Рівняння по теоремі вієта приклади. Як вирішувати рівняння з теореми вієта з математики

Практично будь-яке квадратне рівняння можна перетворити до виду. Однак це можливо, якщо спочатку розділити кожне доданок на коефіцієнт перед. Крім того, можна ввести нове позначення:

\[(\frac(b)(a))= p\] і \[(\frac(c)(a)) = q\]

Завдяки чому будемо мати рівняння, що зветься в математиці наведеним квадратним рівнянням. Коріння даного рівняння і коефіцієнти взаємопов'язані між собою, що підтверджено теоремою Вієта.

Теорема Вієта: Сума коренів наведеного квадратного рівняння \ дорівнює другому коефіцієнту \ взятому з протилежним знаком, а добуток коренів - вільному члену \

Для наочності вирішимо рівняння такого виду:

Вирішимо це квадратне рівняння за допомогою виписаних правил. Проаналізувавши вихідні дані, можна зробити висновок, що рівняння матиме два різні корені, оскільки:

Тепер із усіх множників числа 15 (1 і 15, 3 і 5) вибираємо ті, різниця яких дорівнює 2. Під цю умову потрапляють числа 3 і 5. Перед меншим числом ставимо знак "мінус". Таким чином, отримаємо коріння рівняння.

Відповідь: \[x_1=-3 та x_2=5\]

Де можна вирішити рівняння за теоремою Вієта онлайн?

Вирішити рівняння можна на нашому сайті https://сайт. Безкоштовний онлайн вирішувач дозволить вирішити рівняння онлайн будь-якої складності за лічені секунди. Все, що вам необхідно зробити – це просто ввести свої дані у вирішувачі. Також ви можете переглянути відео інструкцію та дізнатися, як вирішити рівняння на нашому сайті. А якщо у вас залишилися питання, ви можете задати їх у нашій групі Вконтакте http://vk.com/pocketteacher. Вступайте до нашої групи, ми завжди раді допомогти вам.

При вивченні способів розв'язання рівнянь другого порядку в шкільному алгебри курсі, розглядають властивості отриманих коренів. Вони зараз відомі під назвою теореми Вієта. Приклади використання її наводяться у цій статті.

Квадратне рівняння

Рівняння другого порядку являє собою рівність, яка показана на фото нижче.

Тут символи a, b, c є деякими числами, що мають назву коефіцієнтів рівняння, що розглядається. Щоб розв'язати рівність, необхідно знайти такі значення x, які роблять його істинним.

Зауважимо, що оскільки максимальне значення ступеня, в яку зводиться ікс, дорівнює двом, тоді кількість коренів у загальному випадку також дорівнює двом.

Для розв'язання цього рівнянь існує кілька способів. У цій статті розглянемо один із них, який передбачає використання так званої теореми Вієта.

Формулювання теореми Вієта

Наприкінці XVI відомий математик Франсуа Вієт (француз) помітив, аналізуючи властивості коренів різних квадратних рівнянь, що певні комбінації їх задовольняють конкретним співвідношенням. Зокрема, цими комбінаціями є їхній твір та сума.

Теорема Вієта встановлює наступне: коріння квадратного рівняння при їх сумі дають відношення коефіцієнтів лінійного до квадратичного взяте зі зворотним знаком, а при їх добутку призводять до відношення вільного члена до квадратичного коефіцієнта.

Якщо загальний вигляд рівняння записано так, як це представлено на фото у попередньому розділі статті, тоді математично цю теорему можна записати у вигляді двох рівностей:

  • r 2 + r 1 = -b/a;
  • r 1 х r 2 = c/a.

Де r 1 , r 2 - це значення коренів рівняння, що розглядається.

Наведені дві рівності можна використовувати для вирішення низки різних математичних завдань. Використання теореми Вієта у прикладах із рішенням наведено у наступних розділах статті.

2.5 Формула Вієта для багаточленів (рівнянь) вищих ступенів

Формули, виведені Вієтом для квадратних рівнянь, вірні і багаточленів вищих ступенів.

Нехай багаточлен

P(x) = a 0 x n + a 1 x n -1 + … + a n

Має n різних коренів x 1 x 2 … x n .

У цьому випадку він має розкладання на множники виду:

a 0 x n + a 1 x n-1 + ... + a n = a 0 (x - x 1) (x - x 2) ... (x - x n)

Розділимо обидві частини цієї рівності на a 0 0 і розкриємо в першій частині дужки. Отримаємо рівність:

x n + ()x n -1 + … + () = x n – (x 1 + x 2 + … + x n) x n -1 + (x 1 x 2 + x 2 x 3 + … + x n -1 x n)x n - 2 + … + (-1) n x 1 x 2 … x n

Але два многочлена тотожно рівні тому й лише тому випадку, коли коефіцієнти при однакових ступенях рівні. Звідси випливає, що виконується рівність

x 1 + x 2 + … + x n = -

x 1 x 2 + x 2 x 3 + … + x n -1 x n =

x 1 x 2 … x n = (-1) n


Наприклад, для багаточленів третього ступеня

a 0 x³ + a 1 x² + a 2 x + a 3

Маємо тотожності

x 1 + x 2 + x 3 = -

x 1 x 2 + x 1 x 3 + x 2 x 3 =

x 1 x 2 x 3 = -

Як і квадратних рівнянь, цю формулу називають формулами Виета. Ліві частини цих формул є симетричними многочленами від коренів x 1 , x 2 …, x n даного рівняння, а праві частини виражаються через коефіцієнт многочлена.

2.6 Рівняння, що зводяться до квадратних (біквадратні)

До квадратних рівнянь зводяться рівняння четвертого ступеня:

ax 4 + bx 2 + c = 0,

звані біквадратними, причому, а ≠ 0.

Достатньо покласти в цьому рівнянні х 2 = y, отже,

ay² + by + c = 0

знайдемо коріння отриманого квадратного рівняння


y 1,2 =

Щоб знайти відразу коріння х 1, x 2, x 3, x 4 замінимо y на x і отримаємо

x² =

х 1,2,3,4 = .

Якщо рівняння четвертого ступеня має х 1 то має і корінь х 2 = -х 1

Якщо має х 3 то х 4 = - х 3 . Сума коренів такого рівняння дорівнює нулю.

2х 4 - 9x² + 4 = 0

Підставимо рівняння у формулу коренів біквадратних рівнянь:

х 1,2,3,4 = ,

знаючи, що х 1 = -х 2 , а х 3 = -х 4 то:

х 3,4 =

Відповідь: х 1,2 = ±2; х 1,2 =


2.7 Дослідження біквадратних рівнянь

Візьмемо біквадратне рівняння

ax 4 + bx 2 + c = 0,

де a, b, c – дійсні числа, причому а > 0. Ввівши допоміжну невідому y = x², досліджуємо коріння даного рівняння, і результати занесемо до таблиці (див. додаток №1)

2.8 Формула Кардано

Якщо скористатися сучасною символікою, то висновок формули Кардано може мати такий вигляд:

х =

Ця формула визначає коріння загального рівняння третього ступеня:

ax3+3bx2+3cx+d=0.

Ця формула дуже громіздка і складна (вона містить кілька складних радикалів). Вона завжди застосовуватися, т.к. дуже складна для заповнення.


F ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка . Пример 3.22. Найти экстремумы функции f(x) ...

Список або вибрати з 2-3 текстів найцікавіші місця. Таким чином, ми розглянули загальні положення щодо створення та проведення курсів, які будуть враховані при розробці курсу з алгебри для 9 класу «Квадратні рівняння та нерівності з параметром». Розділ II. Методика проведення елективного курсу «Квадратні рівняння та нерівності з параметром» 1.1. Загальні...

Рішення від чисельних методів розрахунку. Для визначення коренів рівняння не потрібно знання теорій груп Абеля, Галуа, Лі та ін. та застосування спеціальної математичної термінології: кілець, полів, ідеалів, ізоморфізмів тощо. Для вирішення рівняння алгебри n - ой ступеня потрібно тільки вміння вирішувати квадратні рівняння і видобувати коріння з комплексного числа. Коріння може бути визначено з...



З одиницями вимірів фізичних величин у системі MathCAD? 11. Докладно охарактеризуйте текстові, графічні та математичні блоки. Лекція №2. Завдання лінійної алгебри та вирішення диференціальних рівнянь у середовищі MathCAD У завданнях лінійної алгебри практично завжди виникає необхідність виконувати різні операції з матрицями. Панель операторів із матрицями знаходиться на панелі Math. ...

Теорема Вієта (точніше, теорема, обернена до теореми Вієта) дозволяє скоротити час на розв'язання квадратних рівнянь. Тільки треба вміти нею користуватися. Як навчитися вирішувати квадратні рівняння з теореми Вієта? Це нескладно, якщо трохи поміркувати.

Зараз ми говоритимемо лише про рішення за теоремою Вієта наведеного квадратного рівняння. Наведене квадратне рівняння — це рівняння, в якому a, тобто коефіцієнт перед x², дорівнює одиниці. Не наведені квадратні рівняння вирішити за теоремою Вієта теж можна, але там уже, як мінімум, одне з коренів — не ціле число. Їх вгадувати складніше.

Теорема, обернена теоремі Вієта, говорить: якщо числа x1 і x2 такі, що

то x1 і x2 - коріння квадратного рівняння

При розв'язанні квадратного рівняння за теоремою Вієта можливі лише 4 варіанти. Якщо запам'ятати хід міркувань, знаходити ціле коріння можна навчитися дуже швидко.

I. Якщо q - позитивне число,

це означає, що коріння x1 та x2 — числа однакового знака (оскільки лише при множенні чисел з однаковими знаками виходить позитивне число).

І.а. Якщо -p - позитивне число, (відповідно, p<0), то оба корня x1 и x2 — положительные числа (поскольку складывали числа одного знака и получили положительное число).

I.b. Якщо -p - Негативне число, (відповідно, p>0), то обидва корені - негативні числа (складали числа одного знака, отримали негативне число).

ІІ. Якщо q - від'ємне число,

це означає, що коріння x1 і x2 мають різні знаки (при множенні чисел від'ємне число виходить лише у випадку, коли знаки у множників різні). У цьому випадку x1+x2 є вже не сумою, а різницею (адже при додаванні чисел з різними знаками ми віднімаємо з більшого за модулем менше). Тому x1+x2 показує, на скільки одне відрізняється коріння x1 і x2, тобто, на скільки один корінь більше за інший (за модулем).

II.a. Якщо -p - позитивне число, (тобто p<0), то больший (по модулю) корень — положительное число.

II.b. Якщо -p - Негативне число, (p>0), то більший (за модулем) корінь - від'ємне число.

Розглянемо розв'язання квадратних рівнянь за теоремою Вієта на прикладах.

Розв'язати наведене квадратне рівняння за теоремою Вієта:

Тут q=12>0, тому коріння x1 і x2 числа одного знака. Їхня сума дорівнює -p=7>0, тому обидва корені — позитивні числа. Підбираємо цілі числа, добуток яких дорівнює 12. Це 1 і 12, 2 і 6, 3 і 4. Сума дорівнює 7 у пари 3 і 4. Отже, 3 і 4 — коріння рівняння.

У цьому прикладі q=16>0, отже, коріння x1 і x2 — числа одного знака. Їхня сума -p=-10<0, поэтому оба корня — отрицательные числа. Подбираем числа, произведение которых равно 16. Это 1 и 16, 2 и 8, 4 и 4. Сумма 2 и 8 равна 10, а раз нужны отрицательные числа, то искомые корни — это -2 и -8.

Тут q=-15<0, что означает, что корни x1 и x2 — числа разных знаков. Поэтому 2 — это уже не их сумма, а разность, то есть числа отличаются на 2. Подбираем числа, произведение которых равно 15, отличающиеся на 2. Произведение равно 15 у 1 и 15, 3 и 5. Отличаются на 2 числа в паре 3 и 5. Поскольку -p=2>0, то більша кількість позитивна. Отже, коріння 5 та -3.

q=-36<0, значит, корни x1 и x2 имеют разные знаки. Тогда 5 — это то, насколько отличаются x1 и x2 (по модулю, то есть пока что без учета знака). Среди чисел, произведение которых равно 36: 1 и 36, 2 и 18, 3 и 12, 4 и 9 — выбираем пару, в которой числа отличаются на 5. Это 4 и 9. Осталось определить их знаки. Поскольку -p=-5<0, бОльшее число имеет знак минус. Поэтому корни данного уравнения равны -9 и 4.

У квадратних рівняннях існує низка співвідношень. Основними є відносини між корінням та коефіцієнтами. Також у квадратних рівняннях працює ряд співвідношень, які задаються теоремою Вієта.

У цій темі ми наведемо саму теорему Вієта та її доказ для квадратного рівняння, теорему, обернену до теореми Вієта, розберемо ряд прикладів розв'язання задач. Особливу увагу в матеріалі ми приділимо розгляду формул Вієта, які задають зв'язок між дійсним корінням рівняння алгебри ступеня nта його коефіцієнтами.

Формулювання та доказ теореми Вієта

Формула коренів квадратного рівняння a · x 2 + b · x + c = 0виду x 1 = - b + D 2 · a , x 2 = - b - D 2 · a де D = b 2 − 4 · a · c, встановлює співвідношення x 1 + x 2 = - b a, x 1 · x 2 = c a. Це підтверджує і теорема Вієта.

Теорема 1

У квадратному рівнянні a · x 2 + b · x + c = 0, де x 1і x 2– коріння, сума коренів дорівнюватиме співвідношення коефіцієнтів bі a, яке було взято з протилежним знаком, а добуток коренів дорівнюватиме відношенню коефіцієнтів cі a, тобто. x 1 + x 2 = - b a, x 1 · x 2 = c a.

Доказ 1

Пропонуємо вам наступну схему проведення доказу: візьмемо формулу коренів, складемо суму і добуток коренів квадратного рівняння і потім перетворимо отримані вирази для того, щоб переконатися, що вони рівні - b aі c aвідповідно.

Складемо суму коренів x 1 + x 2 = - b + D 2 · a + - b - D 2 · a. Приведемо дроби до спільного знаменника - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a. Розкриємо дужки в чисельнику отриманого дробу і наведемо подібні доданки: - b + D + - b - D 2 · a = - b + D - b - D 2 · a = - 2 · b 2 · a . Скоротимо дріб на: 2 - ba = - ba .

Так ми довели перше співвідношення теореми Вієта, яке відноситься до суми коренів квадратного рівняння.

Тепер давайте перейдемо до другого співвідношення.

Для цього нам необхідно скласти добуток коренів квадратного рівняння: x 1 · x 2 = - b + D 2 · a · - b - D 2 · a .

Згадаймо правило множення дробів і запишемо останній твір наступним чином: - b + D · - b - D 4 · a 2 .

Проведемо в чисельнику дробу множення дужки на дужку або скористаємося формулою різниці квадратів для того, щоб перетворити цей твір швидше: - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 .

Скористаємося визначенням квадратного кореня для того, щоб здійснити наступний перехід: - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 . Формула D = b 2 − 4 · a · cвідповідає дискримінанту квадратного рівняння, отже, в дріб замість Dможна підставити b 2 − 4 · a · c:

b 2 - D 4 · a 2 = b 2 - (b 2 - 4 · a · c) 4 · a 2

Розкриємо дужки, наведемо подібні доданки та отримаємо: 4 · a · c 4 · a 2 . Якщо скоротити її на 4 · a, то залишається c a . Так ми довели друге співвідношення теореми Вієта для коріння.

Запис доказу теореми Вієта може мати дуже короткий вигляд, якщо опустити пояснення:

x 1 + x 2 = - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a = - 2 · b 2 · a = - b a , x 1 · x 2 = - b + D 2 · a · - b - D 2 · a = - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 = = D = b 2 - 4 · a · c = b 2 - b 2 - 4 · a · c 4 · a 2 = 4 · a · c 4 · a 2 = c a .

При дискримінанті квадратного рівняння рівному нулю рівняння матиме лише один корінь. Щоб мати можливість застосувати до такого рівняння теорему Вієта, ми можемо припустити, що рівняння при дискримінанті, що дорівнює нулю, має два однакові корені. Справді, за D = 0корінь квадратного рівняння дорівнює: - b 2 · a , тоді x 1 + x 2 = - b 2 · a + - b 2 · a = - b + (- b) 2 · a = - 2 · b 2 · a = - b a і x 1 · x 2 = - b 2 · a · - b 2 · a = - b · - b 4 · a 2 = b 2 4 · a 2 , а так як D = 0 , тобто b 2 - 4 · a · c = 0 , звідки b 2 = 4 · a · c , то b 2 4 · a 2 = 4 · a · c 4 · a 2 = c a .

Найчастіше на практиці теорема Вієта застосовується по відношенню до наведеного квадратного рівняння виду x 2 + p · x + q = 0де старший коефіцієнт a дорівнює 1 . У зв'язку з цим формулюють теорему Вієта саме для рівнянь такого виду. Це не обмежує спільності через те, що будь-яке квадратне рівняння може бути замінене рівносильним рівнянням. Для цього необхідно поділити обидві його частини на число a, відмінне від нуля.

Наведемо ще одне формулювання теореми Вієта.

Теорема 2

Сума коренів у наведеному квадратному рівнянні x 2 + p · x + q = 0дорівнюватиме коефіцієнту при x , який узятий з протилежним знаком, твір коренів дорівнюватиме вільному члену, тобто. x 1 + x 2 = − p, x 1 · x 2 = q.

Теорема, зворотна теоремі Вієта

Якщо уважно подивитися на друге формулювання теореми Вієта, то можна побачити, що для коріння x 1і x 2наведеного квадратного рівняння x 2 + p · x + q = 0будуть справедливі співвідношення x 1 + x 2 = − p, x 1 · x 2 = q. З цих співвідношень x 1 + x 2 = − p , x 1 · x 2 = q випливає, що x 1і x 2– це коріння квадратного рівняння x 2 + p · x + q = 0. Так ми приходимо до твердження, яке є оберненим теоремі Вієта.

Пропонуємо тепер оформити це твердження як теорему та провести її доказ.

Теорема 3

Якщо числа x 1і x 2такі, що x 1 + x 2 = − pі x 1 · x 2 = q, то x 1і x 2є корінням наведеного квадратного рівняння x 2 + p · x + q = 0.

Доказ 2

Заміна коефіцієнтів pі qна їх вираз через x 1і x 2дозволяє перетворити рівняння x 2 + p · x + q = 0у рівносильне йому .

Якщо в отримане рівняння підставити число x 1замість x, то ми отримаємо рівність x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = 0. Ця рівність за будь-яких x 1і x 2перетворюється на вірну числову рівність 0 = 0 , так як x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = x 1 2 − x 1 2 − x 2 · x 1 + x 1 · x 2 = 0. Це означає що x 1- корінь рівняння x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0, і що x 1також є коренем рівносильного йому рівняння x 2 + p · x + q = 0.

Підстановка рівняння x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0числа x 2замість x дозволяє здобути рівність x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = 0. Цю рівність можна вважати вірною, оскільки x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = x 2 2 − x 1 · x 2 − x 2 2 + x 1 · x 2 = 0. Виходить що x 2є коренем рівняння x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0, а значить, і рівняння x 2 + p · x + q = 0.

Теорема, обернена до теореми Вієта, доведена.

Приклади використання теореми Вієта

Давайте тепер приступимо до аналізу найбільш типових прикладів по темі. Почнемо з аналізу завдань, які вимагають застосування теореми, зворотної теоремі Вієта. Її можна застосовувати для перевірки чисел, отриманих під час обчислень, щодо того, чи є вони корінням заданого квадратного рівняння. Для цього необхідно обчислити їх суму та різницю, а потім перевірити справедливість співвідношень x 1 + x 2 = - b a , x 1 · x 2 = a c .

Виконання обох співвідношень свідчить, що числа, отримані під час обчислень, є корінням рівняння. Якщо ж ми бачимо, що хоча б одна з умов не виконується, то ці цифри не можуть бути корінням квадратного рівняння, даного за умови завдання.

Приклад 1

Яка з пар чисел 1) x 1 = − 5 , x 2 = 3 , або 2) x 1 = 1 - 3 , x 2 = 3 + 3, або 3) x 1 = 2 + 7 2 , x 2 = 2 - 7 2 є парою коренів квадратного рівняння 4 · x 2 − 16 · x + 9 = 0?

Рішення

Знайдемо коефіцієнти квадратного рівняння 4 · x 2 - 16 · x + 9 = 0 .Це a = 4, b = − 16, c = 9. Відповідно до теореми Вієта сума коренів квадратного рівняння повинна дорівнювати - b a, тобто, 16 4 = 4 , а добуток коренів має бути рівним c a, тобто, 9 4 .

Перевіримо отримані числа, обчисливши суму та добуток чисел із трьох заданих пар та порівнявши їх з отриманими значеннями.

В першому випадку x 1 + x 2 = − 5 + 3 = − 2. Це значення відмінно від 4, отже, перевірку можна продовжувати. Відповідно до теореми, зворотної теоремі Вієта, можна одразу зробити висновок про те, що перша пара чисел не є корінням даного квадратного рівняння.

У другий випадок x 1 + x 2 = 1 - 3 + 3 + 3 = 4 . Ми бачимо, що перша умова виконується. А ось друга умова немає: x 1 · x 2 = 1 - 3 · 3 + 3 = 3 + 3 - 3 · 3 - 3 = - 2 · 3 . Значення, яке ми отримали, відмінне від 9 4 . Це означає, що друга пара чисел не є корінням квадратного рівняння.

Перейдемо до розгляду третьої пари. Тут x 1 + x 2 = 2 + 7 2 + 2 - 7 2 = 4 і x 1 · x 2 = 2 + 7 2 · 2 - 7 2 = 2 2 - 7 2 2 = 4 - 7 4 = 16 4 - 7 4 = 9 4 . Виконуються обидві умови, а це означає, що x 1і x 2є корінням заданого квадратного рівняння.

Відповідь: x 1 = 2 + 7 2 , x 2 = 2 - 7 2

Ми також можемо використовувати теорему, обернену до теореми Вієта, для підбору коренів квадратного рівняння. Найбільш простий спосіб - це підбір цілих коренів наведених квадратних рівнянь із цілими коефіцієнтами. Можна й інші варіанти. Але це може суттєво ускладнити проведення обчислень.

Для підбору коренів ми використовуємо те що, що й сума двох чисел дорівнює другому коефіцієнту квадратного рівняння, взятому зі знаком мінус, а добуток цих чисел дорівнює вільному члену, ці цифри є корінням даного квадратного рівняння.

Приклад 2

Як приклад використовуємо квадратне рівняння x 2 − 5 · x + 6 = 0. Числа x 1і x 2можуть бути корінням цього рівняння у тому випадку, якщо виконуються дві рівності x 1 + x 2 = 5і x 1 · x 2 = 6. Підберемо такі числа. Це числа 2 і 3, оскільки 2 + 3 = 5 і 2 · 3 = 6. Виходить, що 2 та 3 – коріння даного квадратного рівняння.

Теорему, обернену до теореми Вієта, можна використовувати для знаходження другого кореня, коли перший відомий або очевидний. Для цього ми можемо використовувати співвідношення x 1 + x 2 = - a, x 1 · x 2 = a.

Приклад 3

Розглянемо квадратне рівняння 512 · x 2 − 509 · x − 3 = 0. Необхідно знайти коріння цього рівняння.

Рішення

Першим коренем рівняння є 1, оскільки сума коефіцієнтів цього квадратного рівняння дорівнює нулю. Виходить що x 1 = 1.

Тепер знайдемо друге коріння. Для цього можна використати співвідношення x 1 · x 2 = c a. Виходить що 1 · x 2 = − 3 512, звідки x 2 = - 3512.

Відповідь:коріння заданого за умови завдання квадратного рівняння 1 і - 3 512 .

Підбирати коріння, використовуючи теорему, обернену до теореми Вієта, можна лише у простих випадках. В інших випадках краще проводити пошук із використанням формули коренів квадратного рівняння через дискримінант.

Завдяки теоремі, зворотній теоремі Вієта, ми також можемо складати квадратні рівняння за наявним корінням x 1і x 2. Для цього нам необхідно обчислити суму коренів, яка дає коефіцієнт при xз протилежним знаком наведеного квадратного рівняння, та добуток коріння, яке дає вільний член.

Приклад 4

Напишіть квадратне рівняння, корінням якого є числа − 11 і 23 .

Рішення

Приймемо, що x 1 = − 11і x 2 = 23. Сума та добуток цих чисел дорівнюватимуть: x 1 + x 2 = 12і x 1 · x 2 = − 253. Це означає, що другий коефіцієнт - 12 , вільний член − 253.

Складаємо рівняння: x 2 − 12 · x − 253 = 0.

Відповідь: x 2 − 12 · x − 253 = 0 .

Ми можемо використовувати теорему Вієта для вирішення завдань, пов'язаних із знаками коренів квадратних рівнянь. Зв'язок між теоремою Вієта пов'язаний зі знаками коренів наведеного квадратного рівняння x 2 + p · x + q = 0наступним чином:

  • якщо квадратне рівняння має дійсне коріння і якщо вільний член qє позитивним числом, то це коріння матиме однаковий знак «+» або «-»;
  • якщо квадратне рівняння має коріння і якщо вільний член qє негативним числом, один корінь буде « + » , а другий « - » .

Обидва ці твердження є наслідком формули x 1 · x 2 = qта правила множення позитивних та негативних чисел, а також чисел із різними знаками.

Приклад 5

Чи є коріння квадратного рівняння x 2 − 64 · x − 21 = 0позитивними?

Рішення

По теоремі Вієта коріння даного рівняння не може бути обидва позитивними, тому що для них має виконуватися рівність x 1 · x 2 = − 21. Це неможливо за позитивних x 1і x 2.

Відповідь:Ні

Приклад 6

При яких значеннях параметра rквадратне рівняння x 2 + (r + 2) · x + r − 1 = 0матиме два дійсні корені з різними знаками.

Рішення

Почнемо з того, що знайдемо значення яких r, при яких у рівнянні буде два корені. Знайдемо дискримінант і подивимося, за яких умов rвін прийматиме позитивні значення. D = (r + 2) 2 − 4 · 1 · (r − 1) = r 2 + 4 · r + 4 − 4 · r + 4 = r 2 + 8. Значення виразу r 2 + 8позитивно за будь-яких дійсних r, отже, дискримінант буде більше нуля за будь-яких дійсних r. Це означає, що вихідне квадратне рівняння матиме два корені за будь-яких дійсних значень параметра r.

Тепер подивимося, коли коріння матиме різні знаки. Це можливо, якщо їх твір буде негативним. Відповідно до теореми Виета добуток коренів наведеного квадратного рівняння дорівнює вільному члену. Значить, правильним рішенням будуть ті значення r, При яких вільний член r − 1 негативний. Розв'яжемо лінійну нерівність r − 1< 0 , получаем r < 1 .

Відповідь:при r< 1 .

Формули Вієта

Існує ряд формул, які застосовні для здійснення дій з корінням та коефіцієнтами не тільки квадратних, але також кубічних та інших видів рівнянь. Їх називають формулами Вієта.

Для рівняння алгебри ступеня nвиду a 0 · x n + a 1 · x n - 1 +. . . + a n - 1 · x + a n = 0 вважається, що рівняння має nдійсних коренів x 1 , x 2 , … , x n, Серед яких можуть бути збігаються:
x 1 + x 2 + x 3 +. . . + x n = - a 1 a 0, x 1 · x 2 + x 1 · x 3 +. . . + x n - 1 · x n = a 2 a 0, x 1 · x 2 · x 3 + x 1 · x 2 · x 4 +. . . + x n - 2 · x n - 1 · x n = - a 3 a 0 . . . x 1 · x 2 · x 3 · . . . · x n = (- 1) n · a n a 0

Визначення 1

Отримати формули Вієта нам допомагають:

  • теорема про розкладання многочлена на лінійні множники;
  • визначення рівних многочленів через рівність їх відповідних коефіцієнтів.

Так, многочлен a 0 x n + a 1 x n - 1 + . . . + a n - 1 · x + a n та його розкладання на лінійні множники виду a 0 · (x - x 1) · (x - x 2) · . . . · (X - x n) рівні.

Якщо ми розкриваємо дужки в останньому творі та прирівнюємо відповідні коефіцієнти, то одержуємо формули Вієта. Прийнявши n = 2 ми можемо отримати формулу Вієта для квадратного рівняння: x 1 + x 2 = - a 1 a 0 , x 1 · x 2 = a 2 a 0 .

Визначення 2

Формула Вієта для кубічного рівняння:
x 1 + x 2 + x 3 = - a 1 a 0 , x 1 · x 2 + x 1 · x 3 + x 2 · x 3 = a 2 a 0 , x 1 · x 2 · x 3 = - a 3 a 0

Ліва частина запису формул Вієта містить так звані елементарні симетричні багаточлени.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter



Останні матеріали розділу:

Список відомих масонів Закордонні знамениті масони
Список відомих масонів Закордонні знамениті масони

Присвячується пам'яті митрополита Санкт-Петербурзького та Ладозького Іоанна (Сничева), який благословив мою працю з вивчення підривної антиросійської...

Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету
Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету

25 Московських коледжів увійшли до рейтингу "Топ-100" найкращих освітніх організацій Росії. Дослідження проводилося міжнародною організацією...

Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»
Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»

Вже довгий час серед чоловіків ходить закон: якщо назвати його таким можна, цього не може знати ніхто, чому ж вони не стримують свої обіцянки. По...