Чему равен элементарный электрический заряд. Элементарный заряд

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд - это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные - притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q 1 + q 2 + q 3 + ... +q n = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы - нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e .

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером . Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела - дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков - частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр ( или электроскоп) - прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Шарлем Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора - крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10 -9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона:

Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон - это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения .

Коэффициент k в системе СИ обычно записывают в виде:

Где - электрическая постоянная .

В системе СИ элементарный заряд e равен:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции:

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов .

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Законы электролиза, открытые Фарадеем, свидетельствуют в пользу существования мельчайших, неделимых количеств электричества. При электролизе один моль любого - валентного элемента переносит заряд кулонов ( - постоянная Фарадея). На один атом (точнее, ион) приходится, таким образом, заряд

На одновалентный ион приходится заряд , на двухвалентный - заряд , на трехвалентный - заряд и т. д.

Эту закономерность легко понять, если принять, что заряд является мельчайшей порцией заряда, элементарным зарядом.

Но законы электролиза можно понимать и в том смысле, что является средней порцией заряда, переносимой одновалентным ионом; свойство - валентного иона переносить в раз больший заряд должно было бы объясняться тогда не атомарной структурой электричества, а только свойствами иона. Поэтому для выяснения вопроса о существовании элементарного заряда необходимы прямые опыты по измерению мельчайших количеств электричества. Такие опыты были выполнены американским физиком Робертом Милликеном (1868-1953) в 1909 г.

Установка Милликена изображена схематически на рис. 348. Основной ее частью является плоский конденсатор 2,3, на пластины которого с помощью переключателя 4 можно подавать разность потенциалов того или иного знака.

Рис. 348. Схема опыта по измерению элементарного электрического заряда. Рентгеновская трубка 7 служит для изменения заряда капель; ее излучение создает в объеме между пластинами 2 и 3 ионы, которые, прилипая к капле, изменяют ее заряд

В сосуд 1 с помощью пульверизатора вбрызгиваются мельчайшие капли масла или другой жидкости. Некоторые из этих капель через отверстие в верхней пластине попадают в пространство между пластинами конденсатора, освещаемое лампой 6. Капли наблюдаются в микроскоп через окошко 5; они выглядят яркими звездочками на темном фоне.

Когда между пластинами конденсатора нет электрического поля, капли падают вниз с постоянной скоростью. При включении поля незаряженные капли продолжают опускаться с неизменной скоростью. Но многие капли при разбрызгивании приобретают заряд (электризация трением). На такие заряженные капли действует, кроме силы тяжести, также сила электрического поля. В зависимости от знака заряда можно выбрать направление поля так, чтобы электрическая сила была направлена навстречу силе тяжести. В таком случае заряженная капелька после включения поля будет падать с меньшей скоростью, чем в отсутствие поля. Можно подобрать значение напряженности поля так, что электрическая сила превзойдет силу тяжести и капля будет двигаться вверх.

В установке Милликена можно наблюдать за одной и той же каплей в течение нескольких часов; для этого достаточно выключать (или уменьшать) поле, как только капля начнет приближаться к верхней пластине конденсатора, и включать (или увеличивать) его снова, когда она будет опускаться к нижней пластине.

Равномерность движения капли свидетельствует о том, что действующая на нее сила уравновешивается сопротивлением воздуха, которое пропорционально скорости капли. Поэтому для такой капли можно написать равенство

где - сила тяжести, действующая на каплю с массой , - скорость капли, - сила сопротивления воздуха (сила трения), - коэффициент, зависящий от вязкости воздуха и размеров капли.

Измерив с помощью микроскопа диаметр капли, следовательно, зная ее массу, и определив далее скорость свободного равномерного падения , мы можем найти из (196.1) значение коэффициента , которое для данной капли сохраняется неизменным. Условие равномерного движения для капли с зарядом , поднимающейся со скоростью в электрическом поле , имеет вид

(196.2)

Из (196.2) получаем

Таким образом, проделав с одной и той же каплей измерения в отсутствие поля и при его наличии, найдем заряд капли . Мы можем изменить этот заряд. Для этой цели служит рентгеновская трубка 7 (рис, 348), с помощью которой можно ионизовать воздух в конденсаторе. Образовавшиеся ионы будут захватываться капелькой, и заряд ее изменится, сделавшись равным . При этом изменится скорость равномерного движения капли и она станет равной , так что

Этот минимальный заряд равен, как мы видим, элементарному заряду, проявляющемуся в процессе электролиза. Важно отметить, что начальный заряд капли есть «электричество трения», изменения же этого заряда происходили за счет захвата каплей ионов газа, образованных рентгеновскими лучами. Таким образом, заряд, образующийся при трении, заряды ионов газа и ионов электролита слагаются из одинаковых элементарных зарядов. Данные других опытов позволяют обобщить этот вывод: все встречающиеся в природе положительные и отрицательные заряды состоят из целого числа элементарных зарядов .

В частности, заряд электрона равен по абсолютному значению одному элементарному заряду.

Предположение о том, что любой наблюдаемый в эксперименте электрический заряд всегда кратен элементарному, было высказано Б. Франклином в 1752 г. Благодаря опытам М. Фарадея по электролизу величина элементарного заряда была вычислена в 1834 г. На существование элементарного электрического заряда также указал в 1874 г. английский ученый Дж.Стони. Он же ввел в физику понятие «электрон» и предложил способ вычисления значения элементарного заряда. Впервые экспериментально элементарный электрический заряд был измерен Р. Милликеном в 1908 г.

Электрический заряд любой микросистемы и макроскопических тел всегда равен алгебраической сумме элементарных зарядов, входящих в систему, то есть целому кратному от величины е (или нулю).

Установленное в настоящее время значение абсолютной величины элементарного электрического заряда составляет е = (4, 8032068 0, 0000015) . 10 -10 единиц СГСЕ, или 1, 60217733 . 10 -19 Кл. Вычисленная по формуле величина элементарного электрического заряда, выраженная через физические константы, дает значение для элементарного электрического заряда: e = 4, 80320419(21) . 10 -10 , или: е =1, 602176462(65) . 10 -19 Кл.

Считается, что этот заряд действительно элементарен, то есть он не может быть разделен на части, а заряды любых объектов являются его целыми кратными. Электрический заряд элементарной частицы является ее фундаментальной характеристикой и не зависит от выбора системы отсчета. Элементарный электрический заряд в точности равен величине электрического заряда электрона, протона и почти всех других заряженных элементарных частиц, которые тем самым являются материальными носителями наименьшего заряда в природе.

Существует положительный и отрицательный элементарный электрический заряд, причем элементарная частица и ее античастица имеют заряды противоположных знаков. Носителем элементарного отрицательного заряда является электрон, масса которого me = 9, 11 . 10 -31 кг. Носителем элементарного положительного заряда является протон, масса которого mp = 1, 67 . 10 -27 кг.

Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. Почти все заряженные элементарные частицы имеют заряд е - или е + (исключение - некоторые резонансы с зарядом, кратным е ); частицы с дробными электрическими зарядами не наблюдались, однако в современной теории сильного взаимодействия - квантовой хромодинамике - предполагается существование частиц - кварков - с зарядами, кратными 1 / 3 е.

Элементарный электрический заряд не может быть уничтожен; этот факт составляет содержание закона сохранения электрического заряда на микроскопическом уровне. Электрические заряды могут исчезать и возникать вновь. Однако всегда возникают или исчезают два элементарных заряда противоположных знаков.

Величина элементарного электрического заряда является константой электромагнитных взаимодействий и входит во все уравнения микроскопической электродинамики.

Чувствительность к ударно-волновым воздействиям

Ударно-волновое воздействие создается ударной волной. Ударная волна, вошедшая в заряд, создает зону сжатого вещества, в которой протекают реакции разложения и выделения энергии. Если скорость выделения энергии больше скорости её отвода, то происходит ускорение фронта ударной волны, её подпитывание и распространение. Если скорость энергии выделения мала, то ударная волна успевает уйти вперед и затухнуть.

Время ударно-волнового воздействия мало. Если длительность начального импульса меньше критического значения (~0,11 мкс) и минимальная скорость инициирующей ударной волны меньше некоторого критического значения, то происходит отказ.

Сложное ударно-волновое воздействие создается обычно с помощью взрыва других ВВ. С практической точки зрения чувствительность ВВ к этому импульсу важна при создании надежных средств инициирования (КД) и при ведении взрывных работ для надежной передачи детонационного импульса от одного заряда БВВ к другому.

Минимальный инициирующий заряд такое количество ИВВ, которое способно вызвать полную детонацию БВВ.

Минимальный заряд ИВВ зависит не только от чувствительности БВВ к детонационному импульсу, но и от свойств ИВВ. Поэтому для обеспечения безотказности действия КД комбинированного снаряжения необходимо определить минимальный заряд конкретного ИВВ, входящего в конструкцию КД, по отношению к конкретному БВВ. Условия испытаний максимально приближают к реальности, т.е. снаряжают подрывной КД №8

(1 гр БВВ и некоторое количество ИВВ (<0,1 г).

В КД вставляют либо огнепроводный шнур, либо электровоспламенитель. Готовый КД устанавливают на стандартную свинцовую пластину и подрывают. Если диаметр пробития пластины равен или больше диаметра гильзы, то детонация БВВ полная. Изменяя величину навески ИВВ, находят минимальный заряд. Минимальный заряд ИВВ зависит от плотности БВВ. Чем выше плотность, тем больше минимальный заряд. Присутствие в заряде БВВ твердых тугоплавких примесей снижает минимальный заряд, а плавкие и мягкие повышают.

Влияние плотности заряда БВВ и примесей связано с механизмом возбуждения взрыва. Низкая плотность и тугоплавкие примеси способствуют реализации очагового механизма возбуждения взрыва, требующего меньшей затраты энергии.

Изменение массы БВВ практически не влияет на минимальный заряд ИВВ. Изменение диаметра гильзы приводит к изменению толщины слоя ИВВ. Поэтому минимальный заряд обычно определяют в гильзе №8 или характеризуют отношением массы к площади сечения заряда.

Элементарный электрический заряд элемента́рный электри́ческий заря́д

(е ), минимальный электрический заряд, положительный или отрицательный, величина которого е ≈4,8·10 -10 единиц СГСЭ, или 1,6·10 -19 Кл. Почти все заряженные элементарные частицы имеют заряд +е или -е (исключение - некоторые резонансы с зарядом, кратным е ); частицы с дробными электрическими зарядами не наблюдались, однако в современной теории сильного взаимодействия - квантовой хромодинамике - предполагается существование кварков - частиц с зарядами, кратными 1 / 3 е .

ЭЛЕМЕНТАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД

ЭЛЕМЕНТА́РНЫЙ ЭЛЕКТРИ́ЧЕСКИЙ ЗАРЯ́Д (е ), минимальный электрический заряд, положительный или отрицательный, равный величине заряду электрона.
Предположение о том, что любой наблюдаемый в эксперименте электрический заряд всегда кратен элементарному, было высказано Б. Франклином (см. ФРАНКЛИН Бенджамин) в 1752 г. Благодаря опытам М. Фарадея (см. ФАРАДЕЙ Майкл) по электролизу величина элементарного заряда была вычислена в 1834 г. На существование элементарного электрического заряда также указал в 1874 г. английский ученый Дж.Стони. Он же ввел в физику понятие «электрон» и предложил способ вычисления значения элементарного заряда. Впервые экспериментально элементарный электрический заряд был измерен Р. Милликеном (см. МИЛЛИКЕН Роберт Эндрус) в 1908 г.
Материальными носителями элементарного электрического заряда в природе являются заряженные элементарные частицы (см. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ) .
Электрический заряд (см. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД) любой микросистемы и макроскопических тел всегда равен алгебраической сумме элементарных зарядов, входящих в систему, то есть целому кратному от величины е (или нулю).
Установленное в настоящее время значение абсолютной величины элементарного электрического заряда (см. ЭЛЕМЕНТАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД) составляет е = (4,8032068 0,0000015) . 10 -10 единиц СГСЕ, или 1,60217733 . 10 -19 Кл. Вычисленная по формуле величина элементарного электрического заряда, выраженная через физические константы, дает значение для элементарного электрического заряда: e = 4,80320419(21) . 10 -10 , или: е =1,602176462(65) . 10 -19 Кл.
Считается, что этот заряд действительно элементарен, то есть он не может быть разделен на части, а заряды любых объектов являются его целыми кратными. Электрический заряд элементарной частицы является ее фундаментальной характеристикой и не зависит от выбора системы отсчета. Элементарный электрический заряд в точности равен величине электрического заряда электрона, протона и почти всех других заряженных элементарных частиц, которые тем самым являются материальными носителями наименьшего заряда в природе.
Существует положительный и отрицательный элементарный электрический заряд, причем элементарная частица и ее античастица имеют заряды противоположных знаков. Носителем элементарного отрицательного заряда является электрон, масса которого me = 9,11 . 10 -31 кг. Носителем элементарного положительного заряда является протон, масса которого mp = 1, 67 . 10 -27 кг.
Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. Почти все заряженные элементарные частицы имеют заряд е - или е + (исключение - некоторые резонансы с зарядом, кратным е); частицы с дробными электрическими зарядами не наблюдались, однако в современной теории сильного взаимодействия - квантовой хромодинамике - предполагается существование частиц - кварков - с зарядами, кратными 1 / 3 е.
Элементарный электрический заряд не может быть уничтожен; этот факт составляет содержание закона сохранения электрического заряда на микроскопическом уровне. Электрические заряды могут исчезать и возникать вновь. Однако всегда возникают или исчезают два элементарных заряда противоположных знаков.
Величина элементарного электрического заряда является константой электромагнитных взаимодействий и входит во все уравнения микроскопической электродинамики.




Последние материалы раздела:

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...