільних підручниках для 7 класу приклад рішення методом Гаусса описаний таким чином:

Як видно з прикладу, на кроці (3) було отримано два рівняння 3x3 -2x4 = 11 і 3x3 +2x4 =7. Рішення будь-якого рівняння дозволить дізнатися одну зі змінних x n .

Теорема 5, про яку згадується в тексті, свідчить, що якщо одне з рівнянь системи замінити рівносильним, то отримана система буде також рівносильна вихідній.

Метод Гаусса важкий для сприйняття учнів середньої школи, але є одним із найцікавіших способів для розвитку кмітливості дітей, які навчаються за програмою поглибленого вивчення в математичних та фізичних класах.

Для простоти запису обчислень прийнято робити так:

Коефіцієнти рівнянь та вільні члени записуються у вигляді матриці, де кожен рядок матриці співвідноситься з одним із рівнянь системи. відокремлює ліву частину рівняння від правої. Римськими цифрами позначаються номери рівнянь у системі.

Спочатку записують матрицю, з якою належить працювати, потім усі дії, що проводяться з одного з рядків. Отриману матрицю записують після знака "стрілка" і продовжують виконувати необхідні дії алгебри до досягнення результату.

У результаті повинна вийти матриця в якій по одній з діагоналей стоять 1, а всі інші коефіцієнти дорівнюють нулю, тобто матрицю призводять до поодинокого вигляду. Не можна забувати робити обчислення з цифрами обох частин рівняння.

Цей спосіб запису менш громіздкий і дозволяє не відволікатися на перелік численних невідомих.

Вільне застосування будь-якого способу вирішення потребує уважності та певного досвіду. Не всі методи мають прикладний характер. Якісь способи пошуку рішень більш переважні в тій іншій галузі діяльності людей, інші існують з метою навчання.



Останні матеріали розділу:

Як правильно заповнити шкільний щоденник
Як правильно заповнити шкільний щоденник

Сенс читацького щоденника в тому, щоб людина змогла згадати, коли і які книги вона читала, який їх сюжет. Для дитини це може бути своєю...

Рівняння площини: загальне, через три точки, нормальне
Рівняння площини: загальне, через три точки, нормальне

Рівняння площини. Як скласти рівняння площини? Взаємне розташування площин. Просторова геометрія не набагато складніше...

Старший сержант Микола Сиротінін
Старший сержант Микола Сиротінін

5 травня 2016, 14:11 Микола Володимирович Сиротинін (7 березня 1921 року, Орел – 17 липня 1941 року, Кричев, Білоруська РСР) – старший сержант артилерії. У...