Чем обладает система заряженных тел. Энергия заряженных тел

Для того чтобы зарядить конденсатор, т. е. создать некоторую разность потенциалов между двумя телами – обкладками конденсатора, нужно затратить некоторую работу. Это связано с тем, что процесс зарядки тела, как мы говорили в § 5, означает всегда разделение зарядов, т. е. создание на одном теле избытка зарядов одного знака, а на другом теле – другого знака. При этом приходится преодолевать силы притяжения друг к другу положительных и отрицательных зарядов, т. е. затрачивать работу. Когда конденсатор разряжается, т. е. ранее разделенные заряды воссоединяются, то такую же работу совершают электрические силы. Таким образом, заряженный конденсатор обладает запасом потенциальной энергии, равным той работе, которая была затрачена на его зарядку.

Мы можем выразить эти факты иначе. Заряжая конденсатор, мы создаем в нем электрическое поле; при разрядке конденсатора это поле исчезает. Затраченная нами работа пошла на создание поля, а работа, совершаемая при разрядке конденсатора, получается за счет исчезновения этого поля. Можно сказать, следовательно, что всякое поле обладает некоторым запасом потенциальной энергии, освобождаемой при исчезновении этого поля.

Для наиболее простого случая плоского конденсатора (рис. 69) эту работу нетрудно вычислить. До тех пор, пока расстояние между пластинами мало по сравнению с размерами пластин, напряженность поля в плоском конденсаторе не зависит от расстояния . Действительно, в плоском конденсаторе поле однородно и его напряженность . Но разность потенциалов между пластинами конденсатора , а емкость (предполагаем, что между пластинами – вакуум, – площадь пластин). Таким образом,

, (38.1)

т. е. при постоянных и напряженность поля не зависит от , так как при изменении изменяется также .

Рис. 69. При раздвигании на расстояние пластин плоского конденсатора с зарядами и , напряженность поля в котором равна , затрачивается работа

Сила, с которой притягиваются друг к другу две противоположно заряженные пластины конденсатора, зависит от заряда на каждой из пластин и от напряженности поля . Так как при изменении не изменяются ни , ни , то неизменной остается и сила притяжения . Поэтому работа, которую нужно затратить, чтобы раздвинуть пластины от нулевого расстояния между ними до расстояния , равна . Но раздвижение пластин означает зарядку конденсатора, у которого расстояние между пластинами равно . Действительно, когда расстояние между пластинами равно нулю, т. е. пластины сложены вместе, то их заряды и образуют компенсированный двойной слой, и система не заряжена. Раньше (§ 7) мы уже подробно рассматривали появление электрических зарядов на двух телах как раздвижение двойного слоя электрических зарядов.

Запас энергии , которым обладает заряженный конденсатор, равен работе , которая была затрачена на его зарядку: . Чтобы вычислить эту работу, нам остается только определить силу . Для этого воспользуемся напряженностью поля в конденсаторе. Можно рассматривать как результирующую двух равных напряженностей и , из которых одна обусловлена положительным зарядом на одной пластине (на верхней пластине), а другая – отрицательным зарядом на другой (нижней) пластине (рис. 69). Ясно, что обе эти напряженности направлены в одну и ту же сторону, так что . Так как (потому что обе пластины конденсатора и их заряды симметричны), то . Сила взаимодействия между пластинами – это сила, с которой поле напряженности , вызванное зарядом на верхней пластине, действует на заряд нижней пластины и тянет его вверх. Но, с другой стороны, равно силе, с которой поле напряженности , вызванное зарядом на нижней пластине, действует на заряд верхней пластины и тянет ее к низу.

Таким образом,

, (38.2)

, (38.3)

а так как

Вспомнив, что заряд конденсатора , мы можем переписать эту формулу также в виде

Если в формулах (38.4) и (38.5) заряд выражать в кулонах, разность потенциалов в вольтах, а емкость в фарадах, то энергия будет выражена в джоулях. Формула (38.5) дает возможность понять, почему при разряде лейденской банки или батареи из нескольких банок, обладающей сравнительно большой емкостью, искра получается более мощной, производит более сильный звук и большее физиологическое действие, чем при разряде конденсатора малой емкости при том же напряжении. Батарея имеет больший запас энергии, чем одна банка. Молния представляет собой разряд конденсатора, «обкладками» которого являются либо два облака, либо облако и поверхность Земли. Емкость такого конденсатора сравнительно невелика, но запас энергии в молнии довольно значительный, потому что напряжение на этом конденсаторе достигает миллиарда вольт ( В).

Энергия заряженных тел, в конечном счете, представляет собой силу взаимодействия между двумя телами. Выходит, что одно заряженное тело не обладает энергией? На самом деле это не так энергией оно обладает, но определить наличие этой энергии, не возможно не имея второго тела обладающего зарядом.

Скажем, к примеру, если мы имеем материальную точку имеющую заряд +q. Эта точка находится в вакууме, и поблизости её нет никаких других зарядов. В такой системе, не будет наблюдаться не каких изменений энергии. Ничего никуда не будет двигаться.

Рисунок 1 — точечный заряд

Но как только мы поместим по близости другую материальную точку с зарядом -q тут же возникнут силы взаимодействия между ними. Заряды, так как они разноименные будут стремиться друг к другу. И если им не чего не помешает, в итоге они скомпенсируют друг друга. В результате в системе произойдут некоторые изменения энергии.

Допустим внеся, заря -q мы также введем некую противодействующую силу, которая не даст нашим зарядам скомпенсировать друг друга. То в этом случае наша система будет обладать энергией в явном виде. В виде силы притяжения между зарядами.

Рисунок 2 — взаимодействие двух точечных зарядов

Если отойти от абстракции с “некоторыми” зарядами и силами, то у нас получится совершенно обычный плоский конденсатор. У которого имеются разноименно заряженные обкладки, а силу противодействия представляет диэлектрик между ними, не дающий нашему конденсатору разрядится.

Рисунок 3 — заряженный конденсатор

Энергия же заряженного конденсатора общеизвестна и имеет вид:

Формула 1 — энергия заряженного конденсатора

Величина силы в таком случае будет зависеть от величины зарядов и от расстояния, на котором они находятся. Ну, с величиной заряда как бы все понятно. Чем больше заряд, тем больше сила. По аналогии с механикой, чем больше сковородка, тем больнее будет, когда она упадет на ногу.

А вот с расстоянием не совсем все понятно. Используя все туже механику для упрощения понимания. Представьте, что Вы поднимаете стул, на котором вы сейчас сидите. Не забудьте при этом с него встать. При этом Вы находитесь на поверхности земли и прилагаете некоторые усилия в зависимости от массы этого самого стула. Масса в данном случае аналог заряда. Строго говоря, все это не обязательно представлять Вы можете все это проделать, преодолев свою природную лень.

Далее находясь на орбите земли, скажем на МКС МИР. Вы проделываете те же действия, то есть встаете со стула и поднимете его. Усилие потребуется значительно меньше, так как Вы находитесь далеко от земли и ее притяжение значительно слабее. То есть сила взаимодействия между землей и стулом зависит от расстояния между ними. А вот здесь Вам потребуется Ваше воображение и не только потому что упомянутая МКС затоплена в океане но и потому что побывать на орбите только для того чтобы проверить правдивость данной статьи событие весьма мало вероятное. Также и в конденсаторе сила взаимодействия зависит от расстояния, на котором находятся заряды.

О локализации энергии: в самом поле носителем энергии является само поле. Убедимся в этом на примере плоского конденсатора, пренебрегая краевым эффектом. Подстановка в формулу W = CU 2 /2 выражения С = εε 0 S/h дает W=CU 2 /2=εε 0 SU 2 /2h=½εε 0 (U/h) 2 Sh. Апоскольку U/h = E и Sh = V (объем между обкладками кон­денсатора), то W=(εε 0 E 2 /2)V=(ED/2)V(4.8).

Полученная формула справедлива для однородного поля, за­полняющего объем V. В случае неоднородного поля энергия Wдля изотропныхдиэлектриков определяется формулой

Подынтегральное выражение в этом уравнении имеет смысл энергии, заключенной в объеме dV. Из последних двух формул следует, что электрическая энергия распределена в пространстве с объемной плотностью w =εε 0 E 2 /2=ED/2(4.10). Эта формула справедлива только в случае изотропногодиэлектрика, для которого выполняется соотно­шение D = εε 0 е.

Работа поля при поляризации диэлектрика .При одном и том же значении Е величина w при наличии диэлектрика оказывается в ε раз больше, чем при отсутствии диэлектрика. Под энергией поля в диэлектрике следует понимать всю энергию, которую нужно затратить на возбуждение электрического поля, а она складывается из собственной электрической энергии и той дополнительной работы, которая совершается при поляризации диэлектрика. Чтобы в этом убедиться, подставим в (4.10) вместо D величи­ну ε 0 Е + Р, тогда w =ε 0 E 2 /2+EP/2 (4.11). Первое слагаемое здесь совпадает с плотностью энергии поля E в вакууме. Подсчитаем работу, которую совершает электрическое поле на поляризацию единицы объема диэлектрика, т. е. на смещение зарядов р" + и р"_ соответственно по и против поля - при возрастании напряженности от Е до Е + dE. Пренебрегая членами второго порядка малости: д А=ρ’ + Edl + +ρ’ – Edl_ ,где dl + и dl_ - дополнительные смещения при увеличении поля наdE. Учитывая, что

р"_=–р" + , получаем д А=ρ’ + (dl + –dl_)E=ρ’ + dl E, где dl=dl + -dl_- дополнительное смещение положительных за­рядов относительно отрицательных. p" + dl = EdP, и δA = EdP. (4.12). Так как Р = χε 0 Е, то

Отсюда вся работа на поляризацию единицы объема диэлек­трика A=EP/2 (4.13), что совпадает со вторым слагаемым формулы (4.11).Т. о., объемная плотность энергии w= ED/2 вклю­чает в себя собственную энергию поля ε 0 E 2 /2 и энергию ЕР/2, связанную с поляризацией вещества.

Система двух заряженных тел. Представим систему из двух заряженных тел в вакууме. Пусть одно тело создает в окружающем пространстве поле e 1; a другое - поле Е 2 . Результирующее поле Е = Е 1 + Е 2 и квадрат этой величины Е 2 = Е 2 1 + Е 2 2 +2E 1 E 2 . Поэтому полная энергия Wданной системы согласно (4.9) равна сумме трех интегралов:

(4.14). Первые два интеграла в (4.14) пред­ставляют собой собственную энергию первого и второго заряженных тел (W 1 и W 2), последний интеграл - энергию их взаимодействия (W 12)-

Силы при наличии диэлектрика. Электрострикция. На диэлектрик в электрическом поле действуют пондермоторные силы. Эти силы возникают и в тех случаях, когда диэлектрик в целом не заряжен. Причиной их возникновения является действие неоднородного электрического поля на дипольные молекулы поляризованного диэлектрика (как известно, на диполи в неоднородном электрическом поле действует сила, направленная в сторону возрастания данного поля). Причем эти силы обусловлены неоднородностью не только макрополя, но и микрополя, создаваемого в основном ближайшими молекулами поляризованного диэлектрика. Под действием указанных электрических сил поляризованный диэлектрик деформируется. Это явление называют электрострикацией

Силы в жидком диэлектрике . Сила взаимодействия обкладок плоского конденсатора в жидком диэлектрике в е раз меньше, чем в вакууме (где ε = 1). Этот результат можно обобщить: при заполнении всего пространства, где есть элект­рическое поле, жидким или газообразным диэлектриком силы взаимодействия между заряженными проводниками (при неиз­менных зарядах на них) уменьшаются в е раз: F = F 0 /ε . (4.17)=>два точечных заряда q 1 и q 2 , находящи­еся на расстоянии г друг от друга внутри безграничного жидко­го или газообразного диэлектрика, взаимодействуют с силой F=|q 1 q 2 |/4πεε 0 r 2 (4.18), т. е. тоже в ε раз меньшей, чем в вакууме. Эта формула выра­жает закон Кулона для точечных зарядов в безграничном диэ­лектрике.В однородном жидком или газообразном диэлектрике, заполняющем все пространство, где есть поле, как напряженность Е, так и сила F, действующая на точечный заряд q, в ε раз меньше Е 0 и F 0 при отсутствии диэлектрика. А это значит, что сила F, действующая на точечный заряд q, определяется в этом случае такой же формулой, как и в вакууме: F = qE, (4.19), где E - напряженность поля в диэлектрике в том месте, куда помешают сторонний заряд q. Только в этом случае по силе F формула (4.19) позволяет определить поле Е в диэлектрике. Следует обратить внимание, что на сам сторонний заряд - он сосредоточен на каком-то небольшом теле - будет действовать другое поле - не то, что в самом диэлектрике.


Постоянный электрический ток. Плотность тока. Уравнение непрерывности. Закон Ома для однородного проводника. Избыточный заряд внутри однородного проводника с током. Электрическое поле проводника с током.

Носителями тока в проводящей среде могут быть электроны, ионы, или другие части­цы. При отсутствии электрического поля носители тока совершают хаотическое движение, и через любую по­верхность S проходит в обе стороны в среднем одинаковое чис­ло носителей того и другого знака, так что ток через поверхность S равен нулю. При включении же электрического поля на хаотическое движение носителей накладывается упо­рядоченное движение с некоторой средней скоростью u и через поверхность S появится ток. Т. о., электрический ток - это упорядоченный перенос электрических зарядов. Количественной мерой электрического тока служит сила тока I, т. е. заряд, переносимый сквозь рассматриваемую по­верхность S в единицу времени: I = dq/dt[A]. Ток может быть распределен по поверхности, через которую он протекает, неравномерно. Поэтому для более детальной характеристики тока вводят век­тор плотности тока j. Модуль этого вектора численно равен от­ношению силы тока dI через элементарную площадку, расположенную в данной точке перпендикулярно направлению движе­ния носителей, к ее площади dS ┴ : j = dI/dS ┴ . За направление вектора j принимают направление вектора скорости и упорядо­ченного движения положительных носителей. Если носителя­ми являются как положительные, так и отрицательные заряды, то плотность тока определяется ф–лой

j=p + u + + p_u_,(5.1), где р + и р_ - объемные плотности положительного и отрицате­льного зарядов-носителей; u + и u_ - скорости их упорядочен­ного движения. В проводниках же, где носителями являются только электроны (р_< 0 и u + = 0), плотность тока j = ρ_u_(5.2). Зная вектор плотности тока в каждой точке поверхности S,можно найти и силу тока через эту поверх­ность как поток вектора j: I=∫jdS (5.3)

Уравнение непрерывности. Представим в некоторой проводящей среде, где течет ток, замкнутую поверхность S. Для замкнутых поверхностей векторы нормалей, а следовате­льно, и векторы dS принято брать наружу, поэтому интеграл ∮jdSдает заряд, выходящий в единицу времени наружу из объ­ема V, охватываемого поверхностью S. В силу закона сохране­ния заряда этот интеграл равен убыли заряда в единицу времени внутри объема V:

∮jdS= –dq/dt; ∮jdS=0 (5.4) Это уравнение непрерывности. В случае постоянного тока распределение зарядов в пространстве должно оставаться неизменным, т. е. в правой части dq/dt = 0. Преобразу­ем последние два уравнения к дифференциальной форме. Для этого представим заряд q как jρdF и правую часть (5.4) как

Здесь взят знак частной производной р по времени, поскольку р может зависеть не только от времени, но и от координат. Итак,

Получим, что дивергенция вектора j в некоторой точке равна убыли плотности заряда в единицу времени в той же точке:Ñ . j=–д ρ/д t. (5.6). Отсюда вытекает условие стационарности(когда д ρ/д t=0): Ñ . j=0.(5.7)

Оно означает, что в случае постоянного тока поле вектора j не име­ет источников.

Закон Ома для однородного проводника. Cила тока, протекающего по однородному проводнику, пропорциональна разности потенциалов на его концах (напряжению U): I = U/R (5.8), где R - электрическое сопротивление проводника.

Закон Ома в локальной форме . Если поперечное сечение цилиндра dS, а его длина dl, то на основа­нии (5.8) и (5.9) можно записать для такого элементарного цилиндра jdS=Edl/(ρdl/dS)=E/ρ=σE, где σ=1/р - удельная электропроводимость среды. Т. о., соотношение (5.10) устанавливает связь между величинами, относящимися к одной и той же точке про­водящей среды.

О заряде внутри проводника с током. Если ток постоянный, то избыточный заряд внутри однородного проводника всюду равен нулю. В самом деле, для постоянного тока справедливо уравнение (5.5). Перепишем его с учетом закона (5.10) в виде ∮σEdS=0, где интеграл взят по произвольной замкнутой поверхности S внутрипроводника. Для однородного проводника величину а можно вынести из-под интеграла: σ∮EdS=0. Оставшийся интеграл согласно теореме Гаусса пропорциона­лен алгебраической сумме зарядов внутри замкнутой поверхно­сти S, т. е. пропорционален избыточному заряду внутри этой поверхности. Но из последнего равенства видно, что этот интеграл равен нулю (т.к. σ≠0), а значит, равен нулю и избы­точный заряд. В силу произвольности поверхности S: избыточный заряд всюду внутри про­водника равен нулю.

Электрическое поле проводника с током . При протека­нии тока на поверхности проводника (область неоднородности) выступает избыточный заряд, а это означает, что снаружи проводника имеется нормальная составляющая вектора Е. Далее, из непре­рывности тангенциальной составляющей вектора Е приходим к выводу о нали­чии и тангенциальной составляющей этого вектора вблизи поверхности проводника. Таким образом, вектор Е вблизи поверхно­сти проводника составляет (при наличии тока) с нормалью к ней некоторый не рав­ный нулю угол. Если токи стационарны, то распределение электриче­ских зарядов в проводящей среде не меняется во времени, хотя и происходит движение за­рядов: в каждой точке на место уходящих зарядов непрерывно поступают новые. Эти движущиеся заряды создают такое же кулоновское поле, что и неподвижные заряды той же конфигу­рации. Стало быть, электрическое поле стационарных токов - поле потенциальное. Кулоновское поле внутри про­водников при равновесии зарядов равно нулю. Электрическое поле у стационарных токов есть также кулоновское поле, одна­ко заряды, его возбуждающие, находятся в движении. Поэтому поле Е у стационарных токов существует и внутри проводников с током.

Пусть одно тело создает в окружающем пространстве поле Е, а другое поле Е2

Результирующее поле Е=Е+Е2 и квадрат этой величины

Полная энергия в данной системе равна сумме трех интегралов

Первые два интеграла представляют собой собственную энергию первого и второго заряженных тел, последний интеграл энергию их взаимодействия W 12 из формулы следует.

1. Собственная энергия каждого заряженного тела величина положительная. Положительной является всегда и полная энергия, Энергия же взаимодействия может быть как положительной, так и отрицательной.

2. При всех возможных перемещениях заряженных тел собственная энергия тел остается поэтому её можно считать аддитивной постоянной в выражении для полной энергии W 1,2 В частности, именно так ведет себя энергия системы двух точечных зарядов при изменении расстояния между ними

3. В отличие от вектора Е энергия электрического поля-величина не аддитивная, т.е.

Энергия поля Е является суммой Е1 и Е2 не равна сумме энергий обоих полит из-за взаимной энергии W1 ,2 При возрастании Е в н раз энергия поля увеличивается в н ра3

Силы при наличии диэлектрика э

Опыт показывает, что на диэлектрик в электрическом поле действуют силы (их, иногда называют пондеромоторными) причиной их возникновения является действия неоднородного электрического поля на дипольные молекулы поляризованного диэлектрика. Под действием пондеромоторных сил поляризованный диэлектрик деформируется. Это явление называют электрострикцией. Вследствие электрострикции в диэлектрике возникают механическое напряжения. Во многих случаях эти силы можно вычислить с помощью закона сокращения энергии.

Электрический метод определения сил

В Случае когда заряженные проводника отключены от источников напряжения, заряды на проводниках остаются постоянными. Работа А перемещение проводников и диэлектриков совершается целиком за счет убыли электрической энергии W системы или её поля.

Для бесконечно малых перемещений можно записать

Символ –q показывает что убыль энергии системы должна быть вычислена при постоянных зарядов на проводах.

При бесконечно малом поступательном перемещении dx этого тела в направлении работа искомой силы F на перемещении d x

Где Fx – проекция силы F на положительное направление оси Х после подстановки в выратени для SA и делится на dx получили

Если перемещения происходят при постоянном потенциале на проводниках то

Вычислим энергию заряженного конденсатора. Пусть первоначально обкладки конденсатора не заряжены. Будем переносить положительный (ил отрицательный) заряд малыми порциями с одной обкладки на другую. Для переноса необходимо совершить работу против электрического поля;

,

где - мгновенное значение разности потенциалов между обкладками. Эта работа полностью идет на увеличение электрической энергии конденсатора

.

Интегрируя, получим

.

Энергия взаимодействия точечных зарядов получается при переносе их из бесконечности в то место, где они расположены. Получается формула

,

где штрих при потенциале означает, что при его расчете учитываются все заряды, кроме того, на который они действуют. Для непрерывно распределенных зарядов получается интеграл по объему, занимаемому зарядами

,

где - объемная плотность зарядов.

Так как электрическое поле конденсатора сконцентрировано внутри и однородно, то можно считать, что энергия поля тоже распределена внутри конденсатора. Если разделить вычисленную энергию на объем , где - площадь обкладки, то получится объемная плотность энергии

.

Можно показать, что эта формула верна при любой конфигурации электрического поля.

Электромагнитная индукция

Электромагнитная индукция была открыта Фарадеем в 1831 г. Для демонстрации этого явления возьмем неподвижный магнит и проволочную катушку, концы которой соединены с гальванометром. Если катушку приближать к одному из полюсов магнита, то во время движения стрелка гальванометра отклоняется - в катушке возбуждается электрический ток. При движении катушки в обратном направлении направление тока меняется на противоположное. Магнит можно заменить другой катушкой с током или электромагнитом. Этот ток называется индукционным током, а само явление - электромагнитной индукцией.

Возбуждение электрического тока при движении проводника в магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника. Рассмотрим простейший случай, когда два параллельных провода и помещены в постоянное однородное магнитное поле, перпендикулярное к плоскости рисунка и направленное на нас. (см. рис.) Слева провода и замкнуты, справа - разомкнуты. Вдоль проводов свободно движется проводящий мостик . Когда мостик движется вправо со скоростью , вместе с ним движутся электроны и положительные ионы. На каждый движущийся заряд в магнитном поле действует сила Лоренца . На положительный ион она действует вниз, на отрицательный электрон - вверх. Электроны начнут перемещаться вверх и там будет скапливаться отрицательный заряд, внизу останется больше положительных ионов. То есть положительные и отрицательные заряды разделяются, возникает электрическое поле вдоль мостика, и потечет ток. Этот ток называется индукционным. Ток потечет и в других частях контура . На рисунке токи изображены сплошными стрелками.

Возникает напряженность стороннего поля, равная .Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции и обозначается . В рассматриваемом случае , где - длина мостика. Знак минус поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого вектором по правилу правого винта. Величина есть приращение площади контура в единицу времени. Поэтому равна , т.е. скорости приращения магнитного потока, пронизывающего площадь контура . Таким образом,

.

К этой формуле необходимо добавить правило, которое позволяет быстро определять направление индукционного тока. Оно носит название правило Ленца и гласит: Индукционный ток всегда имеет такое направление, что его собственное магнитное поле препятствует изменению магнитного потока, его вызывающего.

Возникающий в проводнике ток исчезает потому, что существует сопротивление. Если бы сопротивления не было, то раз возникнув, ток продолжался бесконечно долго. Такие условия встречаются в сверхпроводниках. Кроме этого, закон электромагнитной индукции позволяет объяснить диамагнетизм в атомах и молекулах. Магнитное поле возникшего дополнительного тока направлено в сторону, противоположную внешнему полю. И так как сопротивления в молекулах нет, то оно не исчезает.

Магнитный поток

После предварительного рассмотрения сформулируем закон в общем виде. Как и в случае электрического поля можно ввести поток индукции магнитного поля:

.

Здесь - площадь контура, через который проходит магнитное поле, - нормаль к площадке, ограниченной контуром. Скалярное произведение может быть заменено на , где - угол между направлениями вектора индукции и нормалью. Если магнитная индукция меняется по величине и направлению, то формула для потока переходит в следующую



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...