Властивості ступенів формули з різними показниками. Основні властивості ступенів з раціональними показниками


Після того як визначено ступінь числа, логічно поговорити про властивості ступеня. У цій статті ми дамо основні властивості ступеня числа, при цьому торкнемося всіх можливих показників ступеня. Тут ми наведемо докази всіх властивостей ступеня, і навіть покажемо, як застосовуються ці властивості під час вирішення прикладів.

Навігація на сторінці.

Властивості ступенів із натуральними показниками

За визначенням ступеня з натуральним показником ступінь a n є добутком n множників, кожен з яких дорівнює a . Відштовхуючись від цього визначення, а також використовуючи властивості множення дійсних чисел, можна отримати та обґрунтувати наступні властивості ступеня з натуральним показником:

  1. основна властивість ступеня a m · a n = a m + n, його узагальнення;
  2. властивість приватного ступенів з однаковими основами a m:a n =a m−n ;
  3. властивість ступеня твору (a b) n = a n b n, його розширення;
  4. властивість частки у натуральному ступені (a:b) n =a n:b n ;
  5. зведення ступеня в ступінь (a m) n = a m·n його узагальнення (((a n 1) n 2) …) n k =a n 1 ·n 2 ·...·n k;
  6. порівняння ступеня з нулем:
    • якщо a>0, то an>0 для будь-якого натурального n;
    • якщо a = 0, то a n = 0;
    • якщо a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , якщо a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. якщо a та b – позитивні числа та a
  8. якщо m і n такі натуральні числа, що m>n то при 0 0 справедлива нерівність a m >a n .

Відразу зауважимо, що всі записані рівності є тотожнимиза дотримання зазначених умов, та його праві і ліві частини можна поміняти місцями. Наприклад, основна властивість дробу a m ·a n =a m+n при спрощення виразівчасто застосовується у вигляді m + n = a m · a n .

Тепер розглянемо кожне з них докладно.

    Почнемо з якості твору двох ступенів з однаковими основами, яке називають основною властивістю ступеня: для будь-якого дійсного числа a та будь-яких натуральних чисел m і n справедлива рівність a m ·a n =a m+n .

    Доведемо основну властивість ступеня. За визначенням ступеня з натуральним показником добуток ступенів з однаковими основами виду a m a a n можна записати як добуток. В силу властивостей множення отриманий вираз можна записати як , а це твір є ступінь числа a з натуральним показником m+n, тобто, a m+n. На цьому доказ завершено.

    Наведемо приклад, що підтверджує основну властивість ступеня. Візьмемо ступеня з однаковими основами 2 і натуральними ступенями 2 і 3 за основною властивістю ступеня можна записати рівність 2 2 ·2 3 =2 2+3 =2 5 . Перевіримо його справедливість, навіщо обчислимо значення виразів 2 2 ·2 3 і 2 5 . Виконуючи зведення в ступінь, маємо 2 2 · 2 3 = (2 · 2) · (2 ​​· 2 · 2) = 4 · 8 = 32і 2 5 =2·2·2·2·2=32 , оскільки виходять рівні значення, то рівність 2 2 · 2 3 = 25 - правильне, і воно підтверджує основну властивість ступеня.

    Основне властивість ступеня з урахуванням властивостей множення можна узагальнити добуток трьох і більшої кількості ступенів з однаковими основами і натуральними показниками. Так для будь-якої кількості k натуральних чисел n 1 , n 2 , …, n k справедлива рівність a n 1 ·a n 2 ·...·a n k =a n 1 +n 2 +…+n k.

    Наприклад, (2,1) 3 · (2,1) 3 · (2,1) 4 · (2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можна переходити до наступної властивості ступенів із натуральним показником – властивості приватного ступеня з однаковими підставами: для будь-якого відмінного від нуля дійсного числа a і довільних натуральних чисел m і n, що задовольняють умові m>n справедлива рівність a m:a n =a m−n .

    Перш ніж навести доказ цієї властивості, обговоримо зміст додаткових умов у формулюванні. Умова a≠0 необхідна для того, щоб уникнути розподілу на нуль, тому що 0 n =0 , а при знайомстві з розподілом ми домовилися, що на нуль ділити не можна. Умова m>n вводиться для того, щоб ми не виходили за межі натуральних показників ступеня. Дійсно, при m>n показник ступеня a m−n є натуральним числом, інакше він буде або нулем (що відбувається за m−n ), або негативним числом (що відбувається за m

    Доведення. Основна властивість дробу дозволяє записати рівність a m−n ·a n =a (m−n)+n =a m. З отриманої рівності a m-n · a n = a m і з виходить, що a m-n є приватним ступенів a m і a n . Цим доведено властивість приватного ступеня з однаковими підставами.

    Наведемо приклад. Візьмемо два ступені з однаковими основами π і натуральними показниками 5 і 2, розглянутій властивості ступеня відповідає рівність π 5:π 2 =π 5−3 =π 3 .

    Тепер розглянемо властивість ступеня твору: натуральний ступінь n добутку двох будь-яких дійсних чисел a і b дорівнює добутку ступенів a n і b n , тобто, (a b) n = a n b n .

    Справді, за визначенням ступеня з натуральним показником маємо . Останній твір на підставі властивостей множення можна переписати як що дорівнює a n · b n .

    Наведемо приклад: .

    Ця властивість поширюється на ступінь добутку трьох і більшої кількості множників. Тобто властивість натурального ступеня n твору k множників записується як (a 1 · a 2 · ... · a k) n = a 1 n · a 2 n · ... · a k n.

    Для наочності покажемо цю властивість з прикладу. Для добутку трьох множників у ступені 7 маємо.

    Наступна властивість є властивість приватного в натуральному ступені: частка дійсних чисел a і b , b≠0 в натуральному ступені n дорівнює приватному ступені a n і b n , тобто, (a:b) n =a n:b n .

    Доказ можна провести, використовуючи попередню властивість. Так (a:b) n · b n = ((a: b) · b) n = a n, та якщо з рівності (a:b) n ·b n =a n слід, що (a:b) n є приватним від розподілу a n на b n .

    Запишемо цю властивість на прикладі конкретних чисел: .

    Тепер озвучимо властивість зведення ступеня до ступеня: для будь-якого дійсного числа a та будь-яких натуральних чисел m і n ступінь a m у ступеню n дорівнює ступеню числа a з показником m·n , тобто (a m) n = a m·n .

    Наприклад, (5 2) 3 = 5 2 · 3 = 5 6 .

    Доказом якості ступеня є такий ланцюжок рівностей: .

    Розглянуту властивість можна поширити на ступінь ступеня ступеня і т.д. Наприклад, для будь-яких натуральних чисел p , q , r і s справедлива рівність . Для більшої ясності наведемо приклад із конкретними числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Залишилося зупинитися на властивостях порівняння ступенів із натуральним показником.

    Почнемо з доказу якості порівняння нуля і рівня з натуральним показником.

    Спочатку обгрунтуємо, що a n >0 при будь-якому a>0 .

    Добуток двох позитивних чисел є позитивним числом, що випливає з визначення множення. Цей факт та властивості множення дозволяють стверджувати, що результат множення будь-якої кількості позитивних чисел також буде позитивним числом. А ступінь числа a з натуральним показником n за визначенням є добутком n множників, кожен із яких дорівнює a . Ці міркування дозволяють стверджувати, що з будь-якого позитивного підстави a ступінь a n є позитивне число. З огляду на доведену властивість 3 5 >0 , (0,00201) 2 >0 і .

    Досить очевидно, що з будь-якого натурального n при a=0 ступінь a n є нуль. Дійсно, 0 n = 0 · 0 · ... · 0 = 0 . Наприклад, 03 = 0 і 0762 = 0 .

    Переходимо до негативних підстав ступеня.

    Почнемо з випадку, коли показник ступеня є парним числом, позначимо його як 2m, де m - натуральне. Тоді . По кожен із творів виду a·a дорівнює добутку модулів чисел a та a , отже, є позитивним числом. Отже, позитивним буде і твір і ступінь a 2·m. Наведемо приклади: (−6) 4 >0 , (−2,2) 12 >0 і .

    Нарешті, коли основа ступеня a є негативним числом, а показник ступеня є непарне число 2·m−1 , то . Всі твори a · a є позитивними числами, добуток цих позитивних чисел також позитивно, а його множення на негативне число, що залишилося a дає в результаті негативне число. В силу цієї властивості (−5) 3<0 , (−0,003) 17 <0 и .

    Переходимо до властивості порівняння ступенів з однаковими натуральними показниками, яке має наступне формулювання: з двох ступенів з однаковими натуральними показниками n менше та, основа якої менша, а більша за та, основа якої більша. Доведемо його.

    Нерівність a n властивостей нерівностейсправедлива і доведена нерівність виду a n .

    Залишилося довести останню з перерахованих властивостей ступенів із натуральними показниками. Сформулюємо його. З двох ступенів з натуральними показниками та однаковими позитивними основами, меншими одиниці, більший той ступінь, показник якого менший; а з двох ступенів з натуральними показниками та однаковими основами, більшими одиниці, більшим є той ступінь, показник якого більший. Переходимо до підтвердження цієї якості.

    Доведемо, що за m>n і 0 0 в силу вихідної умови m>n, звідки випливає, що при 0

    Залишилося довести другу частину якості. Доведемо, що з m>n і a>1 справедливо a m >a n . Різниця a m -a n після винесення a n за дужки набуває вигляду a n · (a m−n −1) . Це твір позитивно, тому що при a>1 ступінь a n є позитивне число, і різницю a m−n −1 є позитивне число, оскільки m−n>0 в силу початкової умови, і при a>1 ступінь a m−n більше одиниці . Отже, a m -a n >0 і a m >a n , що потрібно було довести. Ілюстрацією цієї властивості є нерівність 3 7 >3 2 .

Властивості ступенів із цілими показниками

Так як цілі позитивні числа є натуральними числами, то всі властивості ступенів з цілими позитивними показниками точно збігаються з властивостями ступенів з натуральними показниками, перерахованими і доведеними в попередньому пункті.

Ступінь із цілим негативним показником, а також ступінь з нульовим показником ми визначали так, щоб залишалися справедливими всі властивості ступенів з натуральними показниками, що виражаються рівностями. Тому всі ці властивості справедливі і для нульових показників ступеня, і для негативних показників, при цьому, звичайно, підстави ступенів відмінні від нуля.

Отже, для будь-яких дійсних і відмінних від нуля чисел a і b, а також будь-яких цілих чисел m і n справедливі такі властивості ступенів із цілими показниками:

  1. a m · a n = a m + n;
  2. a m:a n =a m−n;
  3. (a b) n = a n b n ;
  4. (a:b) n = a n: b n;
  5. (a m) n = a m·n;
  6. якщо n – ціле позитивне число, a та b – позитивні числа, причому a b −n;
  7. якщо m і n - цілі числа, причому m>n, то при 0 1 виконується нерівність a m >a n .

При a=0 ступеня a m і a n мають сенс коли і m , і n позитивні цілі числа, тобто, натуральні числа. Отже, щойно записані властивості також справедливі випадків, коли a=0 , а числа m і n – цілі позитивні.

Довести кожну з цих властивостей нескладно, для цього достатньо використовувати визначення ступеня з натуральним і цілим показником, а також властивості дій з дійсними числами. Наприклад доведемо, що властивість ступеня ступеня виконується як цілих позитивних чисел, так цілих непозитивних чисел. Для цього потрібно показати, що якщо p є нуль або натуральне число і q є нуль або натуральне число, то справедливі рівності (a p) q =a p·q , (a −p) q =a (−p)·q , (a p ) −q =a p·(−q) і (a −p) −q =a (−p)·(−q). Зробимо це.

Для позитивних p і q рівність (a p) q =a p·q доведено у попередньому пункті. Якщо p = 0, то маємо (a 0) q = 1 q = 1 і a 0 · q = a 0 = 1, звідки (a 0) q = a 0 · q. Аналогічно, якщо q = 0, то (a p) 0 = 1 і a p · 0 = a 0 = 1, звідки (a p) 0 = a p · 0 . Якщо і p=0 і q=0 , то (a 0) 0 =1 0 =1 і a 0·0 =a 0 =1 , звідки (a 0) 0 =a 0·0 .

Тепер доведемо, що (a −p) q =a (−p)·q . За визначенням ступеня з цілим негативним показником, тоді . За якістю приватного у ступеня маємо . Оскільки 1 p =1·1·…·1=1 і , то . Останнє вираз за визначенням є ступенем виду a −(p·q) , який з правил множення можна записати як a (−p)·q .

Аналогічно .

І .

За таким самим принципом можна довести решту властивостей ступеня з цілим показником, записані у вигляді рівностей.

У передостанньому із записаних властивостей варто зупинитися на доказі нерівності a −n >b −n , яка справедлива для будь-якого цілого негативного −n та будь-яких позитивних a та b , для яких виконується умова a . Оскільки за умовою a 0 . Добуток a n · b n теж позитивно як добуток позитивних чисел a n і b n . Тоді отриманий дріб позитивний як приватний позитивних чисел b n -a n і a n · b n . Отже, звідки a −n >b −n , що потрібно було довести.

Остання властивість ступенів із цілими показниками доводиться так само, як аналогічна властивість ступенів із натуральними показниками.

Властивості ступенів з раціональними показниками

Ступінь з дрібним показником ми визначали, поширюючи на неї властивості ступеня з цілим показником. Іншими словами, ступені з дробовими показниками мають ті ж властивості, що і ступені з цілими показниками. А саме:

p align="justify"> Доказ властивостей ступенів з дробовими показниками базується на визначенні ступеня з дробовим показником, на і на властивостях ступеня з цілим показником. Наведемо докази.

За визначенням ступеня з дробовим показником і , тоді . Властивості арифметичного кореня дозволяють нам записати такі рівності. Далі, використовуючи властивість ступеня з цілим показником, отримуємо , звідки за визначенням ступеня з дробовим показником маємо , А показник отриманого ступеня можна перетворити так: . На цьому доказ завершено.

Абсолютно аналогічно доводиться друга властивість ступенів із дробовими показниками:

По подібним принципам доводяться та інші рівності:

Переходимо до підтвердження наступного характеристики. Доведемо, що для будь-яких позитивних a і b, a b p. Запишемо раціональне число p як m/n, де m – ціле число, а n – натуральне. Умов p<0 и p>0 у цьому випадку будуть еквівалентні умови m<0 и m>0 відповідно. При m>0 та a

Аналогічно, при m<0 имеем a m >b m, звідки, тобто, і a p > b p.

Залишилося довести останню з перерахованих властивостей. Доведемо, що раціональних чисел p і q , p>q при 0 0 - нерівність a p > a q. Ми завжди можемо привести до спільного знаменника раціональні числа p і q, нехай при цьому ми отримаємо прості дроби і де m 1 і m 2 - цілі числа, а n - натуральне. При цьому умові p>q відповідатиме умова m 1 >m 2 , що випливає з . Тоді за якістю порівняння ступенів з однаковими основами та натуральними показниками при 0 1 – нерівність a m 1 >a m 2 . Ці нерівності за властивостями коренів можна переписати відповідно як і . А визначення ступеня з раціональним показником дозволяє перейти до нерівностей та відповідно. Звідси робимо остаточний висновок: при p>q і 0 0 - нерівність a p > a q.

Властивості ступенів із ірраціональними показниками

З того, як визначається ступінь з ірраціональним показником, можна зробити висновок, що вона має всі властивості ступенів з раціональними показниками. Так для будь-яких a>0, b>0 та ірраціональних чисел p і q справедливі наступні властивості ступенів із ірраціональними показниками:

  1. a p · a q = a p + q;
  2. a p: a q = a p-q;
  3. (a b) p = a p b ;
  4. (a:b) p = a p: b p;
  5. (a p) q = a p · q;
  6. для будь-яких позитивних чисел a і b, a 0 справедлива нерівність a p b p;
  7. для ірраціональних чисел p і q p при 0 0 - нерівність a p > a q.

Звідси можна зробити висновок, що ступеня з будь-якими дійсними показниками p і q при a>0 мають ті ж властивості.

Список літератури.

  • Віленкін Н.Я., Жохов В.І., Чесноков А.С., Шварцбурд С.І. МатематикаЖ підручник для 5 кл. загальноосвітніх установ.
  • Макарічев Ю.М., Міндюк Н.Г., Нешков К.І., Суворова С.Б. Алгебра: підручник для 7 кл. загальноосвітніх установ.
  • Макарічев Ю.М., Міндюк Н.Г., Нешков К.І., Суворова С.Б. Алгебра: підручник для 8 кл. загальноосвітніх установ.
  • Макарічев Ю.М., Міндюк Н.Г., Нешков К.І., Суворова С.Б. Алгебра: підручник для 9 кл. загальноосвітніх установ.
  • Колмогоров А.М., Абрамов А.М., Дудніцин Ю.П. та ін Алгебра та початку аналізу: Підручник для 10 - 11 класів загальноосвітніх установ.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).

Раніше ми вже говорили, що таке ступінь числа. Вона має певні властивості, корисні у вирішенні завдань: саме їх та всі можливі показники ступеня ми розберемо у цій статті. Також ми наочно покажемо на прикладах, як їх можна довести та правильно застосувати на практиці.

Yandex.RTB R-A-339285-1

Згадаймо вже сформульоване нами раніше поняття ступеня з натуральним показником: це добуток n-ної кількості множників, кожен з яких дорівнює а. Також нам доведеться згадати, як правильно множити дійсні числа. Все це допоможе нам сформулювати для ступеня з натуральним показником такі властивості:

Визначення 1

1. Головна властивість ступеня: a m · a n = a m + n

Можна узагальнити до: a n 1 · an 2 · … · an k = an 1 + n 2 + … + n k .

2. Властивість частки для ступенів, що мають однакові підстави: a m: a n = a m − n

3. Властивість ступеня твору: (a · b) n = a n · b n

Рівність можна розширити до: (a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

4. Властивість частки в натуральному ступені: (a: b) n = a n: b n

5. Зводимо ступінь у ступінь: (a m) n = a m · n ,

Можна узагальнити до: (((a n 1) n 2) …) n k = a n 1 · n 2 · … · n k

6. Порівнюємо ступінь з нулем:

  • якщо a > 0 то при будь-якому натуральному n, a n буде більше нуля;
  • при a , рівному 0 , a n також дорівнюватиме нулю;
  • при a< 0 и таком показателе степени, который будет четным числом 2 · m , a 2 · m будет больше нуля;
  • при a< 0 и таком показателе степени, который будет нечетным числом 2 · m − 1 , a 2 · m − 1 будет меньше нуля.

7. Рівність a n< b n будет справедливо для любого натурального n при условии, что a и b больше нуля и не равны друг другу.

8. Нерівність a m > a n буде правильною за умови, що m і n – натуральні числа, m більше n і а більше нуля і менше одиниці.

У результаті ми здобули кілька рівностей; якщо дотриматися всіх умов, зазначених вище, то вони будуть тотожними. Для кожного з рівностей, наприклад, для основного властивості, можна поміняти місцями праву і ліву частину: a m · a n = a m + n - те саме, що і a m + n = a m · a n . У такому вигляді воно часто використовується при спрощенні виразів.

1. Почнемо з основного властивості ступеня: рівність a m a n = a m + n буде вірним за будь-яких натуральних m і n і дійсному a . Як довести це твердження?

Основне визначення ступенів з натуральними показниками дозволить нам перетворити рівність на твір множників. Ми отримаємо запис такого виду:

Це можна скоротити до (Згадаймо основні властивості множення). У результаті ми отримали ступінь числа a з натуральним показником m + n. Таким чином, a m + n означає основну властивість ступеня доведено.

Розберемо конкретний приклад, що підтверджує це.

Приклад 1

Отже, у нас є два ступені з основою 2 . Їхні натуральні показники - 2 і 3 відповідно. У нас вийшла рівність: 2 2 · 2 3 = 2 2 + 3 = 2 5 Обчислимо значення, щоб перевірити вірність цієї рівності.

Виконаємо необхідні математичні дії: 2 2 · 2 3 = (2 · 2) · (2 ​​· 2 · 2) = 4 · 8 = 32 і 2 5 = 2 · 2 · 2 · 2 · 2 = 32

У результаті ми вийшло: 2 2 · 2 3 = 2 5 . Властивість доведено.

У силу властивостей множення ми можемо виконати узагальнення властивості, сформулювавши його у вигляді трьох і більшої кількості ступенів, у яких показники є натуральними числами, а підстави однакові. Якщо позначити кількість натуральних чисел n 1 , n 2 та ін. літерою k , ми отримаємо правильну рівність:

a n 1 · a n 2 · … · a n k = an 1 + n 2 + … + n k .

Приклад 2

2. Далі нам необхідно довести таку властивість, яка називається властивістю приватного і властиво ступеням з однаковими підставами: це рівність a m: a n = a m n , яка справедлива за будь-яких натуральних m і n (причому m більше n)) і будь-якого відмінного від нуля дійсного a .

Для початку пояснимо, який саме зміст умов, згаданих у формулюванні. Якщо ми візьмемо a, що дорівнює нулю, то у результаті вийде поділ на нуль, чого робити не можна (адже 0 n = 0). Умова, щоб число m обов'язково було більше n, потрібно для того, щоб ми могли утриматися в рамках натуральних показників ступеня: віднімаючи n з m, ми отримаємо натуральне число. Якщо умови не буде дотримано, у нас вийде негативне число або нуль, і знову ж таки ми вийдемо за межі вивчення ступенів із натуральними показниками.

Тепер ми можемо перейти до підтвердження. З раніше вивченого пригадаємо основні властивості дробів та сформулюємо рівність так:

a m − n · a n = a (m − n) + n = a m

З нього можна вивести: a m − n · a n = a m

Згадаймо про зв'язок поділу та множення. З нього випливає, що a m n - приватна ступенів a m і a n . Це і є підтвердження другої якості ступеня.

Приклад 3

Підставимо конкретні числа для наочності в показники, а основу ступеня позначимо π : π 5: π 2 = π 5 − 3 = π 3

3. Наступним ми розберемо властивість ступеня твору: (a · b) n = a n · b n за будь-яких дійсних a і b і натурального n .

Згідно з базовим визначенням ступеня з натуральним показником ми можемо переформулювати рівність так:

Згадавши властивості множення, запишемо: . Це означає те саме, що і a n · b n .

Приклад 4

2 3 · - 4 2 5 4 = 2 3 4 · - 4 2 5 4

Якщо множників у нас три і більше, то ця властивість також поширюється на цей випадок. Введемо для числа множників позначення k і запишемо:

(a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

Приклад 5

З конкретними числами отримаємо таку правильну рівність: (2 · (- 2 , 3) ​​· a) 7 = 2 7 · (- 2 , 3) ​​7 · a

4. Після цього ми спробуємо довести властивість частки: (a: b) n = a n: b n за будь-яких дійсних a і b , якщо b не дорівнює 0 , а n – натуральне число.

Для підтвердження можна використовувати попередню властивість ступеня. Якщо (a: b) n · b n = ((a: b) · b) n = a n , а (a: b) n · b n = a n , то з цього виходить, що (a: b) n є приватним від розподілу a n на b n .

Приклад 6

Підрахуємо приклад: 3 1 2: - 0 . 5 3 = 3 1 2 3: (- 0 , 5) 3

Приклад 7

Почнемо відразу з прикладу: (5 2) 3 = 5 2 · 3 = 5 6

А тепер сформулюємо ланцюжок рівностей, який доведе нам вірність рівності:

Якщо у нас у прикладі є ступеня ступенів, то ця властивість є справедливою для них також. Якщо у нас є будь-які натуральні числа p, q, r, s, то правильно буде:

a p q y s = a p · q · y · s

Приклад 8

Додамо конкретики: (((5 , 2) 3) 2) 5 = (5 , 2) 3 + 2 + 5 = (5 , 2) 10

6. Ще одна властивість ступенів із натуральним показником, яку нам потрібно довести, – властивість порівняння.

Для початку порівняємо ступінь із нулем. Чому a n > 0 за умови, що більше 0 ?

Якщо помножити одне позитивне число інше, ми отримаємо також позитивне число. Знаючи цей факт, ми можемо сказати, що від числа множників це не залежить – результат множення будь-якої кількості позитивних чисел є позитивним. А що таке ступінь, як результат множення чисел? Тоді для будь-якого ступеня a n з позитивною основою та натуральним показником це буде правильно.

Приклад 9

3 5 > 0 , (0 , 00201) 2 > 0 і 34 9 13 51 > 0

Також очевидно, що ступінь з основою, що дорівнює нулю, сама є нуль. Який би ступінь ми не зводили нуль, він залишиться їм.

Приклад 10

0 3 = 0 та 0 762 = 0

Якщо основа ступеня – негативне число, то тут доказ трохи складніше, оскільки важливим стає поняття парності/непарності показника. Візьмемо спочатку випадок, коли показник ступеня парний, і позначимо його 2 · m , де m – натуральне число.

Згадаймо, як правильно множити негативні числа: твір a · a дорівнює добутку модулів, а отже, воно буде позитивним числом. Тоді і ступінь a 2 · m також позитивні.

Приклад 11

Наприклад, (−6) 4 > 0 , (− 2 , 2) 12 > 0 та - 2 9 6 > 0

Якщо показник ступеня з негативним підставою – непарне число? Позначимо його 2 · m − 1 .

Тоді

Всі твори a · a згідно властивостей множення, позитивні, їх твір теж. Але якщо ми його помножимо на єдине число, що залишилося a , то кінцевий результат буде від'ємний.

Тоді отримаємо: (− 5) 3< 0 , (− 0 , 003) 17 < 0 и - 1 1 102 9 < 0

Як це довести?

a n< b n – неравенство, представляющее собой произведение левых и правых частей nверных неравенств a < b . Вспомним основные свойства неравенств справедливо и a n < b n .

Приклад 12

Наприклад, вірні нерівності: 3 7< (2 , 2) 7 и 3 5 11 124 > (0 , 75) 124

8. Нам залишилося довести останню властивість: якщо у нас є два ступені, підстави яких однакові та позитивні, а показники є натуральними числами, то та з них більша, показник якої менший; а з двох ступенів з натуральними показниками та однаковими основами, більшими одиниці, більшим є той ступінь, показник якого більший.

Доведемо ці твердження.

Для початку нам потрібно переконатися, що am< a n при условии, что m больше, чем n , и а больше 0 , но меньше 1 .Теперь сравним с нулем разность a m − a n

Винесемо a n за дужки, після чого наша різниця набуде вигляду a n · (a m − n − 1) . Її результат буде негативний (оскільки негативний результат множення позитивного числа на негативне). Адже згідно з початковими умовами, m − n > 0 , тоді a m − n − 1 –негативно, а перший множник позитивний, як і будь-який натуральний ступінь із позитивною основою.

У нас вийшло, що a m − a n< 0 и a m < a n . Свойство доказано.

Залишилося навести доказ другої частини твердження, сформульованого вище: a m > a справедливо при m > n та a > 1 . Вкажемо різницю і винесемо a n за дужки: (a m − n − 1) .Ступінь a n при а, більшому за одиницю, дасть позитивний результат; а сама різниця також виявиться позитивною через початкові умови, і при a > 1 ступінь a m n більше одиниці. Виходить, a m − a n > 0 і a m > a n , що нам потрібно було довести.

Приклад 13

Приклад із конкретними числами: 3 7 > 3 2

Основні властивості ступенів із цілими показниками

Для ступенів з цілими позитивними показниками властивості будуть аналогічні, тому що цілі позитивні числа є натуральними, а отже, всі рівні, доведені вище, справедливі і для них. Також вони підходять і для випадків, коли показники негативні або рівні нулю (за умови, що сама основа ступеня ненульова).

Таким чином, властивості ступенів такі ж для будь-яких підстав a та b (за умови, що ці числа дійсні і не рівні 0) та будь-яких показників m і n (за умови, що вони є цілими числами). Запишемо їх коротко у вигляді формул:

Визначення 2

1. a m · a n = a m + n

2. a m: a n = a m − n

3. (a · b) n = a n · b n

4. (a: b) n = a n: b n

5. (a m) n = a m · n

6. a n< b n и a − n >b − n за умови цілого позитивного n , позитивних a та b , a< b

7. a m< a n , при условии целых m и n , m >n та 0< a < 1 , при a >1 a m > a n.

Якщо підстава ступеня дорівнює нулю, записи a m і a n мають сенс лише у разі натуральних і позитивних m і n . У результаті отримаємо, що формулювання вище підходять і для випадків зі ступенем з нульовою основою, якщо дотримуються всі інші умови.

Докази цих властивостей у разі нескладні. Нам потрібно згадати, що таке ступінь з натуральним та цілим показником, а також властивості дій із дійсними числами.

Розберемо властивість ступеня в міру і доведемо, що воно правильне і для позитивних, і для непозитивних чисел. Почнемо з доказу рівностей (a p) q = a p · q , (a - p) q = a (- p) · q, (a p) - q = a p · (- q) та (a - p) - q = a (− p) · (− q)

Умови: p = 0 чи натуральне число; q – аналогічно.

Якщо значення p і q більше 0, то в нас вийде (a p) q = a p · q. Таку рівність ми вже доводили раніше. Якщо p = 0, то:

(a 0) q = 1 q = 1 a 0 · q = a 0 = 1

Отже, (a 0) q = a 0 · q

Для q = 0 так само:

(a p) 0 = 1 a p · 0 = a 0 = 1

Підсумок: (a p) 0 = a p · 0 .

Якщо ж обидва показники нульові, то (a 0) 0 = 1 0 = 1 і a 0 · 0 = a 0 = 1 означає, (a 0) 0 = a 0 · 0 .

Згадаймо доведену вище властивість частки в мірі і запишемо:

1 a p q = 1 q a p q

Якщо 1 p = 1 · 1 · … · 1 = 1 і a p q = a p · q, то 1 q a p q = 1 a p · q

Цей запис ми можемо перетворити з основних правил множення в a (− p) · q .

Також: a p - q = 1 (a p) q = 1 a p · q = a - (p · q) = a p · (- q) .

І (a - p) - q = 1 a p - q = (a p) q = a p · q = a (- p) · (- q)

Інші властивості ступеня можна довести аналогічним чином, перетворивши наявні нерівності. Докладно зупинятись ми на цьому не будемо, зазначимо лише складні моменти.

Доказ передостанньої властивості: пригадаємо, a − n > b − n правильне будь-яких цілих негативних значень nі будь-яких позитивних a і b за умови, що a менше b .

Тоді нерівність можна перетворити так:

1 a n > 1 b n

Запишемо праву та ліву частини у вигляді різниці та виконаємо необхідні перетворення:

1 a n - 1 b n = b n - a n a n · b n

Згадаймо, що в умові a менше b тоді, згідно з визначенням ступеня з натуральним показником: - a n< b n , в итоге: b n − a n > 0 .

a n · b n у результаті дає позитивне число, оскільки його множники є позитивними. У результаті маємо дріб b n - a n a n · b n , яка у результаті також дає позитивний результат. Звідси 1 a n > 1 b n звідки a − n > b − n , що нам треба було довести.

Остання властивість ступенів із цілими показниками доводиться аналогічно до властивості ступенів з показниками натуральними.

Основні властивості ступенів з раціональними показниками

У попередніх статтях ми розбирали, що таке ступінь із раціональним (дрібним) показником. Їхні властивості такі ж, що й у ступенів з цілими показниками. Запишемо:

Визначення 3

1. a m 1 n 1 · a m 2 n 2 = a m 1 n 1 + m 2 n 2 при a > 0 , а якщо m 1 n 1 > 0 і m 2 n 2 > 0 , то при a ≥ 0 (властивість добутку степенів з однаковими основами).

2. a m 1 n 1: b m 2 n 2 = a m 1 n 1 - m 2 n 2 якщо a > 0 (властивість приватного).

3. a · b m n = a m n · b m n при a > 0 і b > 0 , а якщо m 1 n 1 > 0 і m 2 n 2 > 0 , то при a ≥ 0 та (або) b ≥ 0 (властивість твору в дробового ступеня).

4. a: b m n = a m n: b m n при a > 0 і b > 0 , а якщо m n > 0 , то при a ≥ 0 і b > 0 (властивість приватного дробового ступеня).

5. a m 1 n 1 m 2 n 2 = a m 1 n 1 · m 2 n 2 при a > 0 , а якщо m 1 n 1 > 0 і m 2 n 2 > 0 , то при a ≥ 0 (властивість ступеня в ступеня).

6. a p< b p при условии любых положительных a и b , a < b и рациональном p при p >0; якщо p< 0 - a p >b p (властивість порівняння ступенів з рівними раціональними показниками).

7. a p< a q при условии рациональных чисел p и q , p >q при 0< a < 1 ; если a >0 - a p > a q

Для доказу зазначених положень нам знадобиться згадати, що таке ступінь із дробовим показником, які властивості арифметичного кореня n-ного ступеня та які властивості ступеня з цілими показником. Розберемо кожну властивість.

Відповідно до того, що собою являє ступінь з дробовим показником, отримаємо:

a m 1 n 1 = a m 1 n 1 і a m 2 n 2 = a m 2 n 2 , отже, a m 1 n 1 · a m 2 n 2 = a m 1 n 1 · a m 2 n 2

Властивості кореня дозволять нам вивести рівність:

a m 1 · m 2 n 1 · n 2 · a m 2 · m 1 n 2 · n 1 = a m 1 · n 2 · a m 2 · n 1 n 1 · n 2

З цього отримуємо: a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

Перетворюємо:

a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

Показник ступеня можна записати у вигляді:

m 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 · n 2 n 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 n 1 + m 2 n 2

Це є доказ. Друга властивість доводиться абсолютно так само. Запишемо ланцюжок рівностей:

a m 1 n 1: a m 2 n 2 = a m 1 n 1: a m 2 n 2 = a m 1 · n 2: a m 2 · n 1 n · n 2 = = a m 1 · n 2 - m 2 · n 1 n 1 · n 2 = am 1 · n 2 - m 2 · n 1 n 1 · n 2 = am 1 · n 2 n 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 n 1 - m 2 n 2

Докази інших рівностей:

a · b m n = (a · b) m n = a m · b m n = a m n · b m n = a m n · b m n ; (a: b) m n = (a: b) m n = a m: b m n = = a m n: b m n = a m n: b m n; am 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = = a m 1 m 2 n 1 n 2 = a m 1 · m 2 n 1 n 2 = = a m 1 · m 2 n 2 · n 1 = a m 1 · m 2 n 2 · n 1 = a m 1 n 1 · m 2 n 2

Наступна властивість: доведемо, що для будь-яких значень a і b більше 0 якщо а менше b буде виконуватися a p< b p , а для p больше 0 - a p >b p

Уявимо раціональне число p як m n . У цьому m –ціле число, n –натуральне. Тоді умови p< 0 и p >0 будуть поширюватися на m< 0 и m >0 . При m > 0 та a< b имеем (согласно свойству степени с целым положительным показателем), что должно выполняться неравенство a m < b m .

Використовуємо властивість коріння і виведемо: a m n< b m n

Враховуючи позитивність значень a і b перепишемо нерівність як a m n< b m n . Оно эквивалентно a p < b p .

Так само при m< 0 имеем a a m >b m отримуємо a m n > b m n означає, a m n > b m n і a p > b p .

Нам залишилося навести доказ останньої якості. Доведемо, що для раціональних чисел p і q p > q при 0< a < 1 a p < a q , а при a >0 буде правильно a p > a q.

Раціональні числа p і q можна привести до спільного знаменника та отримати дроби m 1 n і m 2 n

Тут m1 і m2 – цілі числа, а n – натуральне. Якщо p > q , то m 1 > m 2 (з огляду на правило порівняння дробів). Тоді при 0< a < 1 будет верно a m 1 < a m 2 , а при a >1 – нерівність a 1 m > a 2 m.

Їх можна переписати в наступному вигляді:

a m 1 n< a m 2 n a m 1 n >a m 2 n

Тоді можна зробити перетворення та отримати в результаті:

a m 1 n< a m 2 n a m 1 n >a m 2 n

Підбиваємо підсумок: при p > q і 0< a < 1 верно a p < a q , а при a >0 - a p > a q.

Основні властивості ступенів із ірраціональними показниками

На такий ступінь можна поширити всі описані вище властивості, якими має рівень з раціональними показниками. Це випливає із самого її визначення, яке ми давали в одній із попередніх статей. Сформулюємо коротко ці властивості (умови: a > 0, b > 0, показники p і q – ірраціональні числа):

Визначення 4

1. a p · a q = a p + q

2. a p: a q = a p − q

3. (a · b) p = a p · b p

4. (a: b) p = a p: b p

5. (a p) q = a p · q

6. a p< b p верно при любых положительных a и b , если a < b и p – иррациональное число больше 0 ; если p меньше 0 , то a p >b p

7. a p< a q верно, если p и q – иррациональные числа, p < q , 0 < a < 1 ; если a >0 , a p > a q .

Таким чином, всі ступеня, показники яких p і q є дійсними числами, за умови a > 0 мають ті ж властивості.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Початковий рівень

Ступінь та її властивості. Вичерпний гід (2019)

Навіщо потрібні ступені? Де вони тобі стануть у пригоді? Чому тобі потрібно витрачати час на їхнє вивчення?

Щоб дізнатися все про ступені, про те, для чого вони потрібні, як використовувати свої знання в повсякденному житті читай цю статтю.

І, звичайно ж, знання ступенів наблизить тебе до успішної здачі ОДЕ або ЄДІ та до вступу до ВНЗ твоєї мрії.

Let"s go... (Поїхали!)

Важливе зауваження! Якщо замість формул ти бачиш абракадабру, почисти кеш. Для цього потрібно натиснути CTRL+F5 (Windows) або Cmd+R (Mac).

ПОЧАТКОВИЙ РІВЕНЬ

Зведення в ступінь - це така сама математична операція, як додавання, віднімання, множення або поділ.

Наразі поясню все людською мовою на дуже простих прикладах. Будь уважний. Приклади елементарні, але пояснюють важливі речі.

Почнемо зі складання.

Пояснювати тут нема чого. Ти й так усе знаєш: нас вісім чоловік. У кожного по дві пляшки коли. Скільки всього коли? Правильно – 16 пляшок.

Тепер множення.

Той самий приклад із колою можна записати інакше: . Математики - люди хитрі та ліниві. Вони спочатку помічають якісь закономірності, а потім вигадують спосіб якнайшвидше їх «рахувати». У нашому випадку вони помітили, що у кожного з восьми чоловік однакова кількість пляшок коли і придумали прийом, який називається множенням. Погодься, вважається легше і швидше, ніж.


Отже, щоб вважати швидше, легше і без помилок, потрібно лише запам'ятати таблицю множення. Ти, звичайно, можеш робити все повільніше, важче та з помилками! Але...

Ось таблиця множення. Повторюй.

І інший, красивіший:

А які ще хитрі прийоми рахунку вигадали ліниві математики? Правильно - зведення числа в ступінь.

Зведення числа до ступеня

Якщо тобі потрібно помножити число на себе п'ять разів, то математики кажуть, що тобі потрібно звести це число в п'яту ступінь. Наприклад, . Математики пам'ятають, що два в п'ятому ступені – це. І вирішують такі завдання в умі - швидше, легше і без помилок.

Для цього потрібно лише запам'ятати те, що виділено кольором у таблиці ступенів чисел. Повір, це дуже полегшить тобі життя.

До речі, чому другий ступінь називають квадратомчисла, а третю - кубом? Що це означає? Дуже добре питання. Нині будуть тобі і квадрати, і куби.

Приклад із життя №1

Почнемо з квадрата чи з другого ступеня числа.

Уяви собі квадратний басейн розміром метра на метр. Басейн стоїть у тебе на дачі. Спека і дуже хочеться купатися. Але… басейн без дна! Потрібно застелити дно басейну плиткою. Скільки тобі треба плитки? Для того, щоб це визначити, тобі потрібно дізнатися площу дна басейну.

Ти можеш просто порахувати, тикаючи пальцем, що дно басейну складається із кубиків метр на метр. Якщо у тебе плитка метр на метр, тобі потрібно буде шматків. Це легко… Але де ти бачив таку плитку? Плитка швидше буде див на див. І тоді «пальцем рахувати» замучуєшся. Тоді доведеться множити. Отже, з одного боку дна басейну в нас поміститься плиток (штук) і з іншого теж плиток. Помноживши на ти отримаєш плиток ().

Ти помітив, що для визначення площі дна басейну ми помножили одне й те саме саме на себе? Що це означає? Якщо множиться те саме число, ми можемо скористатися прийомом «зведення в ступінь». (Звичайно, коли в тебе всього два числа, все одно перемножити їх або звести в ступінь. Але якщо в тебе їх багато, то зводити в ступінь значно простіше і помилок при розрахунках виходить теж менше. Для ЄДІ це дуже важливо).
Отже, тридцять другою мірою буде (). Або ж можна сказати, що тридцять у квадраті буде. Іншими словами, другий ступінь числа завжди можна подати у вигляді квадрата. І навпаки, якщо ти бачиш квадрат - це ЗАВЖДИ другий ступінь якогось числа. Квадрат – це зображення другого ступеня числа.

Приклад із життя №2

Ось тобі завдання, порахувати, скільки квадратів на шахівниці за допомогою квадрата числа... З одного боку клітин і з іншого теж. Щоб порахувати їх кількість, потрібно вісім помножити на вісім або якщо помітити, що шахова дошка - це квадрат зі стороною, то можна звести вісім у квадрат. Вийде клітини. () Так?

Приклад із життя №3

Тепер куб чи третій ступінь числа. Той самий басейн. Але тепер тобі потрібно дізнатися, скільки води доведеться залити у цей басейн. Тобі треба порахувати обсяг. (Обсяги та рідини, до речі, вимірюються в кубічних метрах. Несподівано, правда?) Намалюй басейн: дно розміром на метр і глибиною метра і спробуй порахувати, скільки всього кубів розміром метр на метр увійде в твій басейн.

Прямо показуй пальцем і рахуй! Раз, два, три, чотири… двадцять два, двадцять три… Скільки вийшло? Чи не збився? Важко пальцем рахувати? Так то! Бери приклад із математиків. Вони ліниві, тому помітили, що щоб порахувати обсяг басейну, треба перемножити один на одного його довжину, ширину та висоту. У нашому випадку обсяг басейну дорівнюватиме кубів… Легше правда?

А тепер уяви, наскільки математики ліниві та хитрі, якщо вони і це спростили. Звели все до однієї дії. Вони помітили, що довжина, ширина і висота дорівнює і що те саме число перемножується саме на себе… А що це означає? Це означає, що можна скористатися ступенем. Отже, те, що ти вважав пальцем, вони роблять в одну дію: три в кубі одно. Записується це так: .

Залишається тільки запам'ятати таблицю ступенів. Якщо ти, звичайно, такий же лінивий і хитрий як математики. Якщо любиш багато працювати і робити помилки – можеш продовжувати вважати пальцем.

Ну і щоб остаточно переконати тебе, що мірою придумали ледарі та хитрюги для вирішення своїх життєвих проблем, а не для того, щоб створити тобі проблеми, ось тобі ще пара прикладів із життя.

Приклад із життя №4

У тебе є мільйон рублів. На початку кожного року ти заробляєш на кожному мільйоні ще один мільйон. Тобто, кожен твій мільйон на початку кожного року подвоюється. Скільки грошей у тебе буде за роки? Якщо ти зараз сидиш і «вважаєш пальцем», значить ти дуже працьовита людина і дурна. Але швидше за все ти даси відповідь через пару секунд, бо ти розумний! Отже, у перший рік – два помножити на два… на другий рік – те, що вийшло, ще на два, на третій рік… Стоп! Ти помітив, що число перемножується саме на себе один раз. Значить, два в п'ятому ступені - мільйон! А тепер уяви, що у вас змагання і ці мільйони отримає той, хто швидше порахує... Варто запам'ятати ступеня чисел, як вважаєш?

Приклад із життя №5

У тебе є мільйон. На початку кожного року ти заробляєш на кожному мільйоні ще два. Здорово правда? Кожен мільйон потроюється. Скільки грошей у тебе буде за рік? Давай рахувати. Перший рік – помножити на, потім результат ще на… Вже нудно, бо ти вже все зрозумів: три множиться саме на себе рази. Значить четвертою мірою дорівнює мільйон. Треба просто пам'ятати, що три в четвертому ступені це або.

Тепер ти знаєш, що за допомогою зведення числа в ступінь ти полегшить собі життя. Давай подивимося на те, що можна робити зі ступенями і що тобі потрібно знати про них.

Терміни та поняття... щоб не заплутатися

Отже, спочатку давай визначимо поняття. Як думаєш, що таке показник ступеня? Це дуже просто - це число, яке знаходиться «вгорі» ступеня числа. Не науково, зате зрозуміло і легко запам'ятати.

Ну і заразом, що така підстава ступеня? Ще простіше - це число, яке знаходиться внизу, в основі.

Ось тобі рисунок для вірності.

Ну і в загальному вигляді, щоб узагальнити і краще запам'ятати.

Ступінь числа з натуральним показником

Ти вже напевно здогадався: бо показник ступеня – це натуральне число. Так, але що таке натуральне число? Елементарно! Натуральні це числа, які використовуються в рахунку при перерахуванні предметів: один, два, три... Ми ж коли вважаємо предмети не говоримо: «мінус п'ять», «мінус шість», «мінус сім». Ми так само не говоримо: "одна третя", або "нуль цілих, п'ять десятих". Це не натуральні цифри. А які це числа, як ти думаєш?

Числа типу "мінус п'ять", "мінус шість", "мінус сім" відносяться до цілим числам.Взагалі, до цілих чисел відносяться всі натуральні числа, протилежні числа натуральним (тобто взяті зі знаком мінус), і число. Нуль зрозуміти легко – це коли нічого немає. А що означає негативні («мінусові») числа? А ось їх придумали в першу чергу для позначення боргів: якщо у тебе баланс на телефоні рублів, це означає, що ти винен оператору рублів.

Будь-які дроби – це раціональні числа. Як вони виникли, як гадаєш? Дуже просто. Декілька тисяч років тому наші предки виявили, що їм не вистачає натуральних чисел для вимірювання довжини, ваги, площі тощо. І вони вигадали раціональні числа… Цікаво, правда ж?

Є ще ірраціональні числа. Що це за числа? Якщо коротко, то нескінченний десятковий дріб. Наприклад, якщо довжину кола розділити на її діаметр, то вийде ірраціональне число.

Резюме:

Визначимо поняття ступеня, показник якого — натуральне число (тобто ціле та позитивне).

  1. Будь-яке число в першому ступені дорівнює самому собі:
  2. Звести число в квадрат - значить помножити його саме на себе:
  3. Звести число в куб - значить помножити його на себе три рази:

Визначення.Звести число в натуральну міру - значить помножити число саме на себе раз:
.

Властивості ступенів

Звідки ці властивості взялися? Зараз покажу.

Подивимося: що таке і ?

За визначенням:

Скільки тут множників всього?

Дуже просто: до множників ми дописали множників, разом вийшло множників.

Але за визначенням це ступінь числа з показником, тобто: що і потрібно довести.

приклад: Спростіть вираз

Рішення:

Приклад:Спростіть вираз.

Рішення:Важливо помітити, що у нашому правилі обов'язковоповинні бути однакові підстави!
Тому ступеня з основою ми поєднуємо, а залишається окремим множником:

тільки для створення ступенів!

У жодному разі не можна написати, що.

2. то й є -а ступінь числа

Так само, як і з попередньою властивістю, звернемося до визначення ступеня:

Виходить, що вираз множиться сам на себе раз, тобто, згідно з визначенням, це і є ступінь числа:

По суті, це можна назвати «винесенням показника за дужки». Але ніколи не можна цього робити у сумі:

Згадаймо формули скороченого множення: скільки разів нам хотілося написати?

Але це не так, адже.

Ступінь з негативною основою

До цього моменту ми обговорювали лише те, яким має бути показник ступеня.

Але якою має бути підстава?

У ступенях з натуральним показникомоснова може бути будь-яким числом. І справді, адже ми можемо множити один на одного будь-які числа, будь вони позитивні, негативні, або навіть.

Давайте подумаємо, які знаки (« » або « ») матимуть ступеня позитивних та негативних чисел?

Наприклад, позитивним чи негативним буде число? А? ? З першим усе зрозуміло: хоч би скільки позитивних чисел ми один на одного не множили, результат буде позитивним.

Але з негативними трохи цікавіше. Адже ми пам'ятаємо просте правило з 6 класу: «мінус на мінус дає плюс». Тобто, або. Але якщо ми помножимо, вийде.

Визнач самостійно, який знак будуть мати такі вирази:

1) 2) 3)
4) 5) 6)

Впорався?

Ось відповіді: У перших чотирьох прикладах, сподіваюся, все зрозуміло? Просто дивимося на основу та показник ступеня, і застосовуємо відповідне правило.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

У прикладі 5) все теж не так страшно, як здається: адже неважливо, чому рівна підстава - ступінь парний, а значить, результат завжди буде позитивним.

Ну, за винятком випадку, коли основа дорівнює нулю. Адже підстава не рівна? Очевидно ні, тому що (бо).

Приклад 6) вже не такий простий!

6 прикладів для тренування

Розбір рішення 6 прикладів

Якщо не зважати на восьмий ступінь, що ми тут бачимо? Згадуємо програму 7 класу. Отже, згадали? Це формула скороченого множення, а саме – різниця квадратів! Отримуємо:

Уважно дивимось на знаменник. Він дуже схожий на один із множників чисельника, але що не так? Не той порядок доданків. Якби їх поміняти місцями можна було б застосувати правило.

Але як це зробити? Виявляється дуже легко: тут нам допомагає парний ступінь знаменника.

Магічним чином доданки змінилися місцями. Це «явище» застосовується для будь-якого виразу парною мірою: ми можемо безперешкодно змінювати знаки в дужках.

Але важливо запам'ятати: змінюються усі знаки одночасно!

Повернемося, наприклад:

І знову формула:

Цілимими називаємо натуральні числа, протилежні їм (тобто узяті зі знаком «») та число.

ціле позитивне число, а воно нічим не відрізняється від натурального, все виглядає в точності як у попередньому розділі.

А тепер розглянемо нові випадки. Почнемо з показника, що дорівнює.

Будь-яке число в нульовому ступені дорівнює одиниці:

Як завжди, запитаємо себе: чому це так?

Розглянемо якийсь ступінь із основою. Візьмемо, наприклад, і домножимо на:

Отже, ми помножили число на, і отримали те, що було - . А на яку кількість треба помножити, щоб нічого не змінилося? Правильно, на. Значить.

Можемо зробити те саме вже з довільним числом:

Повторимо правило:

Будь-яке число в нульовому ступені дорівнює одиниці.

Але з багатьох правил є винятки. І тут воно теж є - це число (як основа).

З одного боку, будь-якою мірою повинен дорівнювати - скільки нуль сам на себе не помножуй, все-одно отримаєш нуль, це ясно. Але з іншого боку, як і будь-яке число в нульовому ступені, має дорівнювати. То що з цього правда? Математики вирішили не зв'язуватися і відмовилися зводити нуль у нульовий ступінь. Тобто тепер нам не можна не тільки ділити на нуль, а й зводити його на нульовий ступінь.

Поїхали далі. Крім натуральних чисел та числа до цілих відносяться негативні числа. Щоб зрозуміти, що таке негативний ступінь, дійдемо як минулого разу: домножимо якесь нормальне число на таке ж негативне:

Звідси вже нескладно висловити:

Тепер поширимо отримане правило на довільний ступінь:

Отже, сформулюємо правило:

Число негативною мірою назад такому ж числу позитивно. Але при цьому основа не може бути нульовою:(Бо на ділити не можна).

Підведемо підсумки:

I. Вираз не визначено у разі. Якщо то.

ІІ. Будь-яке число в нульовому ступені дорівнює одиниці: .

ІІІ. Число, що не дорівнює нулю, негативною мірою назад такому ж числу в позитивному ступені: .

Завдання для самостійного вирішення:

Ну і, як завжди, приклади для самостійного вирішення:

Розбір завдань для самостійного розв'язання:

Знаю-знаю, числа страшні, але на ЄДІ треба бути готовим до всього! Виріш ці приклади або розбери їх рішення, якщо не зміг вирішити і ти навчишся легко справлятися з ними на іспиті!

Продовжимо розширювати коло чисел, «придатних» як показник ступеня.

Тепер розглянемо раціональні числа.Які числа називаються раціональними?

Відповідь: всі, які можна подати у вигляді дробу, де і - цілі числа, причому.

Щоб зрозуміти, що таке «дрібний ступінь», розглянемо дріб:

Зведемо обидві частини рівняння до ступеня:

Тепер згадаємо правило про «ступінь ступеня»:

Яке число треба звести до ступеня, щоб отримати?

Це формулювання - визначення кореня ступеня.

Нагадаю: коренем -ого ступеня числа () називається число, яке при зведенні до ступеня дорівнює.

Тобто, корінь ступеня - це операція, зворотна зведенню в ступінь: .

Виходить що. Зрозуміло, цей окремий випадок можна розширити: .

Тепер додаємо чисельник: що таке? Відповідь легко отримати за допомогою правила «ступінь ступеня»:

Але чи може бути підстава будь-яким числом? Адже корінь можна отримувати не з усіх чисел.

Жодне!

Згадуємо правило: будь-яке число, зведене парний ступінь - число позитивне. Тобто витягувати коріння парного ступеня з негативних чисел не можна!

А це означає, що не можна такі числа зводити в дрібний ступінь з парним знаменником, тобто вираз не має сенсу.

А що щодо висловлювання?

Але тут постає проблема.

Число можна представити у вигляді інших, скоротливих дробів, наприклад, або.

І виходить, що існує, але не існує, адже це просто два різні записи одного і того ж числа.

Або інший приклад: раз, то можна записати. Але варто нам по-іншому записати показник, і знову отримаємо неприємність: (тобто отримали зовсім інший результат!).

Щоб уникнути подібних парадоксів, розглядаємо тільки позитивна основа ступеня з дробовим показником.

Отже, якщо:

  • - натуральне число;
  • - ціле число;

Приклади:

Ступені з раціональним показником дуже корисні для перетворення виразів з корінням, наприклад:

5 прикладів для тренування

Розбір 5 прикладів для тренування

Ну а тепер – найскладніше. Зараз ми розберемо ступінь з ірраціональним показником.

Всі правила і властивості ступенів тут такі самі, як і для ступеня з раціональним показником, за винятком

Адже за визначенням ірраціональні числа - це числа, які неможливо уявити у вигляді дробу, де і - цілі числа (тобто ірраціональні числа - це все дійсні числа, крім раціональних).

При вивченні ступенів з натуральним, цілим і раціональним показником, ми щоразу складали якийсь «образ», «аналогію», або опис більш звичних термінах.

Наприклад, ступінь із натуральним показником - це число, кілька разів помножене саме на себе;

...число в нульовому ступені- це ніби число, помножене саме на себе раз, тобто його ще не почали множити, значить, саме число ще навіть не з'явилося - тому результатом є лише якась «заготівля числа», а саме число;

...ступінь із цілим негативним показником- це ніби стався якийсь «зворотний процес», тобто число не множили саме на себе, а ділили.

Між іншим, у науці часто використовується ступінь із комплексним показником, тобто показник – це навіть не дійсне число.

Але в школі ми про такі складнощі не думаємо, осягнути ці нові поняття тобі буде можливість в інституті.

КУДИ МИ ВПЕВНЕНІ ТИ ПОСТУПИШ! (якщо навчишся вирішувати такі приклади:))

Наприклад:

Виріши самостійно:

Розбір рішень:

1. Почнемо з звичайного нам правила зведення ступеня в ступінь:

Тепер подивися на показник. Нічого він не нагадує тобі? Згадуємо формулу скороченого множення різниця квадратів:

В даному випадку,

Виходить що:

Відповідь: .

2. Наводимо дроби у показниках ступенів до однакового виду: або обидві десяткові, або обидві звичайні. Отримаємо, наприклад:

Відповідь: 16

3. Нічого особливого, застосовуємо звичайні властивості ступенів:

ПРОСУНУТИЙ РІВЕНЬ

Визначення ступеня

Ступенем називається вираз виду: , де:

  • основа ступеня;
  • - показник ступеня.

Ступінь із натуральним показником (n = 1, 2, 3,...)

Звести число в натуральний ступінь n - значить помножити число саме на себе:

Ступінь із цілим показником (0, ±1, ±2,...)

Якщо показником ступеня є ціле позитивнечисло:

Зведення у нульовий ступінь:

Вислів невизначений, т.к., з одного боку, будь-якою мірою - це, з другого - будь-яке число -ою мірою - це.

Якщо показником ступеня є ціле негативнечисло:

(Бо на ділити не можна).

Ще раз про нулі: вираз не визначений у випадку. Якщо то.

Приклади:

Ступінь із раціональним показником

  • - натуральне число;
  • - ціле число;

Приклади:

Властивості ступенів

Щоб простіше було вирішувати завдання, спробуємо зрозуміти: звідки ці властивості взялися? Доведемо їх.

Подивимося: що таке та?

За визначенням:

Отже, у правій частині цього виразу виходить такий твір:

Але за визначенням це ступінь числа з показником, тобто:

Що і потрібно було довести.

приклад : Спростіть вираз

Рішення : .

приклад : Спростіть вираз

Рішення : Важливо помітити, що у нашому правилі обов'язковомають бути однакові підстави. Тому ступеня з основою ми поєднуємо, а залишається окремим множником:

Ще одне важливе зауваження: це правило - тільки для добутку ступенів!

У жодному разі не можна написати, що.

Так само, як і з попередньою властивістю, звернемося до визначення ступеня:

Перегрупуємо цей твір так:

Виходить, що вираз множиться сам на себе раз, тобто, згідно з визначенням, це і є ступінь числа:

По суті, це можна назвати «винесенням показника за дужки». Але ніколи не можна цього робити у сумі: !

Згадаймо формули скороченого множення: скільки разів нам хотілося написати? Але це не так, адже.

Ступінь із негативною основою.

До цього моменту ми обговорювали лише те, яким має бути показникступеня. Але якою має бути підстава? У ступенях з натуральним показником основа може бути будь-яким числом .

І справді, адже ми можемо множити один на одного будь-які числа, будь вони позитивні, негативні, або навіть. Давайте подумаємо, які знаки (« » або « ») матимуть ступеня позитивних та негативних чисел?

Наприклад, позитивним чи негативним буде число? А? ?

З першим усе зрозуміло: хоч би скільки позитивних чисел ми один на одного не множили, результат буде позитивним.

Але з негативними трохи цікавіше. Адже ми пам'ятаємо просте правило з 6 класу: «мінус на мінус дає плюс». Тобто, або. Але якщо ми помножимо (), вийде - .

І так нескінченно: при кожному наступному множенні знак змінюватиметься. Можна сформулювати такі прості правила:

  1. парнуступінь - число позитивне.
  2. Негативне число, зведене в непарнуступінь - число негативне.
  3. Позитивне число будь-якої міри - число позитивне.
  4. Нуль будь-якою мірою дорівнює нулю.

Визнач самостійно, який знак будуть мати такі вирази:

1. 2. 3.
4. 5. 6.

Впорався? Ось відповіді:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

У перших чотирьох прикладах, сподіваюся, все зрозуміло? Просто дивимося на основу та показник ступеня, і застосовуємо відповідне правило.

У прикладі 5) все теж не так страшно, як здається: адже неважливо, чому рівна підстава - ступінь парний, а значить, результат завжди буде позитивним. Ну, за винятком випадку, коли основа дорівнює нулю. Адже підстава не рівна? Очевидно ні, тому що (бо).

Приклад 6) вже не такий простий. Тут треба дізнатися, що менше: чи? Якщо згадати, що, стає ясно, що, отже, підстава менша за нуль. Тобто застосовуємо правило 2: результат буде негативним.

І знову використовуємо визначення ступеня:

Все як завжди - записуємо визначення ступенів і, ділимо їх один на одного, розбиваємо на пари і отримуємо:

Перш ніж розібрати останнє правило, розв'яжемо кілька прикладів.

Обчисли значення виразів:

Рішення :

Якщо не зважати на восьмий ступінь, що ми тут бачимо? Згадуємо програму 7 класу. Отже, згадали? Це формула скороченого множення, а саме – різниця квадратів!

Отримуємо:

Уважно дивимось на знаменник. Він дуже схожий на один із множників чисельника, але що не так? Не той порядок доданків. Якби їх поміняти місцями можна було б застосувати правило 3. Але як це зробити? Виявляється дуже легко: тут нам допомагає парний ступінь знаменника.

Якщо примножити його на, нічого не зміниться, чи не так? Але тепер виходить таке:

Магічним чином доданки змінилися місцями. Це «явище» застосовується для будь-якого виразу парною мірою: ми можемо безперешкодно змінювати знаки в дужках. Але важливо запам'ятати: змінюються усі знаки одночасно!Не можна замінити, змінивши тільки один неугодний нам мінус!

Повернемося, наприклад:

І знову формула:

Отже, тепер останнє правило:

Як доводитимемо? Звичайно, як завжди: розкриємо поняття ступеня і спростимо:

Ну а тепер розкриємо дужки. Скільки всього вийде букв? раз по множниках - що це нагадує? Це не що інше, як визначення операції множення: всього там виявилося множників Тобто це, за визначенням, ступінь числа з показником:

Приклад:

Ступінь з ірраціональним показником

На додаток до інформації про ступені для середнього рівня, розберемо ступінь з ірраціональним показником. Всі правила та властивості ступенів тут точно такі ж, як і для ступеня з раціональним показником, за винятком - адже за визначенням ірраціональні числа - це числа, які неможливо уявити у вигляді дробу, де і - цілі числа (тобто ірраціональні числа - це усі дійсні числа, крім раціональних).

При вивченні ступенів з натуральним, цілим і раціональним показником, ми щоразу складали якийсь «образ», «аналогію», або опис більш звичних термінах. Наприклад, ступінь із натуральним показником - це число, кілька разів помножене саме на себе; число в нульовому ступені - це ніби число, помножене саме на себе раз, тобто його ще не почали множити, значить, саме число ще навіть не з'явилося - тому результатом є лише якась «заготівля числа», а саме число; ступінь із цілим негативним показником - це ніби стався якийсь «зворотний процес», тобто число не множили саме на себе, а ділили.

Уявити ступінь з ірраціональним показником дуже складно (так само, як складно уявити 4-мірний простір). Це швидше чисто математичний об'єкт, який математики створили, щоб розширити поняття ступеня на весь простір чисел.

Між іншим, у науці часто використовується ступінь із комплексним показником, тобто показник – це навіть не дійсне число. Але в школі ми про такі складнощі не думаємо, осягнути ці нові поняття тобі буде можливість в інституті.

Отже, що ми робимо, якщо бачимо ірраціональний показник ступеня? Усіми силами намагаємося його позбутися!:)

Наприклад:

Виріши самостійно:

1) 2) 3)

Відповіді:

  1. Згадуємо формулу різниця квадратів. Відповідь: .
  2. Наводимо дроби до однакового виду: або обидві десяткові або обидві звичайні. Отримаємо, наприклад: .
  3. Нічого особливого, застосовуємо звичайні властивості ступенів:

КОРОТКИЙ ВИКЛАД РОЗДІЛУ ТА ОСНОВНІ ФОРМУЛИ

ступенемназивається вираз виду: , де:

Ступінь із цілим показником

ступінь, показник якого - натуральне число (тобто ціле і позитивне).

Ступінь із раціональним показником

ступінь, показник якого - негативні та дробові числа.

Ступінь з ірраціональним показником

ступінь, показник якої - нескінченний десятковий дріб або корінь.

Властивості ступенів

Особливості ступенів.

  • Негативне число, зведене в парнуступінь - число позитивне.
  • Негативне число, зведене в непарнуступінь - число негативне.
  • Позитивне число будь-якої міри - число позитивне.
  • Нуль будь-якою мірою дорівнює.
  • Будь-яке число в нульовому ступені дорівнює.

ТЕПЕР ТЕБЕ СЛОВО...

Як тобі стаття? Напиши внизу у коментарях сподобалася чи ні.

Розкажи про свій досвід використання властивостей ступенів.

Можливо, у тебе є питання. Або пропозиції.

Напиши коментарі.

І удачі на іспитах!

основна ціль

Ознайомити учнів із властивостями ступенів із натуральними показниками та навчити виконувати дії зі ступенями.

Тема " Ступінь та її властивості "включає три питання:

  • Визначення ступеня із натуральним показником.
  • Множення та поділ ступенів.
  • Зведення у ступінь твору та ступеня.

Контрольні питання

  1. Сформулюйте визначення ступеня з натуральним показником 1. Наведіть приклад.
  2. Сформулюйте визначення ступеня показника 1. Наведіть приклад.
  3. Яким є порядок виконання дій при обчисленні значення виразу, що містить ступеня?
  4. Сформулюйте основну властивість ступеня. Наведіть приклад.
  5. Сформулюйте правило множення ступенів з однаковими основами. Наведіть приклад.
  6. Сформулюйте правило поділу ступенів з однаковими основами. Наведіть приклад.
  7. Сформулюйте правило зведення ступінь твору. Наведіть приклад. Доведіть тотожність (ab) n = a n b n .
  8. Сформулюйте правило зведення ступеня до ступеня. Наведіть приклад. Доведіть тотожність (а m) n = m n .

Визначення ступеня.

Ступенем числа aз натуральним показником n, Великим 1, називається добуток n множників, кожен з яких дорівнює а. Ступенем числа аз показником 1 називається саме число а.

Ступінь з основою ата показником nзаписується так: а n. Читається “ ау ступені n”; У n- я ступінь числа а ”.

За визначенням ступеня:

а 4 = а а а а

. . . . . . . . . . . .

Знаходження значення ступеня називають зведенням у ступінь .

1. Приклади зведення у ступінь:

3 3 = 3 3 3 = 27

0 4 = 0 0 0 0 = 0

(-5) 3 = (-5) (-5) (-5) = -125

25 ; 0,09 ;

25 = 5 2 ; 0,09 = (0,3) 2 ; .

27 ; 0,001 ; 8 .

27 = 3 3 ; 0,001 = (0,1) 3 ; 8 = 2 3 .

4. Знайти значення виразів:

а) 3 10 3 = 3 10 10 10 = 3 1000 = 3000

б) -2 4 + (-3) 2 = 7
2 4 = 16
(-3) 2 = 9
-16 + 9 = 7

Варіант 1

а) 0,3 0,3 0,3

в) b b b b b b b b

г) (-х) (-х) (-х) (-х)

д) (ab) (ab) (ab)

2. Подайте у вигляді квадрата числа:

3. Подайте у вигляді куба числа:

4. Знайти значення виразів:

в) -1 4 + (-2) 3

г) -4 3 + (-3) 2

д) 100 - 5 2 4

Збільшення ступенів.

Для будь-якого числа а та довільних чисел m і n виконується:

a m a n = a m + n.

Доведення:

Правило : При множенні ступенів з однаковими основами основи залишають тим самим, а показники ступенів складають.

a m a n a k = a m + n a k = a (m + n) + k = a m + n + k

а) х 5 х 4 = х 5 + 4 = х 9

б) y y 6 = y 1 y 6 = y 1 + 6 = y 7

в) b 2 b 5 b 4 = b 2 + 5 + 4 = b 11

г) 3 4 9 = 3 4 3 2 = 3 6

д) 0,01 0,1 3 = 0,1 2 0,1 3 = 0,1 5

а) 2 3 2 = 2 4 = 16

б) 3 2 3 5 = 3 7 = 2187

Варіант 1

1. Подати у вигляді ступеня:

а) х 3 х 4 е) х 2 х 3 х 4

б) а 6 а 2 ж) 3 3 9

в) у 4 у з) 7 4 49

г) а а 8 і) 16 2 7

д) 2 3 2 4 к) 0,3 3 0,09

2. Подати у вигляді ступеня та знайти значення за таблицею:

а) 2 2 2 3 в) 8 2 5

б) 3 4 3 2 г) 27 243

Розподіл ступенів.

Для будь-якого числа а0 і довільних натуральних чисел m і n таких, що m>n виконується:

a m: a n = a m - n

Доведення:

a m - n a n = a (m - n) + n = a m - n + n = a m

за визначенням приватного:

a m: a n = a m - n.

Правило: При розподілі ступенів з однаковими основами основу залишають колишньою, а з показника діленого ступеня віднімають показник ступеня дільника.

Визначення: Ступінь числа а, не рівного нулю, з нульовим показником дорівнює одиниці:

т.к. а n: a n = 1 при а0.

а) х 4: х 2 = х 4 - 2 = х 2

б) у 8: у 3 = у 8 - 3 = у 5

в) а 7: а = а 7: а 1 = а 7 - 1 = а 6

г) з 5: з 0 = з 5: 1 = з 5

а) 5 7:5 5 = 5 2 = 25

б) 10 20:10 17 = 10 3 = 1000

в)

г)

д)

Варіант 1

1. Подайте у вигляді ступеня приватне:

2. Знайдіть значення виразів:

Зведення у ступінь твору.

Для будь-яких а та b і довільного натурального числа n:

(ab) n = a n b n

Доведення:

За визначенням ступеня

(ab) n =

Згрупувавши окремо множники а та множники b, отримаємо:

=

Доведена властивість ступеня твору поширюється на ступінь твору трьох та більше множників.

Наприклад:

(a b c) n = a n b n c n;

(a b c d) n = a n b n c n d n .

Правило: При зведенні у ступінь твору зводять у цей ступінь кожен множник і результат перемножують

1. Звести до ступеня:

а) (a b) 4 = a 4 b 4

б) (2 х у) 3 = 2 3 х 3 у 3 = 8 х 3 у 3

в) (3 а) 4 = 3 4 а 4 = 81 а 4

г) (-5 у) 3 = (-5) 3 у 3 = -125 у 3

д) (-0,2 х у) 2 = (-0,2) 2 х 2 у 2 = 0,04 х 2 у 2

е) (-3 a b c) 4 = (-3) 4 a 4 b 4 c 4 = 81 a 4 b 4 c 4

2. Знайти значення виразу:

а) (2 10) 4 = 2 4 10 4 = 16 1000 = 16000

б) (3 5 20) 2 = 3 2 100 2 = 9 10000 = 90000

в) 2 4 5 4 = (2 5) 4 = 10 4 = 10000

г) 0,25 11 4 11 = (0,25 4) 11 = 1 11 = 1

д)

Варіант 1

1. Звести до ступеня:

б) (2 а с) 4

д) (-0,1 х у) 3

2. Знайти значення виразу:

б) (5 7 20) 2

Зведення у ступінь ступеня.

Для будь-якого числа а та довільних натуральних чисел m і n:

(а m) n = а m n

Доведення:

За визначенням ступеня

(а m) n =

Правило: При зведенні ступеня в ступінь основу залишають тим самим, а показники перемножують.

1. Звести до ступеня:

(а 3) 2 = а 6 (х 5) 4 = х 20

(у 5) 2 = у 10 (b 3) 3 = b 9

2. Спростіть вирази:

а) а 3 (а 2) 5 = а 3 а 10 = а 13

б) (b 3) 2 b 7 = b 6 b 7 = b 13

в) (х 3) 2 (х 2) 4 = х 6 х 8 = х 14

г) (у 7) 3 = (у 8) 3 = у 24

а)

б)

Варіант 1

1. Звести до ступеня:

а) (а 4) 2 б) (х 4) 5

в) (у 3) 2 г) (b 4) 4

2. Спростіть вирази:

а) а 4 (а 3) 2

б) (b 4) 3 b 5+

в) (х 2) 4 (х 4) 3

г) (у 9) 2

3. Знайдіть значення виразів:

додаток

Визначення ступеня.

Варіант 2

1ю Запишіть твір у вигляді ступеня:

а) 0,4 0,4 ​​0,4

в) а а а а а а а а

г) (-у) (-у) (-у) (-у)

д) (bс) (bс) (bс)

2. Подайте у вигляді квадрата числа:

3. Подайте у вигляді куба числа:

4. Знайти значення виразів:

в) -1 3 + (-2) 4

г) -6 2 + (-3) 2

д) 4 5 2 – 100

Варіант 3

1. Запишіть твір у вигляді ступеня:

а) 0,5 0,5 0,5

в) с с с с с с с

г) (-х) (-х) (-х) (-х)

д) (ab) (ab) (ab)

2. Подайте у вигляді квадрата числа: 100; 0,49; .

3. Подайте у вигляді куба числа:

4. Знайти значення виразів:

в) -1 5 + (-3) 2

г) -5 3 + (-4) 2

д) 5 4 2 - 100

Варіант 4

1. Запишіть твір у вигляді ступеня:

а) 0,7 0,7 0,7

в) х х х х х х

г) (-а) (-а) (-а)

д) (bс) (bс) (bс) (bc)

2. Подайте у вигляді квадрата числа:

3. Подайте у вигляді куба числа:

4. Знайти значення виразів:

в) -1 4 + (-3) 3

г) -3 4 + (-5) 2

д) 100 - 3 2 5

Збільшення ступенів.

Варіант 2

1. Подати у вигляді ступеня:

а) х 4 x 5 е) х 3 х 4 х 5

б) а 7 а 3 ж) 2 3 4

в) у 5 у з) 4 3 16

г) а 7 і) 4 2 5

д) 2 2 2 5 к) 0,2 3 0,04

2. Подати у вигляді ступеня та знайти значення за таблицею:

а) 3 2 3 3 в) 16 2 3

б) 2 4 2 5 г) 9 81

Варіант 3

1. Подати у вигляді ступеня:

а) а 3 а 5 е) у 2 у 4 у 6

б) х 4 х 7 ж) 3 5 9

в) b 6 b з) 5 3 25

г) у 8 і) 49 7 4

д) 2 3 2 6 к) 0,3 4 0,27

2. Подати у вигляді ступеня та знайти значення за таблицею:

а) 3 3 3 4 в) 27 3 4

б) 2 4 2 6 г) 16 64

Варіант 4

1. Подати у вигляді ступеня:

а) а 6 а 2 е) х 4 х х 6

б) х 7 х 8 ж) 3 4 27

в) у 6 у з) 4 3 16

г) х х 10 і) 36 6 3

д) 2 4 2 5 к) 0,2 2 0,008

2. Подати у вигляді ступеня та знайти значення за таблицею:

а) 2 6 2 3 в) 64 2 4

б) 3 5 3 2 г) 81 27

Розподіл ступенів.

Варіант 2

1. Подайте у вигляді ступеня приватне:

2. Знайдіть значення виразів.

Наведено основні властивості статечної функції, включаючи формули та властивості коренів. Представлені похідна, інтеграл, розкладання в статечний ряд і подання за допомогою комплексних чисел статечної функції.

Визначення

Визначення
Ступінна функція з показником ступеня p- це функція f (x) = x pзначення якої в точці x дорівнює значенню показової функції з основою x в точці p .
Крім цього, f (0) = 0 p = 0при p> 0 .

Для натуральних значень показника, статечна функція є добуток n чисел, рівних x:
.
Вона визначена всім дійсних .

Для позитивних раціональних значень показника, статечна функція є добуток n коренів ступеня m з числа x:
.
Для непарних m вона визначена для всіх дійсних x . Для парних m, статечна функція визначена для невід'ємних.

Для негативних , статечна функція визначається за формулою:
.
Тому вона не визначена у точці.

Для ірраціональних значень показника p статечна функція визначається за формулою:
,
де a - довільне позитивне число, що не дорівнює одиниці: .
При , вона визначена для .
При , статечна функція визначена для .

Безперервність. Ступінна функція безперервна у своїй області визначення.

Властивості та формули статечної функції при x ≥ 0

Тут ми розглянемо властивості статечної функції при невід'ємних значеннях аргументу x. Як зазначено вище, при деяких значеннях показника p степенева функція визначена і для негативних значень x . У цьому випадку її властивості можна отримати з властивостей при , використовуючи парність або непарність. Ці випадки детально розглянуто та проілюстровано на сторінці « ».

Ступінна функція, y = x p, з показником p має такі властивості:
(1.1) визначена і безперервна на безлічі
при ,
при;
(1.2) має безліч значень
при ,
при;
(1.3) строго зростає при ,
суворо зменшується при ;
(1.4) при;
при;
(1.5) ;
(1.5*) ;
(1.6) ;
(1.7) ;
(1.7*) ;
(1.8) ;
(1.9) .

Доказ властивостей наводиться на сторінці «Ступінна функція (доказ безперервності та властивостей)»

Коріння - визначення, формули, властивості

Визначення
Корінь із числа x ступеня n- Це число, зведення якого в ступінь n дає x:
.
Тут n = 2, 3, 4, ... - Натуральне число, більше одиниці.

Також можна сказати, що корінь у складі x ступеня n - це корінь (тобто рішення) рівняння
.
Зауважимо, що функція є зворотною до функції .

Квадратний корінь із числа x- Це корінь ступеня 2: .

Кубічний корінь із числа x- Це корінь ступеня 3: .

Парний ступінь

Для парних ступенів n = 2 m, корінь визначений за x ≥ 0 . Часто використовується формула, справедлива як для позитивних, так і для негативних x:
.
Для квадратного кореня:
.

Тут важливий порядок, у якому виконуються операції - тобто спочатку виробляється зведення у квадрат, у результаті виходить неотрицательное число, та був із нього витягується корінь (з неотрицательного числа можна витягувати квадратний корінь). Якби змінили порядок: , то за негативних x корінь було б визначено, разом із не визначено і весь вираз.

Непарний ступінь

Для непарних ступенів корінь визначений для всіх x :
;
.

Властивості та формули коріння

Корінь з x є статечною функцією:
.
При x ≥ 0 мають місце такі формули:
;
;
, ;
.

Ці формули можуть бути застосовні і за негативних значеннях змінних . Потрібно лише стежити, щоб підкорене вираз парних ступенів був негативним.

Приватні значення

Корінь 0 дорівнює 0: .
Корінь 1 дорівнює 1: .
Квадратний корінь 0 дорівнює 0: .
Квадратний корінь 1 дорівнює 1: .

приклад. Корінь з коріння

Розглянемо приклад квадратного кореня з коріння:
.
Перетворимо внутрішній квадратний корінь, застосовуючи наведені вище формули:
.
Тепер перетворимо вихідний корінь:
.
Отже,
.

y = x p при різних значеннях показника p.

Тут наводяться графіки функції при невід'ємних значеннях аргументу x. Графіки статечної функції, визначеної при негативних значеннях x, наводяться на сторінці «Ступінна функція, її властивості та графіки»

Зворотня функція

Зворотною для статечної функції з показником p є статечна функція з показником 1/p.

Якщо то .

Похідна статечної функції

Похідна n-го порядку:
;

Висновок формул > > >

Інтеграл від статечної функції

P ≠ - 1 ;
.

Розкладання в статечний ряд

При - 1 < x < 1 має місце наступне розкладання:

Вирази через комплексні числа

Розглянемо функцію комплексного змінного z:
f (z) = z t.
Виразимо комплексну змінну z через модуль r та аргумент φ (r = |z|):
z = r e i φ.
Комплексне число t представимо у вигляді дійсної та уявної частин:
t = p + i q.
Маємо:

Далі врахуємо, що аргумент φ визначено неоднозначно:
,

Розглянемо випадок, коли q = 0 , Тобто показник ступеня - дійсне число, t = p. Тоді
.

Якщо p – ціле, те й kp – ціле. Тоді, через періодичність тригонометричних функцій:
.
Тобто показова функція при цілому показнику ступеня для заданого z має тільки одне значення і тому є однозначною.

Якщо p - ірраціональне, то твори kp за жодного k не дають цілого числа. Оскільки k пробігає нескінченний ряд значень k = 0, 1, 2, 3, ..., то функція z p має нескінченно багато значень. Щоразу, коли аргумент z отримує приріст 2 π(один оборот), ми переходимо на нову галузь функції.

Якщо p - раціональне, то його можна подати у вигляді:
, де m, n- Цілі, що не містять спільних дільників. Тоді
.
Перші n величин при k = k 0 = 0, 1, 2, ... n-1, дають n різних значень kp:
.
Однак наступні величини дають значення, що відрізняються від попередніх на ціле число. Наприклад, при k = k 0 + nмаємо:
.
Тригонометричні функції, аргументи яких різняться на величини, кратні 2 πмають рівні значення. Тому при подальшому збільшенні ми отримуємо ті ж значення z p , що і для k = k 0 = 0, 1, 2, ... n-1.

Таким чином, показова функція з раціональним показником ступеня є багатозначною та має n значень (гілок). Щоразу, коли аргумент z отримує приріст 2 π(один оборот), ми переходимо на нову галузь функції. Через n таких оборотів ми повертаємось на першу гілку, з якої починався відлік.

Зокрема, корінь ступеня n має значення n. Як приклад розглянемо корінь n-го ступеня дійсного позитивного числа z = x. У цьому випадку φ 0 = 0, z = r = | z | = x, .
.
Так, для квадратного кореня, n = 2 ,
.
Для парних k, (-1) k = 1. Для непарних k, (- 1) k = - 1.
Тобто квадратний корінь має два значення: + та - .

Використана література:
І.М. Бронштейн, К.А. Семендяєв, Довідник з математики для інженерів та учнів втузів, «Лань», 2009.



Останні матеріали розділу:

Список відомих масонів Закордонні знамениті масони
Список відомих масонів Закордонні знамениті масони

Присвячується пам'яті митрополита Санкт-Петербурзького та Ладозького Іоанна (Сничова), який благословив мою працю з вивчення підривної антиросійської...

Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету
Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету

25 Московських коледжів увійшли до рейтингу "Топ-100" найкращих освітніх організацій Росії. Дослідження проводилося міжнародною організацією...

Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»
Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»

Вже довгий час серед чоловіків ходить закон: якщо назвати його таким можна, цього не може знати ніхто, чому ж вони не стримують свої обіцянки. По...