Складне похідне визначення. Правила обчислення похідних

Запам'ятати дуже просто.

Ну і не будемо далеко ходити, одразу ж розглянемо зворотну функцію. Яка функція є зворотною для показової функції? Логарифм:

У нашому випадку основою є число:

Такий логарифм (тобто логарифм із основою) називається «натуральним», і для нього використовуємо особливе позначення: замість пишемо.

Чому дорівнює? Звичайно ж, .

Похідна від натурального логарифму теж дуже проста:

Приклади:

  1. Знайди похідну функцію.
  2. Чому дорівнює похідна функції?

Відповіді: Експонента та натуральний логарифм – функції унікально прості з погляду похідної. Показові та логарифмічні функції з будь-якою іншою основою будуть мати іншу похідну, яку ми з тобою розберемо пізніше, після того, як ми пройдемо правила диференціювання.

Правила диференціювання

Правила чого? Знову новий термін, знову?!

Диференціювання- Це процес знаходження похідної.

Тільки і всього. А як ще назвати цей процес одним словом? Не производнование ж... Диференціалом математики називають те саме збільшення функції при. Походить цей термін від латинського differentia - різниця. Ось.

При виведенні всіх цих правил використовуватимемо дві функції, наприклад, в. Нам знадобляться також формули їх прирощень:

Усього є 5 правил.

Константа виноситься за знак похідної.

Якщо – якесь постійне число (константа), тоді.

Очевидно, це правило працює і для різниці: .

Доведемо. Нехай, чи простіше.

приклади.

Знайдіть похідні функції:

  1. у точці;
  2. у точці;
  3. у точці;
  4. у точці.

Рішення:

  1. (похідна однакова у всіх точках, оскільки це лінійна функція, пам'ятаєш?);

Похідна робота

Тут все аналогічно: введемо нову функцію і знайдемо її збільшення:

Похідна:

Приклади:

  1. Знайдіть похідні функцій та;
  2. Знайдіть похідну функцію в точці.

Рішення:

Похідна показової функції

Тепер твоїх знань достатньо, щоб навчитися знаходити похідну будь-якої показової функції, а не лише експоненти (не забув ще, що це таке?).

Отже, де – це якесь число.

Ми вже знаємо похідну функцію, тому давай спробуємо привести нашу функцію до нової основи:

І тому скористаємося простим правилом: . Тоді:

Ну ось, вийшло. Тепер спробуй знайти похідну, і не забудь, що ця функція – складна.

Вийшло?

Ось, перевір себе:

Формула вийшла дуже схожа на похідну експоненти: як було, так і залишилося, з'явився лише множник, який є просто числом, але не змінною.

Приклади:
Знайди похідні функції:

Відповіді:

Це просто число, яке неможливо порахувати без калькулятора, тобто не записати в більш простому вигляді. Тому у відповіді його у такому вигляді і залишаємо.

    Зауважимо, що тут приватне двох функцій, тому застосуємо відповідне правило диференціювання:

    У цьому прикладі добуток двох функцій:

Похідна логарифмічна функція

Тут аналогічно: ти вже знаєш похідну від натурального логарифму:

Тому, щоб знайти довільну від логарифму з іншою основою, наприклад:

Потрібно привести цей логарифм до основи. А як змінити основу логарифму? Сподіваюся, ти пам'ятаєш цю формулу:

Тільки тепер замість писатимемо:

У знаменнику вийшла просто константа (постійне число без змінної). Похідна виходить дуже просто:

Похідні показової та логарифмічної функцій майже не зустрічаються в ЄДІ, але не буде зайвим знати їх.

Похідна складна функція.

Що таке "складна функція"? Ні, це не логарифм і не арктангенс. Дані функції може бути складними для розуміння (хоча, якщо логарифм тобі здається складним, прочитай тему «Логарифми» і все пройде), але з точки зору математики слово «складна» не означає «важка».

Уяви собі маленький конвеєр: сидять дві людини і роблять якісь дії з якимись предметами. Наприклад, перший загортає шоколадку в обгортку, а другий обв'язує її стрічкою. Виходить такий складовий об'єкт: шоколадка, обгорнена та обв'язана стрічкою. Щоб з'їсти шоколадку, тобі потрібно зробити зворотні дії у зворотному порядку.

Давай створимо подібний математичний конвеєр: спочатку знаходитимемо косинус числа, а потім отримане число зводитимемо в квадрат. Отже, нам дають число (шоколадка), я знаходжу його косинус (обгортка), а ти потім зводиш те, що в мене вийшло, у квадрат (обв'язуєш стрічкою). Що вийшло? функція. Це і є приклад складної функції: коли для знаходження її значення ми робимо першу дію безпосередньо зі змінною, а потім ще другу дію з тим, що вийшло в результаті першого.

Іншими словами, складна функція – це функція, аргументом якої є інша функція: .

Для прикладу, .

Ми цілком можемо робити ті ж дії і в зворотному порядку: спочатку ти зводиш у квадрат, а потім шукаю косинус отриманого числа: . Нескладно здогадатися, що результат майже завжди буде різним. Важлива особливість складних функцій: зміна порядку дій функція змінюється.

Другий приклад: (те саме). .

Дію, яку робимо останнім, називатимемо "зовнішньої" функцією, а дія, що чиниться першим - відповідно «внутрішньою» функцією(це неформальні назви, я їх вживаю лише для того, щоб пояснити матеріал простою мовою).

Спробуй визначити сам, яка функція є зовнішньою, а яка внутрішньою:

Відповіді:Поділ внутрішньої та зовнішньої функцій дуже схожий заміну змінних: наприклад, у функції

  1. Першим виконуватимемо яку дію? Спершу порахуємо синус, а потім зведемо в куб. Отже, внутрішня функція, а зовнішня.
    А вихідна функція є їх композицією: .
  2. Внутрішня: ; зовнішня: .
    Перевірка: .
  3. Внутрішня: ; зовнішня: .
    Перевірка: .
  4. Внутрішня: ; зовнішня: .
    Перевірка: .
  5. Внутрішня: ; зовнішня: .
    Перевірка: .

виконуємо заміну змінних та отримуємо функцію.

Ну що ж, тепер витягуватимемо нашу шоколадку - шукати похідну. Порядок дій завжди зворотний: спочатку шукаємо похідну зовнішньої функції, потім множимо результат на похідну внутрішньої функції. Стосовно вихідного прикладу це так:

Інший приклад:

Отже, сформулюємо, нарешті, офіційне правило:

Алгоритм знаходження похідної складної функції:

Начебто все просто, так?

Перевіримо на прикладах:

Рішення:

1) Внутрішня: ;

Зовнішня: ;

2) Внутрішня: ;

(Тільки не здумай тепер скоротити на! З-під косинуса нічого не виноситься, пам'ятаєш?)

3) Внутрішня: ;

Зовнішня: ;

Відразу видно, що тут трирівнева складна функція: адже - це вже сама по собі складна функція, а з неї витягуємо корінь, тобто виконуємо третю дію (шоколадку в обгортці і з стрічкою кладемо в портфель). Але лякатися немає причин: все одно «розпаковувати» цю функцію будемо в тому ж порядку, що і зазвичай: з кінця.

Тобто спершу продиференціюємо корінь, потім косинус, і лише потім вираз у дужках. А потім все це перемножимо.

У разі зручно пронумерувати дії. Тобто уявімо, що нам відомий. У якому порядку робитимемо дії, щоб обчислити значення цього виразу? Розберемо з прикладу:

Чим пізніше відбувається дія, тим більше «зовнішньої» буде відповідна функція. Послідовність дій - як і раніше:

Тут вкладеність взагалі 4-рівнева. Давайте визначимо порядок дій.

1. Підкорене вираз. .

2. Корінь. .

3. Синус. .

4. Квадрат. .

5. Збираємо все до купи:

ВИРОБНИЧА. КОРОТКО ПРО ГОЛОВНЕ

Похідна функції- Відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу:

Базові похідні:

Правила диференціювання:

Константа виноситься за знак похідної:

Похідна сума:

Похідна робота:

Похідна приватна:

Похідна складної функції:

Алгоритм знаходження похідної від складної функції:

  1. Визначаємо "внутрішню" функцію, знаходимо її похідну.
  2. Визначаємо "зовнішню" функцію, знаходимо її похідну.
  3. Помножуємо результати першого та другого пунктів.

Наводяться приклади обчислення похідних із застосуванням похідної формули складної функції.

Зміст

Див. також: Доказ формули похідної складної функції

Основні формули

Тут ми наводимо приклади обчислення похідних від таких функцій:
; ; ; ; .

Якщо функцію можна представити як складну функцію у такому вигляді:
,
то її похідна визначається за формулою:
.
У наведених нижче прикладах ми будемо записувати цю формулу в наступному вигляді:
.
де.
Тут нижні індекси або розташовані під знаком похідної позначають змінні, по якій виконується диференціювання.

Зазвичай, в похідних таблицях , наводяться похідні функцій від змінної x . Однак x – це формальний параметр. Змінну x можна замінити будь-якою іншою змінною. Тому, при диференціювання функції від змінної , ми змінюємо, у таблиці похідних, змінну x на змінну u .

Прості приклади

Приклад 1

Знайти похідну складної функції
.

Запишемо задану функцію в еквівалентному вигляді:
.
У таблиці похідних знаходимо:
;
.

За формулою похідної складної функції маємо:
.
Тут.

Приклад 2

Знайти похідну
.

Виносимо постійну 5 за знак похідної та з таблиці похідних знаходимо:
.


.
Тут.

Приклад 3

Знайдіть похідну
.

Виносимо постійну -1 за знак похідної та з таблиці похідних знаходимо:
;
З таблиці похідних знаходимо:
.

Застосовуємо формулу похідної складної функції:
.
Тут.

Більш складні приклади

У складніших прикладах ми застосовуємо правило диференціювання складної функції кілька разів. При цьому ми обчислюємо похідну з кінця. Тобто розбиваємо функцію на складові частини та знаходимо похідні найпростіших частин, використовуючи таблицю похідних. Також ми застосовуємо правила диференціювання суми, твори та дроби . Потім робимо підстановки та застосовуємо формулу похідної складної функції.

Приклад 4

Знайдіть похідну
.

Виділимо найпростішу частину формули та знайдемо її похідну. .



.
Тут ми використовували позначення
.

Знаходимо похідну наступної частини вихідної функції, застосовуючи отримані результати. Застосовуємо правило диференціювання суми:
.

Ще раз застосовуємо правило диференціювання складної функції.

.
Тут.

Приклад 5

Знайдіть похідну функції
.

Виділимо найпростішу частину формули та з таблиці похідних знайдемо її похідну. .

Застосовуємо правило диференціювання складної функції.
.
Тут
.

Диференціюємо наступну частину, застосовуючи отримані результати.
.
Тут
.

Диференціюємо наступну частину.

.
Тут
.

Тепер знаходимо похідну шуканої функції.

.
Тут
.

Див. також:

І теорему про похідну складну функцію, формулювання якої така:

Нехай 1) функція $u=\varphi (x)$ має у певній точці $x_0$ похідну $u_(x)"=\varphi"(x_0)$; 2) функція $y=f(u)$ має у відповідній точці $u_0=\varphi (x_0)$ похідну $y_(u)"=f"(u)$. Тоді складна функція $y=f\left(\varphi (x) \right)$ у згаданій точці також матиме похідну, рівну добутку похідних функцій $f(u)$ і $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

або, у більш короткому записі: $y_(x)"=y_(u)"\cdot u_(x)"$.

У прикладах цього розділу всі функції мають вигляд $y=f(x)$ (тобто розглядаємо лише функції однієї змінної $x$). Відповідно, у всіх прикладах похідна $y"$ береться за змінною $x$. Щоб підкреслити те, що похідна береться за змінною $x$, часто замість $y"$ пишуть $y"_x$.

У прикладах №1, №2 та №3 викладено докладний процес знаходження похідної складних функцій. Приклад №4 призначений більш повного розуміння таблиці похідних і з ним має сенс ознайомитися.

Бажано після вивчення матеріалу у прикладах №1-3 перейти до самостійного рішення прикладів №5, №6 та №7. Приклади №5, №6 та №7 містять коротке рішення, щоб читач міг перевірити правильність свого результату.

Приклад №1

Знайти похідну функції $y=e^(\cos x)$.

Нам потрібно знайти похідну складної функції $y"$. Оскільки $y=e^(\cos x)$, то $y"=\left(e^(\cos x)\right)"$. Щоб знайти похідну $ \left(e^(\cos x)\right)"$ використовуємо формулу №6 з таблиці похідних . Щоб використати формулу №6, потрібно врахувати, що в нашому випадку $u=\cos x$. Подальше рішення полягає у банальній підстановці у формулу №6 виразу $\cos x$ замість $u$:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Тепер потрібно знайти значення виразу $(\cos x)"$. Знову звертаємося до таблиці похідних, вибираючи з неї формулу №10. Підставляючи $u=x$ у формулу №10, маємо: $(\cos x)"=-\ sin x\cdot x"$. Тепер продовжимо рівність (1.1), доповнивши його знайденим результатом:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Оскільки $x"=1$, то продовжимо рівність (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Отже, з рівності (1.3) маємо: $y"=-\sin x\cdot e^(\cos x)$. Природно, що пояснення та проміжні рівності зазвичай пропускають, записуючи перебування похідної в один рядок, - як у рівності ( 1.3) Отже, похідна складної функції знайдена, залишилося лише записати відповідь.

Відповідь: $y"=-\sin x\cdot e^(\cos x)$.

Приклад №2

Знайти похідну функції $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

Нам необхідно обчислити похідну $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Спочатку відзначимо, що константу (тобто число 9) можна винести за знак похідної:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Тепер звернемося до виразу $\left(\arctg^(12)(4\cdot \ln x) \right)"$. Щоб вибрати потрібну формулу з таблиці похідних було легше, я представлю вираз, що розглядається в такому вигляді: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Тепер видно, що потрібно використовувати формулу №2, тобто. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. У цю формулу підставимо $u=\arctg(4\cdot \ln x)$ і $\alpha=12$:

Доповнюючи рівність (2.1) отриманим результатом, маємо:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

У цій ситуації часто допускається помилка, коли вирішувач на першому кроці вибирає формулу $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ замість формули $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Справа в тому, що першою повинна бути похідна зовнішньої функції. Щоб зрозуміти, яка саме функція буде зовнішньою для вираження $\arctg^(12)(4\cdot 5^x)$, уявіть, що ви вважаєте значення виразу $\arctg^(12)(4\cdot 5^x)$ за якогось значення $x$. Спочатку ви порахуєте значення $5^x$, потім помножите результат на 4, отримавши $4\cdot 5^x$. Тепер від цього результату беремо арктангенс, отримавши $ arcctg (4 cdot 5 ^ x) $. Потім зводимо отримане число в дванадцятий ступінь, отримуючи $ arctg (12) (4 cdot 5 x) $. Остання дія, - тобто. зведення в ступінь 12 - і буде зовнішньою функцією. І саме з неї слід починати перебування похідної, що було зроблено рівності (2.2).

Тепер потрібно знайти $(\arctg(4\cdot \ln x))"$. Використовуємо формулу №19 таблиці похідних, підставивши в неї $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Трохи спростимо отриманий вираз, враховуючи $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Рівність (2.2) тепер стане такою:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Залишилося знайти $(4\cdot \ln x)"$. Винесемо константу (тобто 4) за знак похідної: $(4\cdot \ln x)"=4\cdot (\ln x)"$. того, щоб знайти $(\ln x)"$ використовуємо формулу №8, підставивши в неї $u=x$: $(\ln x)"=\frac(1)(x)\cdot x"$. Оскільки $x"=1$, то $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x )$.Підставивши отриманий результат у формулу (2.3), отримаємо:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)). $

Нагадаю, що похідна складної функції найчастіше знаходиться в один рядок - як записано в останній рівності. Тому при оформленні типових розрахунків або контрольних робіт зовсім не обов'язково розписувати рішення так само детально.

Відповідь: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Приклад №3

Знайти $y"$ функції $y=\sqrt(\sin^3(5\cdot9^x))$.

Для початку трохи змінимо функцію $y$, висловивши радикал (корінь) у вигляді ступеня: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9^x) \right)^(\frac(3)(7))$. Тепер приступимо до знаходження похідної. Оскільки $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, то:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Використовуємо формулу №2 з таблиці похідних , підставивши до неї $u=\sin(5\cdot 9^x)$ і $\alpha=\frac(3)(7)$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Продовжимо рівність (3.1), використовуючи отриманий результат:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Тепер потрібно знайти $(\sin(5\cdot 9^x))"$. Використовуємо для цього формулу №9 з похідних таблиці, підставивши в неї $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Доповнивши рівність (3.2) отриманим результатом, маємо:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Залишилося знайти $(5\cdot 9^x)"$. Для початку винесемо константу (число $5$) за знак похідної, тобто $(5\cdot 9^x)"=5\cdot (9^x) "$. Для знаходження похідної $(9^x)"$ застосуємо формулу №5 таблиці похідних, підставивши до неї $a=9$ і $u=x$: $(9^x)"=9^x\cdot \ ln9\cdot x"$. Оскільки $x"=1$, то $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Тепер можна продовжити рівність (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Можна знову від ступенів повернутися до радикалів (тобто коріння), записавши $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ у вигляді $\ frac(1)(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\) cdot 9^x)))$. Тоді похідна буде записана у такій формі:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).$$

Відповідь: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

Приклад №4

Показати, що формули №3 та №4 таблиці похідних є окремий випадок формули №2 цієї таблиці.

У формулі №2 таблиці похідних записано похідну функцію $u^\alpha$. Підставляючи $\alpha=-1$ у формулу №2, отримаємо:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Оскільки $u^(-1)=\frac(1)(u)$ і $u^(-2)=\frac(1)(u^2)$, то рівність (4.1) можна переписати так: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Це і є формула №3 таблиці похідних.

Знову звернемося до формули №2 таблиці похідних. Підставимо до неї $\alpha=\frac(1)(2)$:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Оскільки $u^(\frac(1)(2))=\sqrt(u)$ і $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1)(2)))=\frac(1)(\sqrt(u))$, то рівність (4.2) можна переписати в такому вигляді:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Отримана рівність $(sqrt(u))"=\frac(1)(2sqrt(u))cdot u"$ і є формула №4 таблиці похідних. Як бачите, формули №3 та №4 таблиці похідних виходять із формули №2 підстановкою відповідного значення $ alfa $.

Вирішувати фізичні завдання чи приклади з математики зовсім неможливо без знань про похідну та методи її обчислення. Похідна – одне з найважливіших понять математичного аналізу. Цій фундаментальній темі ми вирішили присвятити сьогоднішню статтю. Що таке похідна, який її фізичний та геометричний зміст, як порахувати похідну функції? Всі ці питання можна поєднати в одне: як зрозуміти похідну?

Геометричний та фізичний зміст похідної

Нехай є функція f(x) , задана в певному інтервалі (a, b) . Точки х і х0 належать до цього інтервалу. При зміні х змінюється сама функція. Зміна аргументу – різниця його значень х-х0 . Ця різниця записується як дельта ікс і називається збільшенням аргументу. Зміною або збільшенням функції називається різниця значень функції у двох точках. Визначення похідної:

Похідна функції у точці – межа відношення збільшення функції у цій точці до збільшення аргументу, коли останнє прагне нулю.

Інакше це можна записати так:

Який сенс у знаходженні такої межі? А ось який:

похідна від функції в точці дорівнює тангенсу кута між віссю OX і щодо графіку функції в даній точці.


Фізичний зміст похідної: похідна шляхи за часом дорівнює швидкості прямолінійного руху.

Дійсно, ще зі шкільних часів всім відомо, що швидкість – це приватна дорога. x=f(t) та часу t . Середня швидкість за деякий проміжок часу:

Щоб дізнатися швидкість руху в момент часу t0 потрібно обчислити межу:

Правило перше: виносимо константу

Константу можна винести за знак похідної. Більше того – це потрібно робити. При вирішенні прикладів математики візьміть за правило - якщо можете спростити вираз, обов'язково спрощуйте .

приклад. Обчислимо похідну:

Правило друге: похідна суми функцій

Похідна суми двох функцій дорівнює сумі похідних цих функцій. Те саме справедливо і для похідної різниці функцій.

Не наводитимемо доказ цієї теореми, а краще розглянемо практичний приклад.

Знайти похідну функції:

Правило третє: похідна робота функцій

Похідна твори двох функцій, що диференціюються, обчислюється за формулою:

Приклад: знайти похідну функції:

Рішення:

Тут важливо сказати про обчислення похідних складних функцій. Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу за незалежною змінною.

У наведеному вище прикладі ми зустрічаємо вираз:

В даному випадку проміжний аргумент - 8х у п'ятому ступені. Для того, щоб обчислити похідну такого виразу спочатку вважаємо похідну зовнішньої функції за проміжним аргументом, а потім множимо на похідну безпосередньо проміжного аргументу незалежної змінної.

Правило четверте: похідна приватного двох функцій

Формула для визначення похідної від частки двох функцій:

Ми постаралися розповісти про похідні для чайників з нуля. Ця тема не така проста, як здається, тому попереджаємо: у прикладах часто зустрічаються пастки, так що будьте уважні при обчисленні похідних.

З будь-яким питанням з цієї та інших тем ви можете звернутися до студентського сервісу. За короткий термін ми допоможемо вирішити найскладнішу контрольну та розібратися із завданнями, навіть якщо ви ніколи раніше не займалися обчисленням похідних.

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше в диференціальному обчисленні здаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити це значення в «страшний вираз».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, сама зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовуються у зворотному порядку, від самої зовнішньої функції, до внутрішньої. Вирішуємо:

Начебто без помилок:

1) Беремо похідну від квадратного кореня.

2) Беремо похідну від різниці, використовуючи правило

3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

4) Беремо похідну від косинуса.

6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твору трьох множників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що «у» ми позначимо твір двох функцій: , а й за «ве» - логарифм: . Чому можна так зробити? А хіба - це не твір двох множників і правило не працює? Нічого складного немає:


Тепер залишилося вдруге застосувати правило до дужки:

Можна ще зневіритися і винести щось за дужки, але в даному випадку відповідь краще залишити саме в такому вигляді - легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь?

Наведемо вираз чисельника до спільного знаменника і позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання і просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм



Останні матеріали розділу:

Цікавий плакат з російської мови для початкової школи
Цікавий плакат з російської мови для початкової школи

МІНІВІКТОРИНА ПРО ЖАБУ-КВА КУШКУ Жабі подобаються слова, В яких є три літери - КВА. Назвіть улюблені напої жаби Квакушки. Які...

Розтин могили поховання
Розтин могили поховання

Ще з Де останки імператорів? Є підозра, що могили російських царів у Петербурзі порожні / Версія Бурхливе обговорення питання про...

Колекція документів КСЕ з вивчення Тунгуського метеорита
Колекція документів КСЕ з вивчення Тунгуського метеорита

КОСМІЧНА МАТЕРІЯ НА ПОВЕРХНІ ЗЕМЛІ На жаль, однозначних критеріїв диференціації космічної речовини від близьких до неї за формою...