Властивості перерізу призми. Як виглядає прямокутна призма

Багатогранники

Основним об'єктом вивчення стереометрії є просторові тіла. Тілоє частиною простору, обмежену деякою поверхнею.

Багатогранникомназивається тіло, поверхня якого складається з кінцевого числа плоских багатокутників. Багатогранник називається опуклим, якщо він розташований з одного боку площини кожного плоского багатокутника з його поверхні. Загальна частина такої площини та поверхні багатогранника називається гранню. Грані опуклого багатогранника є плоскими опуклими багатокутниками. Сторони граней називається ребрами багатогранника, а вершини – вершинами багатогранника.

Наприклад, куб складається із шести квадратів, які є його гранями. Він містить 12 ребер (сторони квадратів) та 8 вершин (вершини квадратів).

Найпростішими багатогранниками є призми та піраміди, вивченням яких і займемося далі.

Призма

Визначення та властивості призми

Призмоюназивається багатогранник, що складається з двох плоских багатокутників, що лежать у паралельних площинах, що поєднуються паралельним переносом, і всіх відрізків, що з'єднують відповідні точки цих багатокутників. Багатокутники називаються підставами призмиа відрізки, що з'єднують відповідні вершини багатокутників, – бічними ребрами призми.

Висотою призминазивається відстань між площинами її основ (). Відрізок, що з'єднує дві вершини призми, що не належать до однієї грані, називається діагоналлю призми(). Призма називається n-вугільнийякщо в її основі лежить n-кутник.

Будь-яка призма має такі властивості, що випливають з того факту, що підстави призми поєднуються паралельним переносом:

1. Підстави призми рівні.

2. Бічні ребра призми паралельні та рівні.

Поверхня призми складається з підстав та бічної поверхні. Бічна поверхня призми складається з паралелограмів (це випливає із властивостей призми). Площею бічної поверхні призми називається сума площ бічних граней.

Пряма призма

Призма називається прямий, якщо її бічні ребра перпендикулярні до основ. В іншому випадку призма називається похилій.

Гранями прямої призми є прямокутники. Висота прямої призми дорівнює її бічним граням.

Повною поверхнею призминазивається сума площі бічної поверхні та площ основ.

Правильною призмоюназивається пряма призма з правильним багатокутником у підставі.

Теорема 13.1. Площа бічної поверхні прямої призми дорівнює добутку периметра на висоту призми (або, що те саме, на бічне ребро).

Доведення. Бічні грані прямої призми є прямокутниками, основи яких є сторонами багатокутників у підставах призми, а висоти є бічними ребрами призми. Тоді за визначенням площа бічної поверхні:

,

де – периметр основи прямої призми.

Паралелепіпед

Якщо у підставах призми лежать паралелограми, вона називається паралелепіпедом. У паралелепіпеда всі грані – паралелограми. При цьому протилежні грані паралелепіпеда паралельні та рівні.

Теорема 13.2. Діагоналі паралелепіпеда перетинаються в одній точці і точкою перетину діляться навпіл.

Доведення. Розглянемо дві довільні діагоналі, наприклад, і . Т.к. гранями паралелепіпеда є паралелограми, то і , а значить по Т про дві прямі паралельні третій . Крім того, це означає, що прямі і лежать в одній площині (площині). Ця площина перетинає паралельні площини і паралельним прямим і . Таким чином, чотирикутник - паралелограм, а за властивістю паралелограма його діагоналі і перетинаються і точкою перетину діляться навпіл, що потрібно було довести.

Прямий паралелепіпед, у якого основою є прямокутник, називається прямокутним паралелепіпедом. У прямокутного паралелепіпеда всі грані – прямокутники. Довжини непаралельних ребер прямокутного паралелепіпеда називаються його лінійними розмірами (вимірюваннями). Таких розмірів три (ширина, висота, довжина).

Теорема 13.3. У прямокутному паралелепіпеді квадрат будь-якої діагоналі дорівнює сумі квадратів трьох його вимірів (Доказується за допомогою дворазового застосування Т Піфагора).

Прямокутний паралелепіпед, у якого всі ребра рівні, називається кубом.

Завдання

13.1 Скільки діагоналей має n-вугільна призма

13.2У похилій трикутній призмі відстані між бічними ребрами дорівнюють 37, 13 і 40. Знайти відстань між більшою бічною гранню і протилежним бічним ребром.

13.3Через бік нижньої основи правильної трикутної призми проведена площина, що перетинає бічні грані по відрізках, кут між якими . Знайти кут нахилу цієї площини до основи призми.

Лекція: Призма, її основи, бічні ребра, висота, бічна поверхня; пряма призма; правильна призма


Призма


Якщо Ви разом з нами вивчили пласкі фігури з минулих питань, значить, повністю готові до вивчення об'ємних фігур. Перше об'ємне тіло, яке ми вивчимо, буде призмою.


Призма– це об'ємне тіло, яке має велику кількість граней.

Дана фігура має в основі два багатокутники, які розташовані в паралельних площинах, а всі бічні грані мають форму паралелограма.


1. Рис. 2


Отже, давайте розберемося, із чого складається призма. Для цього зверніть увагу на рис.

Як уже говорилося раніше, призма має дві підстави, які паралельні один одному – це п'ятикутники ABCEF і GMNJK. Більше того, ці багатокутники рівні між собою.

Всі інші грані призми називаються бічними гранями – вони складаються з паралелограмів. Наприклад, BMNC, AGKF, FKJE і т.д.

Загальна поверхня всіх бічних граней називається бічною поверхнею.

Кожна пара сусідніх граней має спільну сторону. Така спільна сторона називається рубом. Наприклад МВ, РЄ, АВ тощо.

Якщо верхню та нижню основу призми з'єднати перпендикуляром, то він називатиметься висотою призми. На малюнку висота зазначена як пряма ГО 1 .

Існує два основні різновиди призми: похила та пряма.

Якщо бічні ребра призми не є перпендикулярними до основ, то така призма називається похилій.

Якщо всі ребра призми перпендикулярні до основ, така призма називається прямий.

Якщо у підставах призми лежать правильні багатокутники (ті, у яких сторони рівні), така призма називається правильною.

Якщо підстави призми не паралельні один одному, то така призма буде називатися усіченої.

Її Ви можете спостерігати на Рис.2



Формули для знаходження обсягу, площі призми


Існує три основні формули знаходження обсягу. Відрізняються вони один від одного застосуванням:




Аналогічні формули для знаходження площі поверхні призми:



Визначення 1. Призматична поверхня
Теорема 1. Про паралельні перерізи призматичної поверхні
Визначення 2. Перпендикулярний переріз призматичної поверхні
Визначення 3. Призма
Визначення 4. Висота призми
Визначення 5. Пряма призма
Теорема 2. Площа бічної поверхні призми

Паралелепіпед:
Визначення 6. Паралелепіпед
Теорема 3. Про перетин діагоналі паралелепіпеда
Визначення 7. Прямий паралелепіпед
Визначення 8. Прямокутний паралелепіпед
Визначення 9. Вимірювання паралелепіпеда
Визначення 10. Куб
Визначення 11. Ромбоедр
Теорема 4. Про діагоналі прямокутного паралелепіпеда
Теорема 5. Обсяг призми
Теорема 6. Обсяг прямої призми
Теорема 7. Об'єм прямокутного паралелепіпеда

Призмоюназивається багатогранник, у якого дві грані (основи) лежать у паралельних площинах, а ребра, що не лежать у цих гранях, паралельні між собою.
Грані, відмінні від основ, називаються бічними.
Сторони бічних граней та основ називаються ребрами призми, кінці ребер називаються вершин призми. Бічні ребраназиваються ребра, що не належать основам. Об'єднання бічних граней називається бічною поверхнею призми, а об'єднання всіх граней називається повною поверхнею призми. Висотою призминазивається перпендикуляр, опущений з точки верхньої основи на площину нижньої основи або довжина цього перпендикуляра. Прямою призмоюназивається призма, у якої бічні ребра перпендикулярні до площин основ. Правильноюназивається пряма призма (Рис.3), основу якої лежить правильний багатокутник.

Позначення:
l - бічне ребро;
P – периметр основи;
S o - площа основи;
H – висота;
P^ - периметр перпендикулярного перерізу;
S б - площа бічної поверхні;
V – обсяг;
S п – площа повної поверхні призми.

V = SH
S п = S б + 2S про
S б = P ^ l

Визначення 1 . Призматичною поверхнею називається фігура, утворена частинами кількох площин, паралельних однієї прямої обмеженими тими прямими, якими ці площини послідовно перетинаються одна з одною*; ці прямі паралельні між собою і називаються ребрами призматичної поверхні.
*При цьому передбачається, що кожні дві послідовні площини перетинаються і остання площина перетинає першу

Теорема 1 . Перерізи призматичної поверхні площинами, паралельними між собою (але не паралельними її ребрам), є рівними багатокутниками.
Нехай ABCDE і A"B"C"D"E" - перерізи призматичної поверхні двома паралельними площинами. Щоб переконатися, що ці два багатокутники рівні, достатньо показати, що трикутники ABC і А"В"С" рівні і мають однаковий напрямок обертання що те саме має місце і для трикутників ABD та A"B"D", ABE та А"В"Е". Але відповідні сторони цих трикутників паралельні (наприклад, АС паралельно А"С") як лінії перетину деякої площини з двома паралельними площинами; звідси випливає, що ці сторони рівні (наприклад АС дорівнює А "С") як протилежні сторони паралелограма і що кути, утворені цими сторонами, рівні та мають однаковий напрямок.

Визначення 2 . Перпендикулярним перерізом призматичної поверхні називається переріз цієї поверхні площиною, перпендикулярною до її ребер. З попередньої теореми все перпендикулярні перерізу однієї й тієї ж призматичної поверхні будуть рівними багатокутниками.

Визначення 3 . Призмою називається багатогранник, обмежений призматичною поверхнею та двома площинами, паралельними між собою (але непаралельними ребрам призматичної поверхні)
Грані, що лежать у цих останніх площинах, називаються підставами призми; грані, що належать призматичній поверхні, - бічними гранями; ребра призматичної поверхні - бічними ребрами призми. З огляду на попередню теорему, підстави призми - рівні багатокутники. Усі бічні грані призми - паралелограми; всі бічні ребра рівні між собою.
Очевидно, що якщо дано основу призми ABCDE і одне з ребер АА" за величиною та за напрямом, то можна побудувати призму, проводячи ребра ВВ", СС", .., рівні та паралельні ребру АА".

Визначення 4 . Висотою призми називається відстань між площинами її основ (НH).

Визначення 5 . Призма називається прямою, якщо її основами є перпендикулярні перерізи призматичної поверхні. У цьому випадку висотою призми служить, звичайно, її бічне ребро; бічні грані будуть прямокутниками.
Призми можна класифікувати за кількістю бічних граней, рівним числу сторін багатокутника, що служить її основою. Таким чином призми можуть бути трикутні, чотирикутні, п'ятикутні і т.д.

Теорема 2 . Площа бічної поверхні призми дорівнює добутку бічного ребра на периметр перпендикулярного перерізу.
Нехай ABCDEA"B"C"D"E" - дана призма і abcde - її перпендикулярний переріз, так що відрізки ab, bc, .. перпендикулярні до її бічних ребрів. на висоту, яка збігається з аb; площа грані ВСВ"С" дорівнює добутку підстави ВВ" на висоту bc і т. д. Отже, бічна поверхня (тобто сума площ бічних граней) дорівнює добутку бічного ребра, інакше кажучи, загальної довжини відрізків АА", ВВ", .., на суму ab+bc+cd+de+еа.

Призма. Паралелепіпед

Призмоюназивається багатогранник, дві грані якого – рівні n-кутники (основи) , що у паралельних площинах, інші n граней – паралелограммы (Бічні грані) . Боковим ребром призми називається сторона бічної грані, яка не належить підставі.

Призма, бічні ребра якої перпендикулярні до площин основ, називається прямий призмою (рис. 1). Якщо бічні ребра не перпендикулярні до площин основ, то призма називається похилій . Правильною призмою називається пряма призма, основи якої – правильні багатокутники.

Висотоюпризми називається відстань між площинами основ. Діагоналлю призми називається відрізок, що з'єднує дві вершини, що не належать до однієї грані. Діагональним перетином називається переріз призми площиною, що проходить через два бічні ребра, що не належать до однієї грані. Перпендикулярним перетином називається переріз призми площиною, перпендикулярною до бокового ребра призми.

Площею бічної поверхні призми називається сума площ усіх бічних граней. Площею повної поверхні називається сума площ усіх граней призми (тобто. сума площ бічних граней та площ основ).

Для довільної призми вірні формули:

де l- Довжина бічного ребра;

H- Висота;

P

Q

S бік

S повний

S осн– площа основ;

V- Обсяг призми.

Для прямої призми вірні формули:

де p– периметр основи;

l- Довжина бічного ребра;

H- Висота.

Паралелепіпедомназивається призма, основою якої є паралелограм. Паралелепіпед, у якого бічні ребра перпендикулярні до основ, називається прямим (Рис. 2). Якщо бічні ребра не перпендикулярні основам, то паралелепіпед називається похилим . Прямий паралелепіпед, основою якого є прямокутник, називається прямокутним. Прямокутний паралелепіпед, у якого всі ребра рівні, називається кубом.

Грані паралелепіпеда, що не мають спільних вершин, називаються протилежними . Довжини ребер, що виходять з однієї вершини, називаються вимірами паралелепіпеда. Оскільки паралелепіпед – це призма, основні його елементи визначаються аналогічно тому, як вони визначені для призм.

Теореми.

1. Діагоналі паралелепіпеда перетинаються в одній точці і діляться нею навпіл.

2. У прямокутному паралелепіпеді квадрат довжини діагоналі дорівнює сумі квадратів трьох його вимірів:

3. Усі чотири діагоналі прямокутного паралелепіпеда рівні між собою.

Для довільного паралелепіпеда вірні формули:

де l- Довжина бічного ребра;

H- Висота;

P- Періметр перпендикулярного перерізу;

Q- Площа перпендикулярного перерізу;

S бік- Площа бічної поверхні;

S повний- Площа повної поверхні;

S осн– площа основ;

V- Обсяг призми.

Для прямого паралелепіпеда вірні формули:

де p– периметр основи;

l- Довжина бічного ребра;

H- Висота прямого паралелепіпеда.

Для прямокутного паралелепіпеда вірні формули:

(3)

де p– периметр основи;

H- Висота;

d– діагональ;

a, b, c- Виміри паралелепіпеда.

Для куба вірні формули:

де a- Довжина ребра;

d- Діагональ куба.

приклад 1.Діагональ прямокутного паралелепіпеда дорівнює 33 дм, а його виміри відносяться, як 2: 6: 9. Знайти виміри паралелепіпеда.

Рішення.Для знаходження вимірів паралелепіпеда скористаємося формулою (3), тобто. тим фактом, що квадрат гіпотенузи прямокутного паралелепіпеда дорівнює сумі квадратів його вимірів. Позначимо через kкоефіцієнт пропорційності. Тоді виміри паралелепіпеда дорівнюватимуть 2 k, 6kта 9 k. Запишемо формулу (3) для даних завдання:

Вирішуючи це рівняння щодо k, Отримаємо:

Отже, вимірювання паралелепіпеда дорівнюють 6 дм, 18 дм і 27 дм.

Відповідь: 6 дм, 18 дм, 27 дм.

приклад 2.Знайти об'єм похилої трикутної призми, основою якої служить рівносторонній трикутник зі стороною 8 см, якщо бічне ребро дорівнює стороні основи і нахилено під кутом 60º до основи.

Рішення . Зробимо рисунок (рис. 3).

Для того, щоб знайти обсяг похилої призми необхідно знати площу її основи та висоту. Площа підстави цієї призми – це площа рівностороннього трикутника зі стороною 8 см. Обчислимо її:

Висотою призми є відстань між її основами. З вершини А 1 верхньої основи опустимо перпендикуляр на площину нижньої основи А 1 D. Його довжина і буде заввишки призми. Розглянемо D А 1 АD: так як це кут нахилу бокового ребра А 1 Адо площини основи, А 1 А= 8 см. З цього трикутника знаходимо А 1 D:

Тепер обчислюємо обсяг за формулою (1):

Відповідь: 192 см 3 .

приклад 3.Бокове ребро правильної шестикутної призми дорівнює 14 см. Площа найбільшого діагонального перерізу дорівнює 168 см 2 . Знайти площу повної поверхні призми.

Рішення.Зробимо малюнок (рис. 4)


Найбільший діагональний переріз – прямокутник AA 1 DD 1 , оскільки діагональ ADправильного шестикутника ABCDEFє найбільшою. Для того, щоб обчислити площу бічної поверхні призми, необхідно знати бік основи та довжину бічного ребра.

Знаючи площу діагонального перерізу (прямокутника), знайдемо діагональ основи.

Оскільки , то

Бо те АВ= 6 див.

Тоді периметр основи дорівнює:

Знайдемо площу бічної поверхні призми:

Площа правильного шестикутника зі стороною 6 см дорівнює:

Знаходимо площу повної поверхні призми:

Відповідь:

приклад 4.Підставою прямого паралелепіпеда служить ромб. Площі діагональних перерізів 300 см 2 та 875 см 2 . Знайти площу бічної поверхні паралелепіпеда.

Рішення.Зробимо рисунок (рис. 5).

Позначимо бік ромба через а, діагоналі ромба d 1 та d 2 , висоту паралелепіпеда h. Щоб знайти площу бічної поверхні прямого паралелепіпеда необхідно периметр основи помножити на висоту: (формула (2)). Периметр основи р = АВ + НД + CD + DA = 4AB = 4a, так як ABCD- Ромб. Н = АА 1 = h. Т.о. Необхідно знайти аі h.

Розглянемо діагональні перерізи. АА 1 СС 1 – прямокутник, одна сторона якого діагональ ромба АС = d 1 , друга – бічне ребро АА 1 = hтоді

Аналогічно для перерізу ВВ 1 DD 1 отримаємо:

Використовуючи властивість паралелограма така, що сума квадратів діагоналей дорівнює сумі квадратів усіх його сторін, отримаємо рівність. Отримаємо таке.

Різні призми не схожі один на одного. У той же час вони мають багато спільного. Щоб знайти площу підстави призми, потрібно розібратися в тому, який вигляд має.

Загальна теорія

Призмою є будь-який багатогранник, бічні сторони якого мають вигляд паралелограма. При цьому в її підставі може бути будь-який багатогранник - від трикутника до n-кутника. Причому підстави призми завжди дорівнюють один одному. Що не стосується бічних граней - вони можуть істотно відрізнятися за розмірами.

При вирішенні завдань зустрічається не тільки площа підстави призми. Може знадобитися знання бічної поверхні, тобто всіх граней, які не є підставами. Повною поверхнею вже буде поєднання всіх граней, які становлять призму.

Іноді у завданнях фігурує висота. Вона є перпендикуляром до основ. Діагоналлю багатогранника є відрізок, який попарно з'єднує дві будь-які вершини, що не належать одній грані.

Слід зазначити, що площа основи прямої призми або похилої не залежить від кута між ними та бічними гранями. Якщо вони однакові фігури у верхній і нижній гранях, їх площі будуть рівними.

Трикутна призма

Вона має в основі фігуру, що має три вершини, тобто трикутник. Він, як відомо, буває різним. Якщо досить згадати, що його площа визначається половиною твору катетів.

Математичний запис виглядає так: S = ½ ав.

Щоб дізнатися площу основи у загальному вигляді, стануть у нагоді формули: Герона і та, в якій береться половина сторони на висоту, проведену до неї.

Перша формула має бути записана так: S = √(р(р-а)(р-в)(р-с)). У цьому записі є напівпериметр (р), тобто сума трьох сторін, розділена на дві.

Друга: S = ½ н а * а.

Якщо потрібно дізнатися площу основи трикутної призми, яка є правильною, трикутник виявляється рівностороннім. Для нього існує своя формула: S = ¼ а 2 * √3.

Чотирикутна призма

Її основою є будь-який із відомих чотирикутників. Це може бути прямокутник або квадрат, паралелепіпед або ромб. У кожному разі для того, щоб обчислити площу підстави призми, буде потрібна своя формула.

Якщо основа — прямокутник, його площа визначається так: S = ав, де а, в — сторони прямокутника.

Коли йдеться про чотирикутну призму, то площа основи правильної призми обчислюється за формулою для квадрата. Тому що саме він виявляється лежачим у основі. S = а2.

У разі коли основа — це паралелепіпед, знадобиться така рівність: S = а * н а. Буває таке, що дано сторону паралелепіпеда та один із кутів. Тоді для обчислення висоти потрібно скористатися додатковою формулою: н а = в * sin А. Причому кут А прилягає до сторони "в", а висота н а протилежна до цього куту.

Якщо підставі призми лежить ромб, то визначення його площі буде необхідна та сама формула, що у паралелограма (оскільки є його окремим випадком). Але можна скористатися і такою: S = ½ d 1 d 2 . Тут d 1 і d 2 – дві діагоналі ромба.

Правильна п'ятикутна призма

Цей випадок передбачає розбиття багатокутника на трикутники, площі яких простіше дізнатися. Хоча буває, що фігури можуть бути з іншою кількістю вершин.

Оскільки основа призми — правильний п'ятикутник, він може бути розділений п'ять рівносторонніх трикутників. Тоді площа підстави призми дорівнює площі одного такого трикутника (формулу можна переглянути вище), помноженою на п'ять.

Правильна шестикутна призма

За принципом, описаним для п'ятикутної призми, вдається розбити шестикутник основи на 6 рівносторонніх трикутників. Формула площі підстави такої призми подібна до попередньої. Тільки у ній слід множити на шість.

Виглядатиме формула таким чином: S = 3/2 а 2 * √3.

Завдання

№ 1. Дана правильна пряма Її діагональ дорівнює 22 см, висота багатогранника - 14 см. Обчислити площу основи призми та всієї поверхні.

Рішення.Підставою призми є квадрат, але його сторона не відома. Знайти її значення можна з діагоналі квадрата (х), яка пов'язана з діагоналлю призми (d) та її висотою (н). х 2 = d 2 - н 2. З іншого боку, цей відрізок «х» є гіпотенузою в трикутнику, катети якого дорівнюють стороні квадрата. Тобто х2 = а2+а2. Отже виходить, що а 2 = (d 2 - н 2)/2.

Підставити замість d число 22, а "н" замінити його значенням - 14, то виходить, що сторона квадрата дорівнює 12 см. Тепер просто дізнатися площу основи: 12 * 12 = 144 см 2 .

Щоб дізнатися площу всієї поверхні, потрібно скласти подвоєне значення площі основи та чотиристоронню бічну. Останню легко знайти за формулою для прямокутника: перемножити висоту багатогранника та бік основи. Тобто 14 і 12, це число дорівнюватиме 168 см 2 . Загальна площа поверхні призми виявляється 960 см2.

Відповідь.Площа основи призми дорівнює 144 см 2 . Всієї поверхні - 960 см 2 .

№ 2. Дана В основі лежить трикутник зі стороною 6 см. При цьому діагональ бічної грані становить 10 см. Обчислити площі: основи та бічній поверхні.

Рішення.Оскільки призма правильна, її основою є рівносторонній трикутник. Тому його площа виявляється дорівнює 6 квадраті, помноженому на ¼ і на корінь квадратний з 3. Просте обчислення призводить до результату: 9√3 см 2 . Це площа однієї підстави призми.

Усі бічні грані однакові і є прямокутниками зі сторонами 6 і 10 см. Щоб обчислити їх площі, достатньо перемножити ці числа. Потім помножити їх на три, бо бічних граней призми саме стільки. Тоді площа бічної поверхні виявляється раною 180 см 2 .

Відповідь.Площа: підстави - 9√3 см 2 , бічної поверхні призми - 180 см 2 .



Останні матеріали розділу:

Підготовчі річні курси у празі Мовні курси чеської мови у празі
Підготовчі річні курси у празі Мовні курси чеської мови у празі

Багато хто думає, що зможуть вивчити чеську мову на курсах, що проводяться в рідному місті, а потім одразу приїхати і вступити до університету.

Біографія У роки Великої Вітчизняної війни
Біографія У роки Великої Вітчизняної війни

Герой Радянського Союзу маршал бронетанкових військ відомий менше, ніж Жуков, Рокоссовський і Конєв. Однак для перемоги над ворогом він. Величезну...

Центральний штаб партизанського руху
Центральний штаб партизанського руху

У роки Великої Вітчизняної війни .Центральний штаб партизанського руху при Ставці Верховного Головнокомандування ЦШПД при СВГК Емблема ВС...