Скоротити квадратне рівняння за його корінням. Квадратні рівняння

Застосування рівнянь поширене у житті. Вони використовуються в багатьох розрахунках, будівництві споруд та навіть спорті. Рівняння людина використовувала ще в давнину і відтоді їх застосування лише зростає. Дискримінант дозволяє вирішувати будь-які квадратні рівняння за допомогою загальної формули, яка має такий вигляд:

Формула дискримінанта залежить від рівня багаточлена. Вищеописана формула підійде на вирішення квадратних рівнянь наступного виду:

Дискримінант має такі властивості, які потрібно знати:

* "D" дорівнює 0, коли многочлен має кратне коріння (рівне коріння);

* "D" є симетричним багаточленом щодо коріння багаточлена і тому є багаточленом від його коефіцієнтів; більше, коефіцієнти цього многочлена цілі незалежно від розширення, у якому беруться коріння.

Допустимо, нам дано квадратне рівняння наступного виду:

1 рівняння

За формулою маємо:

Оскільки \, то рівняння має 2 корені. Визначимо їх:

Де можна вирішити рівняння через дискримінант онлайн вирішувачем?

Вирішити рівняння можна на нашому сайті https://сайт. Безкоштовний онлайн вирішувач дозволить вирішити рівняння онлайн будь-якої складності за лічені секунди. Все, що вам необхідно зробити – це просто ввести свої дані у вирішувачі. Також ви можете подивитися відео інструкцію і дізнатися, як вирішити рівняння на нашому сайті. Вступайте до нашої групи, ми завжди раді допомогти вам.

Копіївська сільська середня загальноосвітня школа

10 способів розв'язання квадратних рівнянь

Керівник: Патрікеєва Галина Анатоліївна,

учитель математики

с.Коп'єво, 2007

1. Історія розвитку квадратних рівнянь

1.1 Квадратні рівняння у Стародавньому Вавилоні

1.2 Як становив та вирішував Діофант квадратні рівняння

1.3 Квадратні рівняння в Індії

1.4 Квадратні рівняння у ал- Хорезмі

1.5 Квадратні рівняння у Європі XIII - XVII ст.

1.6 Про теорему Вієта

2. Способи розв'язання квадратних рівнянь

Висновок

Література

1. Історія розвитку квадратних рівнянь

1.1 Квадратні рівняння у Стародавньому Вавилоні

Необхідність вирішувати рівняння як першої, а й другого ступеня ще давнини була викликана потребою вирішувати завдання, пов'язані зі знаходженням площ земельних ділянок і із земляними роботами військового характеру, і навіть з недостатнім розвитком астрономії і самої математики. Квадратні рівняння вміли розв'язувати близько 2000 років до зв. е. вавилоняни.

Застосовуючи сучасний запис алгебри, можна сказати, що в їх клинописних текстах зустрічаються, крім неповних, і такі, наприклад, повні квадратні рівняння:

X 2 + X = ¾; X 2 - X = 14,5

Правило розв'язання цих рівнянь, викладене у вавилонських текстах, збігається по суті із сучасним, проте невідомо, яким чином дійшли вавилоняни до цього правила. Майже всі знайдені до цих пір клинописні тексти наводять лише завдання з рішеннями, викладеними у вигляді рецептів, без вказівок щодо того, як вони були знайдені.

Незважаючи на високий рівень розвитку алгебри у Вавилоні, у клинописних текстах відсутні поняття негативного числа та загальні методи розв'язання квадратних рівнянь.

1.2 Як становив та вирішував Діофант квадратні рівняння.

В «Арифметиці» Діофанта немає систематичного викладу алгебри, однак у ній міститься систематизований ряд завдань, що супроводжуються поясненнями та вирішуються за допомогою складання рівнянь різних ступенів.

При складанні рівнянь Діофант спрощення рішення вміло вибирає невідомі.

Ось, наприклад, одне з його завдань.

Завдання 11.«Знайти два числа, знаючи, що їх сума дорівнює 20, а твір – 96»

Діофант розмірковує так: з умови завдання випливає, що шукані числа не рівні, оскільки якби вони були рівні, то їх добуток дорівнював би не 96, а 100. Таким чином, одне з них буде більше половини їх суми, тобто . 10 + х, Інше менше, тобто. 10 - х. Різниця між ними .

Звідси рівняння:

(10 + х) (10 - х) = 96

100 - х 2 = 96

х 2 - 4 = 0 (1)

Звідси х = 2. Одне з шуканих чисел одно 12 , інше 8 . Рішення х = -2для Діофанта немає, оскільки грецька математика знала лише позитивні числа.

Якщо ми вирішимо це завдання, вибираючи як невідоме одне з шуканих чисел, то ми прийдемо до вирішення рівняння

у(20 - у) = 96,

у 2 - 20у + 96 = 0. (2)


Зрозуміло, що, вибираючи як невідомий напіврізність шуканих чисел, Діофант спрощує рішення; йому вдається звести завдання розв'язання неповного квадратного рівняння (1).

1.3 Квадратні рівняння в Індії

Завдання на квадратні рівняння зустрічаються вже в астрономічному тракті «Аріабхаттіам», складеному 499 р. індійським математиком та астрономом Аріабхаттою. Інший індійський вчений, Брахмагупта (VII ст.), виклав загальне правило розв'язання квадратних рівнянь, наведених до єдиної канонічної форми:

ах 2+ b х = с, а > 0. (1)

У рівнянні (1) коефіцієнти, крім аможуть бути і негативними. Правило Брахмагупт по суті збігається з нашим.

У Стародавній Індії були поширені громадські змагання у вирішенні важких завдань. В одній із старовинних індійських книг говориться з приводу таких змагань наступне: «Як сонце блиском своїм затьмарює зірки, так вчена людина затьмарить славу іншого в народних зборах, пропонуючи і вирішуючи завдання алгебри». Завдання часто вдягалися у віршовану форму.

Ось одне із завдань знаменитого індійського математика XII ст. Бхаскар.

Завдання 13.

«Мавп швидких зграя А дванадцять по ліанах ...

Влада поївши, розважалася. Стали стрибати, повисаючи.

Їх у квадраті частина восьма Скільки ж було мавпочок,

На галявині бавилася. Ти скажи мені, у цій зграї?

Рішення Бхаскари свідчить про те, що він знав про двозначність коренів квадратних рівнянь (рис. 3).

Відповідне завдання 13 рівняння:

( x /8) 2 + 12 = x

Бхаскар пише під виглядом:

х 2 - 64х = -768

і, щоб доповнити ліву частину цього рівняння до квадрата, додає до обох частин 32 2 , отримуючи потім:

х 2 - 64х + 32 2 = -768 + 1024

(х - 32) 2 = 256,

х - 32 = ± 16,

х 1 = 16, х 2 = 48.

1.4 Квадратні рівняння у ал – Хорезмі

В алгебраїчному трактаті ал - Хорезмі дається класифікація лінійних та квадратних рівнянь. Автор налічує 6 видів рівнянь, висловлюючи їх так:

1) «Квадрати рівні корінням», тобто. ах 2 + с = b х.

2) «Квадрати дорівнюють числу», тобто. ах 2 = с.

3) «Коріння рівні числу», тобто. ах = с.

4) «Квадрати та числа рівні коріння», тобто. ах 2 + с = b х.

5) «Квадрати і коріння дорівнюють числу», тобто. ах 2+ bx = с.

6) «Коріння і числа дорівнюють квадратам», тобто. bx + с = ах 2 .

Для ал - Хорезмі, що уникав вживання негативних чисел, члени кожного з цих рівнянь доданки, а чи не віднімаються. При цьому свідомо не беруться до уваги рівняння, які не мають позитивних рішень. Автор викладає способи вирішення зазначених рівнянь, користуючись прийомами ал - джабр та ал - мукабала. Його рішення, звісно, ​​не збігається повністю із нашим. Вже не кажучи про те, що воно чисто риторичне, слід зазначити, наприклад, що при розв'язанні неповного квадратного рівняння першого виду

ал - Хорезмі, як і всі математики до XVII ст., не враховує нульового рішення, ймовірно, тому, що в конкретних практичних завданнях воно не має значення. При розв'язанні повних квадратних рівнянь ал - Хорезмі на окремих числових прикладах викладає правила розв'язання, а потім і геометричні докази.

Завдання 14.«Квадрат і число 21 дорівнюють 10 корінням. Знайти корінь» (мається на увазі корінь рівняння х 2 + 21 = 10х).

Рішення автора говорить приблизно так: розділи навпіл число коренів, отримаєш 5, помножиш 5 саме на себе, від твору забери 21, залишиться 4. Витягни корінь з 4, отримаєш 2. Забери 2 від 5, отримаєш 3, це і буде шуканий корінь. Або додай 2 до 5, що дасть 7, це теж є корінь.

Трактат ал - Хорезмі є першою книгою, що дійшла до нас, в якій систематично викладено класифікацію квадратних рівнянь і дано формули їх вирішення.

1.5 Квадратні рівняння у Європі XIII - XVII вв

Формули розв'язання квадратних рівнянь за зразком ал - Хорезмі в Європі були вперше викладені в «Книзі абака», написаної в 1202 р. італійським математиком Леонардо Фібоначчі. Ця об'ємна праця, в якій відображено вплив математики як країн ісламу, так і Стародавньої Греції, відрізняється і повнотою, і ясністю викладу. Автор розробив самостійно деякі нові приклади алгебри вирішення завдань і перший в Європі підійшов до введення негативних чисел. Його книга сприяла поширенню знань алгебри не тільки в Італії, але і в Німеччині, Франції та інших країнах Європи. Багато завдань із «Книги абака» переходили майже у всі європейські підручники XVI – XVII ст. та частково XVIII.

Загальне правило розв'язання квадратних рівнянь, наведених до єдиного канонічного виду:

х 2 + bx = с,

при всіляких комбінаціях знаків коефіцієнтів b , збуло сформульовано у Європі лише 1544 р. М. Штифелем.

Висновок формули розв'язання квадратного рівняння у загальному вигляді є у Вієта, проте Вієт визнавав лише позитивне коріння. Італійські математики Тарталья, Кардано, Бомбеллі серед перших у XVI ст. Враховують, крім позитивних, і негативне коріння. Лише XVII в. Завдяки праці Жірара, Декарта, Ньютона та інших вчених спосіб розв'язання квадратних рівнянь набуває сучасного вигляду.

1.6 Про теорему Вієта

Теорема, що виражає зв'язок між коефіцієнтами квадратного рівняння та його корінням, що носить ім'я Вієта, була ним сформульована вперше в 1591 наступним чином: «Якщо B + D, помножене на A - A 2 , одно BD, то Aодно Уі одно D ».

Щоб зрозуміти Вієта, слід згадати, що А, як і будь-яка голосна буква, означало в нього невідоме (наше х), голосні ж В, D- Коефіцієнти при невідомому. На мові сучасної алгебри вищенаведене формулювання Вієта означає: якщо має місце

(а + b ) х - х 2 = ab ,

х 2 - (а + b )х + а b = 0,

х 1 = а, х 2 = b .

Виражаючи залежність між корінням та коефіцієнтами рівнянь загальними формулами, записаними за допомогою символів, Вієт встановив однаковість у прийомах розв'язання рівнянь. Проте символіка Вієта ще далека від сучасного вигляду. Він не визнавав негативних чисел і тому при вирішенні рівнянь розглядав лише випадки, коли все коріння позитивне.

2. Способи розв'язання квадратних рівнянь

Квадратні рівняння - це фундамент, на якому лежить велична будівля алгебри. Квадратні рівняння знаходять широке застосування при розв'язанні тригонометричних, показових, логарифмічних, ірраціональних та трансцендентних рівнянь та нерівностей. Усі ми вміємо розв'язувати квадратні рівняння зі шкільної лави (8 клас), до закінчення вишу.

Бібліографічний опис:Гасанов А. Р., Курамшин А. А., Єльков А. А., Шильненков Н. В., Уланов Д. Д., Шмельова О. В. Способи розв'язання квадратних рівнянь // Юний вчений. 2016. №6.1. С. 17-20..02.2019).





Наш проект присвячений способам розв'язання квадратних рівнянь. Мета проекту: навчитися вирішувати квадратні рівняння способами, які не входять до шкільної програми. Завдання: знайти всі можливі способи розв'язання квадратних рівнянь та навчитися їх використовувати самим та познайомити однокласників із цими способами.

Що таке «квадратні рівняння»?

Квадратне рівняння- Рівняння виду ax2 + bx + c = 0, де a, b, c- Деякі числа ( a ≠ 0), x- Невідоме.

Числа a, b, c називаються коефіцієнтами квадратного рівняння.

  • a називається першим коефіцієнтом;
  • b називається другим коефіцієнтом;
  • c – вільним членом.

А хто ж перший "винайшов" квадратні рівняння?

Деякі алгебраїчні прийоми розв'язання лінійних і квадратних рівнянь були відомі ще 4000 років тому у Стародавньому Вавилоні. Знайдені стародавні вавилонські глиняні таблички, датовані десь між 1800 і 1600 роками до н.е., є ранніми свідченнями про вивчення квадратних рівнянь. На цих табличках викладено методи розв'язання деяких типів квадратних рівнянь.

Необхідність вирішувати рівняння як першої, а й другого ступеня ще давнини була викликана потребою вирішувати завдання, пов'язані зі знаходженням площ земельних ділянок і із земляними роботами військового характеру, і навіть з недостатнім розвитком астрономії і самої математики.

Правило розв'язання цих рівнянь, викладене у вавилонських текстах, збігається по суті із сучасним, проте невідомо, яким чином дійшли вавилоняни до цього правила. Майже всі знайдені до цих пір клинописні тексти наводять лише завдання з рішеннями, викладеними у вигляді рецептів, без вказівок щодо того, як вони були знайдені. Незважаючи на високий рівень розвитку алгебри у Вавилоні, у клинописних текстах відсутні поняття негативного числа та загальні методи розв'язання квадратних рівнянь.

Вавилонські математики приблизно з IV століття до н. використовували метод доповнення квадрата для вирішення рівнянь з позитивним корінням. Близько 300 року до н. Евклід придумав загальніший геометричний метод рішення. Першим математиком, який знайшов рішення рівняння з негативним корінням у вигляді алгебраїчної формули, був індійський учений Брахмагупта(Індія, VII століття нашої ери).

Брахмагупта виклав загальне правило розв'язання квадратних рівнянь, наведених до єдиної канонічної форми:

ax2 + bх = с, а>0

У цьому рівнянні коефіцієнти можуть бути і негативними. Правило Брахмагупт по суті збігається з нашим.

В Індії були поширені громадські змагання у вирішенні важких завдань. В одній із старовинних індійських книг говориться з приводу таких змагань наступне: «Як сонце блиском своїм затьмарює зірки, так вчена людина затьмарить славу в народних зборах, пропонуючи і вирішуючи завдання алгебри». Завдання часто вдягалися у віршовану форму.

В алгебраїчному трактаті Аль-Хорезмідається класифікація лінійних та квадратних рівнянь. Автор налічує 6 видів рівнянь, висловлюючи їх так:

1) «Квадрати дорівнюють корінням», тобто ах2 = bх.

2) «Квадрати дорівнюють числу», тобто ах2 = с.

3) «Коріння рівні числу», тобто ах2 = с.

4) «Квадрати та числа дорівнюють корінням», тобто ах2 + с = bх.

5) «Квадрати і коріння дорівнюють числу», тобто ах2 + bх = с.

6) «Коріння та числа дорівнюють квадратам», тобто bх + с == ах2.

Для Аль-Хорезмі, що уникав вживання негативних чисел, члени кожного з цих рівнянь доданки, а не віднімаються. При цьому свідомо не беруться до уваги рівняння, які не мають позитивних рішень. Автор викладає способи розв'язання зазначених рівнянь, користуючись прийомами ал-джабр та ал-мукабала. Його рішення, звісно, ​​не збігається повністю із нашим. Вже не кажучи про те, що воно чисто риторичне, слід зазначити, наприклад, що при розв'язанні неповного квадратного рівняння першого виду Аль-Хорезмі, як і всі математики до XVII ст., не враховує нульового рішення, ймовірно тому, що в конкретних практичних Завдання воно не має значення. При вирішенні повних квадратних рівнянь Аль-Хорезмі на окремих числових прикладах викладає правила розв'язання, а потім їх геометричні докази.

Форми розв'язання квадратних рівнянь на зразок Аль-Хорезмі у Європі було вперше викладено у «Книзі абака», написаної 1202г. італійським математиком Леонардом Фібоначчі. Автор розробив самостійно деякі нові приклади алгебри вирішення завдань і перший в Європі підійшов до введення негативних чисел.

Ця книга сприяла поширенню знань алгебри не тільки в Італії, але і в Німеччині, Франції та інших країнах Європи. Багато завдань із цієї книги переходили майже до всіх європейських підручників XIV-XVII ст. Загальне правило розв'язання квадратних рівнянь, наведених до єдиного канонічного виду x2 + bх = с при всіляких комбінаціях знаків та коефіцієнтів b, c, було сформульовано в Європі у 1544 р. М. Штіфелем.

Висновок формули розв'язання квадратного рівняння у загальному вигляді є у Вієта, проте Вієт визнавав лише позитивне коріння. Італійські математики Тарталья, Кардано, Бомбеллісеред перших у XVI ст. враховують, крім позитивних, і негативне коріння. Лише XVII в. завдяки працям Жірара, Декарта, Ньютоната інших вчених спосіб розв'язання квадратних рівнянь набуває сучасного вигляду.

Розглянемо кілька способів розв'язання квадратних рівнянь.

Стандартні способи розв'язання квадратних рівнянь із шкільної програми:

  1. Розкладання лівої частини рівняння на множники.
  2. Метод виділення повного квадрата.
  3. Розв'язання квадратних рівнянь за формулою.
  4. Графічний розв'язок квадратного рівняння.
  5. Розв'язання рівнянь із використанням теореми Вієта.

Зупинимося докладніше на розв'язання наведених та не наведених квадратних рівнянь за теоремою Вієта.

Нагадаємо, що для вирішення наведених квадратних рівнянь достатньо знайти два числа такі, добуток яких дорівнює вільному члену, а сума - другому коефіцієнту з протилежним знаком.

приклад.x 2 -5x+6=0

Потрібно знайти числа, добуток яких дорівнює 6, а сума 5. Такими числами будуть 3 та 2.

Відповідь: x 1 =2, x 2 =3.

Але можна використовувати цей спосіб і для рівнянь з першим коефіцієнтом не рівним одиниці.

приклад.3x 2 +2x-5=0

Беремо перший коефіцієнт та множимо його на вільний член: x 2 +2x-15=0

Корінням цього рівняння будуть числа, добуток яких дорівнює - 15, а сума дорівнює - 2. Ці числа - 5 і 3. Щоб знайти коріння вихідного рівняння, отримане коріння ділимо на перший коефіцієнт.

Відповідь: x 1 =-5/3, x 2 =1

6. Розв'язання рівнянь способом "перекидання".

Розглянемо квадратне рівняння ах 2 + bх + с = 0 де а≠0.

Помножуючи обидві його частини на а, отримуємо рівняння а 2 х 2 + abх + ас = 0.

Нехай ах = у, звідки х = у/а; тоді приходимо до рівняння у 2 + by + ас = 0, рівносильному даному. Його коріння у 1 та у 2 знайдемо за допомогою теореми Вієта.

Остаточно отримуємо х 1 = у 1/а та х 2 = у 2/а.

При цьому способі коефіцієнт a множиться на вільний член, як би "перекидається" до нього, тому його називають способом "перекидання". Цей спосіб застосовують, коли можна легко знайти коріння рівняння, використовуючи теорему Вієта і що найважливіше, коли дискримінант є точний квадрат.

приклад. 2 - 11х + 15 = 0.

"Перекинемо" коефіцієнт 2 до вільного члена і зробивши заміну отримаємо рівняння у 2 - 11у + 30 = 0.

Відповідно до зворотної теореми Вієта

у 1 = 5, х 1 = 5/2, х 1 = 2,5; у 2 = 6, x 2 = 6/2, x 2 = 3.

Відповідь: х 1 =2,5; х 2 = 3.

7. Властивості коефіцієнтів квадратного рівняння.

Нехай надано квадратне рівняння ах 2 + bх + с = 0, а ≠ 0.

1. Якщо a + b + с = 0 (тобто сума коефіцієнтів рівняння дорівнює нулю), то х 1 = 1.

2. Якщо а – b + с = 0, або b = а + с, то х 1 = – 1.

приклад.345х 2 - 137х - 208 = 0.

Так як а + b + с = 0 (345 – 137 – 208 = 0), то х 1 = 1, х 2 = -208/345.

Відповідь: х 1 =1; х 2 = -208/345 .

приклад.132х 2 + 247х + 115 = 0

Т.к. a-b + с = 0 (132 - 247 +115 = 0), то х 1 = - 1, х 2 = - 115/132

Відповідь: х 1 = - 1; х 2 =- 115/132

Існують інші властивості коефіцієнтів квадратного рівняння. але їх використання складніше.

8. Розв'язання квадратних рівнянь за допомогою номограми.

Рис 1. Номограма

Це старий і нині забутий спосіб розв'язання квадратних рівнянь, вміщений с.83 збірки: Брадис В.М. Чотиризначні математичні таблиці. - М., Просвітництво, 1990.

Таблиця XXII. Номограма для вирішення рівняння z 2 + pz + q = 0. Ця номограма дозволяє, не вирішуючи квадратного рівняння, за його коефіцієнтами визначити коріння рівняння.

Криволинійна шкала номограми побудована за формулами (рис. 1):

Вважаючи ОС = р, ED = q, ОЕ = а(Все в см), з рис.1 подоби трикутників САНі CDFотримаємо пропорцію

звідки після підстановок та спрощень випливає рівняння z 2 + pz + q = 0,причому буква zозначає мітку будь-якої точки криволінійної шкали.

Мал. 2 Розв'язання квадратних рівнянь за допомогою номограми

приклади.

1) Для рівняння z 2 - 9z + 8 = 0номограма дає коріння z 1 = 8,0 та z 2 = 1,0

Відповідь: 8,0; 1.0.

2) Вирішимо за допомогою номограми рівняння

2z 2 - 9z + 2 = 0.

Розділимо коефіцієнти цього рівняння на 2 отримаємо рівняння z 2 - 4,5z + 1 = 0.

Номограма дає коріння z 1 = 4 та z 2 = 0,5.

Відповідь: 4; 0,5.

9. Геометричний спосіб розв'язання квадратних рівнянь.

приклад.х 2 + 10х = 39.

В оригіналі це завдання формулюється так: "Квадрат і десять коренів дорівнюють 39".

Розглянемо квадрат зі стороною х, на його сторонах будуються прямокутники так, що інша сторона кожного з них дорівнює 2,5, отже площа кожного дорівнює 2,5x. Отриману фігуру доповнюють потім до нового квадрата АВСD, добудовуючи в кутах чотири рівні квадрати, сторона кожного з них 2,5, а площа 6,25

Мал. 3 Графічний спосіб розв'язання рівняння х 2 + 10х = 39

Площа S квадрата ABCD можна як суму площ: початкового квадрата x 2 , чотирьох прямокутників (4∙2,5x = 10х) і чотирьох прибудованих квадратів (6,25∙ 4 = 25) , тобто. S = х 2 + 10х = 25. Замінюючи х 2 + 10х числом 39, отримаємо що S = 39 + 25 = 64, звідки випливає, що сторона квадрата АВСD, тобто. відрізок АВ = 8. Для шуканої сторони х початкового квадрата отримаємо

10. Розв'язання рівнянь із використанням теореми Безу.

Теорема Безу. Залишок від розподілу многочлена P(x) на двочлен x - α дорівнює P(α) (тобто значення P(x) при x = α).

Якщо число α є коренем многочлена P(x), цей многочлен ділиться на x -α без залишку.

приклад.х²-4х+3=0

Р(x)= х²-4х+3, α: ±1,±3, α =1, 1-4+3=0. Розділимо Р(x) на (х-1):(х²-4х+3)/(х-1)=х-3

х²-4х+3=(х-1)(х-3), (х-1)(х-3)=0

х-1 = 0; х=1, або х-3=0, х=3; Відповідь: х1 =2, х2 =3.

Висновок:Вміння швидко і раціонально розв'язувати квадратні рівняння просто необхідне рішення більш складних рівнянь, наприклад, дробово-раціональних рівнянь, рівнянь вищих ступенів, біквадратних рівнянь, а старшій школі тригонометричних, показових і логарифмічних рівнянь. Вивчивши всі знайдені способи розв'язання квадратних рівнянь, ми можемо порадити однокласникам, крім стандартних способів, розв'язання способом перекидання (6) і розв'язання рівнянь за якістю коефіцієнтів (7), оскільки є більш доступними для розуміння.

Література:

  1. Брадіс В.М. Чотиризначні математичні таблиці. - М., Просвітництво, 1990.
  2. Алгебра 8 клас: підручник для 8 кл. загальноосвіт. установ Макарічев Ю. Н., Міндюк Н. Г., Нешков К. І., Суворова С. Б. за ред. С. А. Теляковського 15-те вид., Дораб. - М: Просвітництво, 2015
  3. https://ua.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0 %B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
  4. Глейзер Г.І. Історія математики у школі. Посібник для вчителів. / За ред. В.М. Молодшого. - М: Просвітництво, 1964.

Попрацюємо з квадратними рівняннями. Це дуже популярні рівняння! У найзагальнішому вигляді квадратне рівняння виглядає так:

Наприклад:

Тут а =1; b = 3; c = -4

Тут а =2; b = -0,5; c = 2,2

Тут а =-3; b = 6; c = -18

Ну ви зрозуміли…

Як розв'язувати квадратні рівняння?Якщо перед вами квадратне рівняння саме у такому вигляді, далі все просто. Згадуємо чарівне слово дискримінант . Рідкісний старшокласник не чув цього слова! Фраза «вирішуємо через дискримінант» вселяє впевненість та обнадіює. Тому що чекати каверз від дискримінанта не доводиться! Він простий і безвідмовний у зверненні. Отже, формула для знаходження коріння квадратного рівняння виглядає так:

Вираз під знаком кореня – і є той самий дискримінант. Як бачимо, для знаходження ікса ми використовуємо тільки a, b і с. Тобто. коефіцієнти із квадратного рівняння. Просто акуратно підставляємо значення a, b і су це формулу і рахуємо. Підставляємо зі своїми знаками! Наприклад, для першого рівняння а =1; b = 3; c= -4. Ось і записуємо:

Приклад практично вирішено:

От і все.

Які випадки можливі під час використання цієї формули? Усього три випадки.

1. Дискримінант позитивний. Це означає, що з нього можна витягти корінь. Добре корінь витягується, або погано – питання інше. Важливо, що в принципі. Тоді у вашого квадратного рівняння – два корені. Два різні рішення.

2. Дискримінант дорівнює нулю. Тоді у вас є одне рішення. Строго кажучи, це не один корінь, а два однакові. Але це відіграє роль у нерівностях, там ми докладніше вивчимо питання.

3. Дискримінант негативний. З негативного числа квадратний корінь не витягується. Ну і добре. Це означає, що рішень немає.

Все дуже просто. І що, думаєте, помилитись не можна? Ну так, як же…
Найпоширеніші помилки – плутанина зі знаками значень a, b і с. Точніше, не з їхніми знаками (де там плутатися?), а з підстановкою негативних значень у формулу для обчислення коріння. Тут рятує докладний запис формули із конкретними числами. Якщо є проблеми з обчисленнями, так і робіть!



Припустимо, треба ось такий приклад вирішити:

Тут a = -6; b = -5; c = -1

Допустимо, ви знаєте, що відповіді у вас рідко з першого разу виходять.

Ну і не лінуйтеся. Написати зайву строчку займе секунд 30. А кількість помилок різко скоротиться. Ось і пишемо докладно, з усіма дужками та знаками:

Це здається неймовірно важким, так старанно розписувати. Але це лише здається. Спробуйте. Ну, чи вибирайте. Що краще, швидко, чи правильно? Крім того, я вас порадую. Через деякий час зникне потреба так ретельно все розписувати. Саме правильно виходитиме. Особливо, якщо застосовуватимете практичні прийоми, що описані трохи нижче. Цей злий приклад з купою мінусів вирішиться просто і без помилок!

Отже, як вирішувати квадратні рівняннячерез дискримінант ми згадали. Або навчилися, що теж непогано. Вмієте правильно визначати a, b і с. Вмієте уважнопідставляти їх у формулу коренів та уважнорахувати результат. Ви зрозуміли, що ключове слово тут – уважно?

Однак часто квадратні рівняння виглядають трохи інакше. Наприклад, ось так:

Це неповні квадратні рівняння . Їх також можна вирішувати через дискримінант. Треба тільки правильно збагнути, чого тут дорівнюють a, b і с.

Зрозуміли? У першому прикладі a = 1; b = -4;а c? Його взагалі нема! Так, правильно. У математиці це означає, що c = 0 ! От і все. Підставляємо у формулу нуль замість c,і все в нас вийде. Аналогічно і з другим прикладом. Тільки нуль у нас тут не з, а b !

Але неповні квадратні рівняння можна вирішувати набагато простіше. Без будь-якого дискримінанта. Розглянемо перше неповне рівняння. Що там можна зробити у лівій частині? Можна ікс винести за дужки! Давайте винесемо.

І що з цього? А те, що твір дорівнює нулю тоді, і тільки тоді, коли якийсь із множників дорівнює нулю! Не вірите? Добре, придумайте тоді два ненульові числа, які при перемноженні нуль дадуть!
Не виходить? Отож…
Отже, можна впевнено записати: х = 0, або х = 4

Усе. Це і буде коріння нашого рівняння. Обидва підходять. При підстановці кожного з них у вихідне рівняння, ми отримаємо правильну тотожність 0 = 0. Як бачите, рішення набагато простіше, ніж через дискримінант.

Друге рівняння також можна вирішити просто. Переносимо 9 у праву частину. Отримаємо:

Залишається корінь витягти з 9, і все. Вийде:

Теж два корені . х = +3 та х = -3.

Так вирішуються усі неповні квадратні рівняння. Або з допомогою винесення икса за дужки, чи простим перенесенням числа вправо з наступним вилученням кореня.
Зплутати ці прийоми дуже складно. Просто тому, що в першому випадку вам доведеться корінь із іксу витягувати, що якось незрозуміло, а в другому випадку виносити за дужки нема чого…

А тепер прийміть до уваги практичні прийоми, які різко знижують кількість помилок. Тих самих, що через неуважність. За які потім буває боляче і прикро.

Прийом перший. Не лінуйтеся перед вирішенням квадратного рівняння привести його до стандартного вигляду. Що це означає?
Припустимо, після будь-яких перетворень ви отримали таке рівняння:

Не кидайтеся писати формулу коріння! Майже напевно, ви переплутаєте коефіцієнти a, b та с.Побудуйте приклад правильно. Спочатку ікс у квадраті, потім без квадрата, потім вільний член. Ось так:

І знову не кидайтесь! Мінус перед іксом у квадраті може дуже вас засмутити. Забути його легко… Позбавтеся мінуса. Як? Та як навчали у попередній темі! Потрібно помножити все рівняння на -1. Отримаємо:

А ось тепер можна сміливо записувати формулу для коріння, рахувати дискримінант і дорішувати приклад. Дорішайте самостійно. У вас має вийти коріння 2 і -1.

Прийом другий.Перевіряйте коріння! За теоремою Вієта. Не лякайтеся, я все поясню! Перевіряємо останнєрівняння. Тобто. те, яким ми записували формулу коренів. Якщо (як у цьому прикладі) коефіцієнт а = 1, перевірити коріння легко. Достатньо їх перемножити. Має вийти вільний член, тобто. у разі -2. Зверніть увагу не 2, а -2! Вільний член зі своїм знаком . Якщо не вийшло – значить уже десь накосячили. Шукайте помилку. Якщо вийшло – треба скласти коріння. Остання та остаточна перевірка. Повинен вийти коефіцієнт bз протилежним знаком. У разі -1+2 = +1. А коефіцієнт b, що перед іксом, дорівнює -1. Значить, все правильно!
Жаль, що це так просто тільки для прикладів, де ікс у квадраті чистий, з коефіцієнтом а = 1.Але хоч у таких рівняннях перевіряйте! Дедалі менше помилок буде.

Прийом третій. Якщо у вашому рівнянні є дробові коефіцієнти, - позбавтеся дробів! Помножте рівняння на загальний знаменник, як описано у попередньому розділі. При роботі з дробами помилки чомусь так і лізуть.

До речі, я обіцяв злий приклад із купою мінусів спростити. Будь ласка! Ось він.

Щоб не плутатися в мінусах, примножуємо рівняння на -1. Отримуємо:

От і все! Вирішувати – одне задоволення!

Отже, підсумуємо тему.

Практичні поради:

1. Перед рішенням наводимо квадратне рівняння до стандартного вигляду, вибудовуємо його правильно.

2. Якщо перед іксом у квадраті стоїть негативний коефіцієнт, ліквідуємо його множенням всього рівняння на -1.

3. Якщо коефіцієнти дробові – ліквідуємо дроби множенням всього рівняння на відповідний множник.

4. Якщо ікс у квадраті – чистий, коефіцієнт при ньому дорівнює одиниці, рішення можна легко перевірити за теоремою Вієта. Робіть це!

Дробові рівняння. ОДЗ.

Продовжуємо освоювати рівняння. Ми вже в курсі, як працювати з лінійними рівняннями та квадратними. Залишився останній вигляд - дробові рівняння. Або їх ще називають набагато солідніше - дробові раціональні рівняння. Це одне і теж.

Дробові рівняння.

Як зрозуміло з назви, у цих рівняннях обов'язково присутні дроби. Але не просто дроби, а дроби, які мають невідоме у знаменнику. Хоч би в одному. Наприклад:

Нагадаю, якщо у знаменниках лише числа, це лінійні рівняння

Як вирішувати дробові рівняння? Насамперед – позбутися дробів! Після цього рівняння, найчастіше, перетворюється на лінійне чи квадратне. А далі ми знаємо, що робити... У деяких випадках воно може перетворитися на тотожність типу 5=5 або неправильне вираження типу 7=2. Але це рідко трапляється. Нижче я про це згадаю.

Але як позбутися дробів! Дуже просто. Застосовуючи ті самі тотожні перетворення.

Нам треба помножити все рівняння на те саме вираз. Так, щоб усі знаменники скорочувалися! Все одразу стане простіше. Пояснюю на прикладі. Нехай нам потрібно вирішити рівняння:

Як навчали у молодших класах? Переносимо все в один бік, ведемо до спільного знаменника і т.д. Забудьте як страшний сон! Так потрібно робити, коли ви складаєте або віднімаєте дробові вирази. Або працюєте з нерівностями. А в рівняннях ми відразу множимо обидві частини на вираз, який дасть нам змогу скоротити всі знаменники (тобто, по суті, на спільний знаменник). І який же це вираз?

У лівій частині для скорочення знаменника потрібно множення на х+2. А у правій потрібно множення на 2. Значить, рівняння треба множити на 2(х+2). Примножуємо:

Це звичайне множення дробів, але докладно розпишу:

Зверніть увагу, я поки що не розкриваю дужку (х + 2)! Так, цілком, її й пишу:

У лівій частині скорочується повністю (х+2), А в правій 2. Що і потрібно! Після скорочення отримуємо лінійнерівняння:

А це рівняння вже вирішить кожен! х = 2.

Вирішимо ще один приклад, трохи складніше:

Якщо згадати, що 3 = 3/1, а 2х = 2х/ 1, можна записати:

І знову позбавляємося того, що нам не дуже подобається – дробів.

Бачимо, що для скорочення знаменника з іксом, треба помножити дріб на (х – 2). А одиниці нам не завада. Ну і множимо. Всюліву частину та всюправу частину:

Знову дужки (х – 2)я не розкриваю. Працюю зі дужкою в цілому, наче це одне число! Так треба робити завжди, бо інакше нічого не скоротиться.

З почуттям глибокого задоволення скорочуємо (х – 2)і отримуємо рівняння без будь-яких дробів, в лінійку!

А ось тепер уже розкриваємо дужки:

Наводимо подібні, переносимо все в ліву частину та отримуємо:

Класичне квадратне рівняння. Але мінус попереду – поганий. Його можна завжди позбутися, множенням або розподілом на -1. Але якщо придивитися до прикладу, можна помітити, що найкраще це рівняння поділити на -2! Одним махом і мінус зникне, і коефіцієнти симпатичніші стануть! Ділимо на -2. У лівій частині - почленно, а в правій - просто нуль ділимо на -2, нуль і отримаємо:

Вирішуємо через дискримінант та перевіряємо за теоремою Вієта. Отримуємо х = 1 та х = 3. Два корені.

Як бачимо, у першому випадку рівняння після перетворення стало лінійним, а тут – квадратним. Буває так, що після позбавлення від дробів всі ікси скорочуються. Залишається щось, типу 5=5. Це означає, що ікс може бути будь-яким. Яким би він не був, все одно скоротиться. І вийде чиста щоправда, 5=5. Але, після позбавлення від дробів, може вийти зовсім неправда, типу 2=7. А це означає, що рішень немає! За будь-якого ікса виходить неправда.

Усвідомили головний спосіб вирішення дробових рівнянь? Він простий та логічний. Ми змінюємо вихідний вираз так, щоб зникло все те, що нам не подобається. Або заважає. У разі це – дроби. Так само ми будемо чинити і з усілякими складними прикладами з логарифмами, синусами та іншими жахами. Ми завждибудемо всього цього позбуватися.

Однак міняти вихідний вираз у потрібний нам бік треба за правилами, так ... Освоєння яких і є підготовка до ЄДІ з математики. От і освоюємо.

Зараз ми з вами навчимося обходити одну з головних засідок на ЄДІ! Але для початку подивимося, чи потрапляєте ви в неї, чи ні?

Розберемо простий приклад:

Справа вже знайома, множимо обидві частини на (х – 2), отримуємо:

Нагадую, із дужками (х – 2)працюємо як з одним, цілісним виразом!

Тут я вже не писав одиначку в знаменниках, несолидно ... І дужки в знаменниках малювати не став, там крім х – 2нічого немає, можна й малювати. Скорочуємо:

Розкриваємо дужки, переносимо все вліво, наводимо такі:

Вирішуємо, перевіряємо, отримуємо два корені. х = 2і х = 3. Чудово.

Припустимо в завданні сказано записати корінь, або їх суму, якщо коріння більше одного. Що будемо писати?

Якщо вирішите, що відповідь 5 – ви потрапили в засідку. І завдання вам не зарахують. Даремно працювали… Правильна відповідь 3.

В чому справа?! А ви спробуйте перевірку зробити. Підставити значення невідомого в початковийприклад. І якщо при х = 3у нас все чудово зросте, отримаємо 9 = 9, то при х = 2вийде поділ на нуль! Що робити не можна категорично. Значить х = 2рішенням не є, і у відповіді не враховується. Це так званий сторонній чи зайвий корінь. Ми його просто відкидаємо. Остаточний корінь один. х = 3.

Як так?! – чую обурені вигуки. Нас вчили, що рівняння можна множити вираз! Це тотожне перетворення!

Так, тотожний. За маленької умови – вираз, на який множимо (ділимо) – відмінно від нуля. А х – 2при х = 2одно нулю! Отже, все чесно.

І що тепер робити?! Чи не множити на вираз? Щоразу перевірку робити? Знову незрозуміло!

Спокійно! Без паніки!

У цій тяжкій ситуації нас врятують три магічні літери. Я знаю, що ви подумали. Правильно! Це ОДЗ . Область допустимих значень.

Квадратні рівняння. Дискримінант. Рішення, приклади.

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Види квадратних рівнянь

Що таке квадратне рівняння? Як воно виглядає? У терміні квадратне рівнянняключовим словом є "квадратне".Воно означає, що у рівнянні обов'язковоповинен бути присутнім ікс у квадраті. Крім нього, у рівнянні можуть бути (а можуть і не бути!) просто ікс (у першому ступені) і просто число (Вільний член).І не повинно бути іксів у мірі, більше двійки.

Говорячи математичною мовою, квадратне рівняння – це рівняння виду:

Тут a, b і с- Якісь числа. b та c- Зовсім будь-які, а а- Будь-яке, крім нуля. Наприклад:

Тут а =1; b = 3; c = -4

Тут а =2; b = -0,5; c = 2,2

Тут а =-3; b = 6; c = -18

Ну ви зрозуміли…

У цих квадратних рівняннях зліва присутній повний набірчленів. Ікс у квадраті з коефіцієнтом а,ікс у першому ступені з коефіцієнтом bі вільний член с.

Такі квадратні рівняння називаються повними.

А якщо b= 0, що в нас вийде? У нас пропаде ікс у першому ступені.Від множення на нуль таке трапляється.) Виходить, наприклад:

5х 2 -25 = 0,

2х 2 -6х = 0,

-х 2 +4х = 0

І т.п. А якщо вже обидва коефіцієнти, bі cрівні нулю, то все ще простіше:

2х 2 = 0,

-0,3 х 2 = 0

Такі рівняння, де чогось не вистачає, називаються неповними квадратними рівняннями.Що цілком логічно.) Прошу помітити, що ікс у квадраті є у всіх рівняннях.

До речі, чому ане може дорівнювати нулю? А ви підставте замість анолик.) У нас зникне ікс у квадраті! Рівняння стане лінійним. І вирішується вже зовсім інакше.

Ось і всі основні види квадратних рівнянь. Повні та неповні.

Розв'язання квадратних рівнянь.

Розв'язання повних квадратних рівнянь.

Квадратні рівняння вирішуються просто. За формулами та точними нескладними правилами. У першому етапі треба задане рівняння призвести до стандартного вигляду, тобто. до вигляду:

Якщо рівняння вам дано вже в такому вигляді - перший етап робити не потрібно. Головне - правильно визначити всі коефіцієнти, а, bі c.

Формула для знаходження коріння квадратного рівняння виглядає так:

Вираз під знаком кореня називається дискримінант. Але про нього – нижче. Як бачимо, для знаходження ікса ми використовуємо тільки a, b і с. Тобто. коефіцієнти із квадратного рівняння. Просто акуратно підставляємо значення a, b і су цю формулу і рахуємо. Підставляємо зі своїми знаками! Наприклад, у рівнянні:

а =1; b = 3; c= -4. Ось і записуємо:

Приклад практично вирішено:

Це відповідь.

Все дуже просто. І що, думаєте, помилитись не можна? Ну так, як же…

Найпоширеніші помилки – плутанина зі знаками значень a, b і с. Точніше, не з їхніми знаками (де там плутатися?), а з підстановкою негативних значень у формулу для обчислення коріння. Тут рятує докладний запис формули із конкретними числами. Якщо є проблеми з обчисленнями, так і робіть!

Припустимо, треба ось такий приклад вирішити:

Тут a = -6; b = -5; c = -1

Допустимо, ви знаєте, що відповіді у вас рідко з першого разу виходять.

Ну і не лінуйтеся. Написати зайву строчку займе секунд 30. А кількість помилок різко скоротиться. Ось і пишемо докладно, з усіма дужками та знаками:

Це здається неймовірно важким, так старанно розписувати. Але це лише здається. Спробуйте. Ну, чи вибирайте. Що краще, швидко, чи правильно? Крім того, я вас порадую. Через деякий час зникне потреба так ретельно все розписувати. Саме правильно виходитиме. Особливо, якщо застосовуватимете практичні прийоми, що описані трохи нижче. Цей злий приклад з купою мінусів вирішиться просто і без помилок!

Але, часто, квадратні рівняння виглядають трохи інакше. Наприклад, ось так:

Дізналися?) Так! Це неповні квадратні рівняння.

Розв'язання неповних квадратних рівнянь.

Їх також можна вирішувати за загальною формулою. Треба тільки правильно збагнути, чого тут дорівнюють a, b і с.

Зрозуміли? У першому прикладі a = 1; b = -4;а c? Його взагалі нема! Так, правильно. У математиці це означає, що c = 0 ! От і все. Підставляємо у формулу нуль замість c,і все в нас вийде. Аналогічно і з другим прикладом. Тільки нуль у нас тут не з, а b !

Але неповні квадратні рівняння можна вирішувати набагато простіше. Без жодних формул. Розглянемо перше неповне рівняння. Що там можна зробити у лівій частині? Можна ікс винести за дужки! Давайте винесемо.

І що з цього? А те, що твір дорівнює нулю тоді, і тільки тоді, коли якийсь із множників дорівнює нулю! Не вірите? Добре, придумайте тоді два ненульові числа, які при перемноженні нуль дадуть!
Не виходить? Отож…
Отже, можна впевнено записати: х 1 = 0, х 2 = 4.

Усе. Це і буде коріння нашого рівняння. Обидва підходять. При підстановці кожного з них у вихідне рівняння, ми отримаємо правильну тотожність 0 = 0. Як бачите, рішення набагато простіше, ніж за загальною формулою. Зауважу, до речі, який ікс буде першим, а яким другим абсолютно байдуже. Зручно записувати по порядку, х 1- те, що менше, а х 2- Те, що більше.

Друге рівняння також можна вирішити просто. Переносимо 9 у праву частину. Отримаємо:

Залишається корінь витягти з 9, і все. Вийде:

Теж два корені . х 1 = -3, х 2 = 3.

Так вирішуються усі неповні квадратні рівняння. Або з допомогою винесення икса за дужки, чи простим перенесенням числа вправо з наступним вилученням кореня.
Зплутати ці прийоми дуже складно. Просто тому, що в першому випадку вам доведеться корінь із іксу витягувати, що якось незрозуміло, а в другому випадку виносити за дужки нема чого…

Дискримінант. Формула дискримінанту.

Чарівне слово дискримінант ! Рідкісний старшокласник не чув цього слова! Фраза «вирішуємо через дискримінант» вселяє впевненість та обнадіює. Тому що чекати каверз від дискримінанта не доводиться! Він простий і безвідмовний у зверненні.) Нагадую найзагальнішу формулу для вирішення будь-якихквадратних рівнянь:

Вираз під знаком кореня називається дискримінантом. Зазвичай дискримінант позначається буквою D. Формула дискримінанта:

D = b 2 - 4ac

І чим же примітний цей вислів? Чому воно заслужило спеціальну назву? У чому сенс дискримінанта?Адже -b,або 2aу цій формулі спеціально ніяк не називають... Літери та літери.

Справа ось у чому. При розв'язанні квадратного рівняння за цією формулою, можливі лише три випадки.

1. Дискримінант позитивний.Це означає, що з нього можна витягти корінь. Добре корінь витягується, або погано – питання інше. Важливо, що в принципі. Тоді у вашого квадратного рівняння – два корені. Два різні рішення.

2. Дискримінант дорівнює нулю.Тоді у вас буде одне рішення. Так як від додавання-віднімання нуля в чисельнику нічого не змінюється. Строго кажучи, це не один корінь, а два однакові. Але, у спрощеному варіанті, прийнято говорити про одному рішенні.

3. Дискримінант негативний.З негативного числа квадратний корінь не витягується. Ну і добре. Це означає, що рішень немає.

Чесно кажучи, при простому розв'язанні квадратних рівнянь, поняття дискримінанта не особливо й потрібне. Підставляємо на формулу значення коефіцієнтів, і вважаємо. Там все само собою виходить, і два корені, і одне, і жодне. Однак, при вирішенні складніших завдань, без знання змісту та формули дискримінантане обійтись. Особливо – в рівняннях із параметрами. Такі рівняння - вищий пілотаж на ДІА та ЄДІ!)

Отже, як вирішувати квадратні рівняннячерез дискримінант ви згадали. Або навчилися, що теж непогано.) Умієте правильно визначати a, b і с. Вмієте уважнопідставляти їх у формулу коренів та уважнорахувати результат. Ви зрозуміли, що ключове слово тут – уважно?

А тепер прийміть до уваги практичні прийоми, які різко знижують кількість помилок. Тих самих, що через неуважність. За які потім буває боляче і прикро.

Прийом перший . Не лінуйтеся перед вирішенням квадратного рівняння привести його до стандартного вигляду. Що це означає?
Припустимо, після будь-яких перетворень ви отримали таке рівняння:

Не кидайтеся писати формулу коріння! Майже напевно, ви переплутаєте коефіцієнти a, b та с.Побудуйте приклад правильно. Спочатку ікс у квадраті, потім без квадрата, потім вільний член. Ось так:

І знову не кидайтесь! Мінус перед іксом у квадраті може дуже вас засмутити. Забути його легко… Позбавтеся мінуса. Як? Та як навчали у попередній темі! Потрібно помножити все рівняння на -1. Отримаємо:

А ось тепер можна сміливо записувати формулу для коріння, рахувати дискримінант і дорішувати приклад. Дорішайте самостійно. У вас має вийти коріння 2 і -1.

Прийом другий. Перевіряйте коріння! За теоремою Вієта. Не лякайтеся, я все поясню! Перевіряємо останнєрівняння. Тобто. те, яким ми записували формулу коренів. Якщо (як у цьому прикладі) коефіцієнт а = 1, перевірити коріння легко. Достатньо їх перемножити. Має вийти вільний член, тобто. у разі -2. Зверніть увагу не 2, а -2! Вільний член зі своїм знаком . Якщо не вийшло – значить уже десь накосячили. Шукайте помилку.

Якщо вийшло – треба скласти коріння. Остання та остаточна перевірка. Повинен вийти коефіцієнт bз протилежним знаком. У разі -1+2 = +1. А коефіцієнт b, що перед іксом, дорівнює -1. Значить, все правильно!
Жаль, що це так просто тільки для прикладів, де ікс у квадраті чистий, з коефіцієнтом а = 1.Але хоч у таких рівняннях перевіряйте! Дедалі менше помилок буде.

Прийом третій . Якщо у вашому рівнянні є дробові коефіцієнти, - позбавтеся дробів! Домножте рівняння на спільний знаменник, як описано в уроці "Як розв'язувати рівняння? Тотожні перетворення". При роботі з дробами помилки чомусь так і лізуть.

До речі, я обіцяв злий приклад із купою мінусів спростити. Будь ласка! Ось він.

Щоб не плутатися в мінусах, примножуємо рівняння на -1. Отримуємо:

От і все! Вирішувати – одне задоволення!

Отже, підсумуємо тему.

Практичні поради:

1. Перед рішенням наводимо квадратне рівняння до стандартного вигляду, вибудовуємо його правильно.

2. Якщо перед іксом у квадраті стоїть негативний коефіцієнт, ліквідуємо його множенням всього рівняння на -1.

3. Якщо коефіцієнти дробові – ліквідуємо дроби множенням всього рівняння на відповідний множник.

4. Якщо ікс у квадраті – чистий, коефіцієнт при ньому дорівнює одиниці, рішення можна легко перевірити за теоремою Вієта. Робіть це!

Тепер можна і вирішити.)

Розв'язати рівняння:

8х 2 - 6x + 1 = 0

х 2 + 3x + 8 = 0

х 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Відповіді (безладно):

х 1 = 0
х 2 = 5

х 1,2 =2

х 1 = 2
х 2 = -0,5

х - будь-яке число

х 1 = -3
х 2 = 3

рішень немає

х 1 = 0,25
х 2 = 0,5

Все сходиться? Чудово! Квадратні рівняння – не ваш головний біль. Перші три вийшли, а решта – ні? Тоді проблема не у квадратних рівняннях. Проблема у тотожних перетвореннях рівнянь. Прогуляйтеся посиланням, це корисно.

Чи не зовсім виходить? Чи зовсім не виходить? Тоді вам допоможе Розділ 555. Там усі ці приклади розібрані по кісточках. Показано головніпомилки у вирішенні. Розповідається, зрозуміло, і застосування тотожних перетворень у вирішенні різних рівнянь. Дуже допомагає!

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.



Останні матеріали розділу:

Отримання нітросполук нітруванням
Отримання нітросполук нітруванням

Електронна будова нітрогрупи характеризується наявність семи полярного (напівполярного) зв'язку: Нітросполуки жирного ряду – рідини, що не...

Хроміт, їх відновлювальні властивості
Хроміт, їх відновлювальні властивості

Окисно-відновні властивості сполук хрому з різним ступенем окиснення. Хром. Будова атома. Можливі ступені окислення.

Чинники, що впливають на швидкість хімічної реакції
Чинники, що впливають на швидкість хімічної реакції

Питання №3 Від яких чинників залежить константа швидкості хімічної реакції? Константа швидкості реакції (питома швидкість реакції) - коефіцієнт...