Взаимодействие тел что такое физика. Взаимодействие тел

Как утверждает классическая физика, в известном нам мире постоянно происходит взаимодействие тел, частиц между собой. Даже если мы наблюдаем объекты, находящиеся в покое, это не означает, что ничего не происходит. Именно благодаря удерживающим силам между молекулами, атомами и элементарными частицами вы можете видеть предмет в виде доступной нам и понятной материи физического мира.

Взаимодействие тел в природе и жизни

Как мы знаем из собственного опыта, когда падаешь на что-то, бьёшься, с чем-то сталкиваешься, это оказывается неприятно и больно. Толкаете машину или в вас врезается зазевавшийся прохожий. Тем или иным образом вы вступаете во взаимодействие с окружающим миром. В физике данное явление получило определение "взаимодействие тел". Рассмотрим подробно, на какие виды подразделяет их современная классическая наука.

Виды взаимодействия тел

В природе существует четыре вида взаимодействия тел. Первое, всем известное, это гравитационное взаимодействие тел. Масса тел является определяющей в том, насколько сильна гравитация.

Она должна быть достаточно огромных масштабов, для того чтобы мы её смогли заметить. В противном случае наблюдение и регистрация данного вида взаимодействия достаточно затруднительны. Космос является тем местом, где силы гравитации вполне возможно наблюдать на примере космических тел с огромной массой.

Взаимозависимость между гравитацией и массой тела

Непосредственно энергия взаимодействия тел прямо пропорциональна массе и обратно пропорционально квадрату расстояния между ними. Это согласно определению современной науки.

Притяжение вас и всех предметов на нашей планете обусловлено тем, что существует сила взаимодействия двух тел, обладающих массой. Поэтому подкинутый вверх предмет притягивается назад к поверхности Земли. Планета достаточно массивна, поэтому сила действия ощутима. Гравитация вызывает взаимодействие тел. Масса тел даёт возможность её проявления и регистрации.

Природа гравитации не ясна

Природа этого явления на сегодня вызывает множество споров и предположений, кроме фактического наблюдения и видимой взаимосвязи между массой и притяжением, не выявлена сила, вызывающая гравитацию. Хотя на сегодня проходит ряд экспериментов, связанных с обнаружением гравитационных волн в космическом пространстве. Более точное предположение в своё время высказал Альберт Эйнштейн.

Он сформулировал гипотезу, что гравитационная сила является порождением искривления ткани пространства-времени расположенными в нем телами.

Впоследствии, при вытеснении пространства материей, оно стремится восстановить свой объем. Эйнштейн предположил, что существует обратно пропорциональная зависимость между силой и плотностью материи.

Примером наглядной демонстрации этой зависимости могут служить чёрные дыры, имеющие немыслимую плотность материи и гравитацию, способную притянуть не только космические тела, но и свет.

Именно благодаря влиянию природы гравитации сила взаимодействия тел обеспечивает существование планет, звёзд и прочих космических объектов. Кроме этого, вращение одних объектов вокруг других присутствует по этой же причине.

Электромагнитные силы и прогресс

Электромагнитное взаимодействие тел несколько напоминает гравитационное, но намного сильнее. Взаимодействие положительно и отрицательно заряженных частиц является причиной его существования. Собственно, это и вызывает возникновение электромагнитного поля.

Оно генерируется телом (телами) либо поглощается или вызывает взаимодействие заряженных тел. Этот процесс играет очень важную роль в биологической деятельности живой клетки и перераспределении веществ в ней.

Помимо этого, наглядным примером электромагнитного проявления сил является обычный электрический ток, магнитное поле планеты. Человечество достаточно обширно применяет эту силу для передачи данных. Это мобильная связь, телевидение, GPRS и многое другое.

В механике это проявляется в виде упругости, трения. Наглядный эксперимент, демонстрирующий наличие данной силы, всем известен из школьного курса физики. Это натирание шёлковой тканью эбонитовой полочки. Возникшие на поверхности частицы с отрицательным зарядом обеспечивают притяжение лёгких предметов. Повседневный пример - это расчёска и волосы. После нескольких движений пластмассой по волосам возникает притяжение между ними.

Стоит упомянуть о компасе и магнитном поле Земли. Стрелка намагничена и имеет концы с положительно и отрицательно заряженными частицами, как следствие, реагирует на магнитное поле планеты. Поворачивается своим "положительным" концом по направлению отрицательных частиц и наоборот.

Малы размеры, но огромна сила

Что касается сильного взаимодействия, то его специфика несколько напоминает электромагнитный вид сил. Причиной тому служит наличие положительных и отрицательно заряженных элементов. Подобно электромагнитной силе, наличие разноимённых зарядов приводит к взаимодействию тел. Масса тел и расстояние между ними очень малы. Это область субатомного мира, где подобные объекты именуются частицами.

Эти силы действуют в области атомного ядра и обеспечивают связь между протонами, электронами, барионами и прочими элементарными частицами. На фоне их размеров, по сравнению с большими объектами, взаимодействие заряженных тел значительно сильнее, чем при электромагнитном типе сил.

Слабые силы и радиоактивность

Слабый вид взаимодействия связан непосредственно с распадом неустойчивых частиц и сопровождается высвобождением разного вида излучения в виде альфа-, бета- и гамма-частиц. Как правило, вещества и материалы с подобными характеристиками называют радиоактивными.

Этот вид сил называется слабым вследствие того, что слабее электромагнитного и сильного типа взаимодействия. Однако он мощнее, чем гравитационное взаимодействие. Дистанции в данном процессе между частицами весьма малы, порядка 2·10 −18 метров.

Факт обнаружения силы и определения её в ряд фундаментальных произошёл достаточно недавно.

С открытием в 1896 году Анри Беккерель явления радиоактивности веществ, в частности солей урана, было положено начало изучения этого вида взаимодействия сил.

Четыре силы создали Вселенную

Вся Вселенная существует благодаря четырём фундаментальным силам, открытым современной наукой. Они породили космос, галактики, планеты, звезды и различные процессы в том виде, в каком мы это наблюдаем. На данном этапе считается полным определение фундаментальных сил в природе, но, возможно, со временем мы узнаем о наличии новых сил, и знание природы мироздания станет на шаг ближе к нам.

Взаимодействие тел. Сила. Законы Ньютона

Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение

План ответа

1. Определение механического движения. 2. Основные понятия механики. 3. Кинематические характеристики. 4. Основные уравнения. 5. Виды движения. 6. Относительность движения.

Механическим движением называют измене­ние положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалато­ре в метро, находится в покое относительно самого эскалатора и перемещается относительно стен тунне­ля; гора Эльбрус находится в покое относительно Земли и движется вместе с Землей относительно Солнца.

Из этих примеров видно, что всегда надо ука­зать тело, относительно которого рассматривается движение, его называюттелом отсчета. Система ко­ординат, тело отсчета, с которым она связана, и вы­бранный способ измерения времени образуютси­стему отсчета. Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, рассчитывая траекто­рию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись. Та­ким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой, Линию, вдоль которой движется материальная точка, называют траекторией. Длина части траектории между начальным и конечным положением точки называют путем (L). Единица измерения пути - 1м.

Механическое движение характеризуется тре­мя физическими величинами: перемещением, ско­ростью и ускорением.

Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называетсяперемещением (s), Перемещение - величина векторная Единица изме­рения перемещения-1м.

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток, времени считается достаточно малым, если скорость в течении этого промежутка не меня­лась. Например, при движении автомобиля t ~ 1 с, при движении элементарной частицы t ~ 10 с, при движении небесных тел t ~ 10 с. Определяющая формула скорости имеет вид v = s/t. Единица изме­рения скорости - м/с. На практике используют еди­ницу измерения скорости км/ч (36 км/ч = 10 м/с). Измеряют скорость спидометром.

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это измене­ние произошло. Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле а = (v – v 0)/t. Единица измерения ускорения - м/с 2 .

Характеристики механического движения свя­заны между собой основными кинематическими уравнениями.

s = v 0 t + at 2 / 2;

v = v 0 + at.

Предположим, что тело движется без уско­рения (самолет на маршруте), его скорость в течение продолжительного времени не меняется, а = 0, тогда кинематические уравнения будут иметь вид: v = const, s = vt .

Движение, при котором скорость тела не ме­няется, т. е. тело за любые равные промежутки вре­мени перемещается на одну и ту же величину, назы­ваютравномерным прямолинейным движением.

Во время старта скорость ракеты быстро воз­растает, т. е. ускорение а > О, а == const.

В этом случае кинематические уравнения вы­глядят так: v = v 0 + at, s = V 0 t + at 2 / 2.

При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называютравноуско­ренным.

При торможении автомобиля скорость умень­шается одинаково за любые равные промежутки вре­мени, ускорение меньше нуля; так как скорость уменьшается, то уравнения принимают вид:v = v 0 + at, s = v 0 t - at 2 / 2 . Такое движение называют равнозамедленным.

Все физические величины, характеризующие движение тела (скорость, ускорение, перемещение), а также вид траектории, могут изменяться при пере­ходе из одной системы к другой, т. е. характер дви­жения зависит от выбора системы отсчета, в этом и проявляется относительность движения. Например, в воздухе происходит дозаправка самолета топливом. В системе отсчета, связанной с самолетом, другой самолет находится в покое, а в системе отсчета, свя­занной с Землей, оба самолета находятся в движе­нии. При движении велосипедиста точка колеса в системе отсчета, связанной с осью, имеет траекто­рию, представленную на рисунке 1.

Рис. 1 Рис. 2

В системе отсчета, связанной с Землей, вид траектории оказывается другим (рис. 2).

Билет№3

Взаимодействие тел. Сила. Законы Ньютона

Закон. Существуют такие системы отсчета, называемые инерциальными, относительно которых поступательно движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела.

Закон. При взаимодействии тел возникают силы, равные по величине, противоположные по направлению, направленные вдоль одной прямой, одинаковые по природе и приложенные к разным телам.

План ответа

Взаимодействие тел. 2. Виды взаимодейст­вия. 3. Сила. 4. Силы в механике.

Простые наблюдения и опыты, например с те­лежками (рис. 3), приводят к следующим качествен­ным заключениям: а) тело, на которое другие тела не действуют, сохраняет свою скорость неизменной;

б) ускорение тела возникает под действием других тел, но зависит и от самого тела; в) действия тел друг на друга всегда носят характер взаимодействия. Эти выводы подтверждаются при наблюдении явлений в природе, технике, космическом пространстве только в инерциальных системах отсчета.

Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие ее витков. Или, чем ближе два одно­именных заряда, тем сильнее они будут притяги­ваться. В простейших случаях взаимодействия коли­чественной характеристикой является сила. Сила - причина ускорения тел по отношению к инерциальной системе отсчета или их деформации. Сила - это

векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимо­действии. Сила характеризуется: а) модулем; б) точ­кой приложения; в) направлением.

Единица измерения силы - ньютон. 1 нью­тон - это сила, которая телу массой 1 кг сообщает ускорение 1 м/с в направлении действия этой силы, если другие тела на него не действуют. Равнодей­ствующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу.

R=F1+F2+...+Fn,.

Качественно по своим свойствам взаимодей­ствия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием заря­дов у частиц либо с движением заряженных частиц. Наиболее просто рассчитать силы в электродинами­ке: сила Ампера - F = IlBsina, сила Лоренца - F=qv Bsin a., кулоновская сила - F = q 1 q 2 /r 2 ; и гравитационные силы: закон всемирного тяготе­ния-F = Gm 1 m 2 /r 2 . Такие механические силы, как

сила упругости и сила трения, возникают в резуль­тате электромагнитного взаимодействия. Для их рас­чета необходимо использовать формулы: .Fynp = -kx (закон Гука), Fтр = MN - сила трения.

На основании опытных данных были сформу­лированы законы Ньютона. Второй закон Ньютона. Ускорение, с которым движется тело, прямо про­порционально равнодействующей всех сил, дей­ствующих на тело, обратно пропорционально его массе и направлено так же, как и равнодействую­щая сила: а = F/m.

Для решения задач закон часто записывают в виде: F = та.

Билет4

Импульс тела. Закон сохранения импульса в природе и технике

План ответа

1. Импульс тела. 2. Закон сохранения импуль­са. 3. Применение закона сохранения импульса. 4. Реактивное движение.

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зави­сит от выбора системы отсчета; по второму закону Ньютона, независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движе­ния может происходить только при действии силы, т. е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохра­няться при взаимодействии тел. Такими величинами являются энергия и импульс.

Импульсом тела называют векторную физи­ческую величину, являющуюся количественной ха­рактеристикой поступательного движения тел. Им­пульс обозначается р. Единица измерения импульса Р - кг м/с. Импульс тела равен произведению мас­сы тела на его скорость: р = mv. Направление векто­ра импульса р совпадает с направлением вектора скорости тела v (рис. 4).

Рис. 4

Для импульса тел выполняется закон сохране­ния, который справедлив только для замкнутых фи­зических систем. В общем случае замкнутой назы­вают систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механикезамкнутой называют систему, на кото­рую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае р 1 = р 2 где р 1 - начальный импульс системы, а р 2 - конеч­ный. В случае двух тел, входящих в систему, это вы­ражение имеет вид m 1 v 1 + т 2 v 2 = m 1 v 1 " + т 2 v 2 " где т 1 и т 2 - массы тел, а v 1 и v 2 , - скорости до взаимодей­ствия, v 1 " иv 2 " - скорости после взаимодействия. Эта формула и является математическим выражением закона сохранения импульса:импульс замкнутой физической системы сохраняется при любых вза­имодействиях, происходящих внутри этой системы.

Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия. В случае незамкнутой системы импульс тел системы не сохраняется. Одна­ко, если в системе существует направление, по кото­рому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимо­действия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействую­щих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения им­пульса.

Экспериментальные исследования взаимодей­ствий различных тел - от планет и звезд до атомов и элементарных частиц - показали, что в любой си­стеме взаимодействующих тел при отсутствии дей­ствия со стороны других тел, не входящих в систему или равенстве нулю суммы действующих сил, гео­метрическая сумма импульсов тел действительно остается неизменной.

В механике закон сохранения импульса и за­коны Ньютона связаны между собой. Если на тело массой т в течение времени t действует сила и ско­рость его движения изменяется от v 0 до v, то уско­рение движения a тела равно a = (v - v 0)/t. На осно­вании второго закона Ньютона для силы F можно записать F = та = m(v - v 0)/t, отсюда следует Ft = mv - mv 0 .

Ft - векторная физическая величина, харак­теризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время t ее действия, называетсяимпульсом силы.

Единица импульсав СИ - Н с.

Закон сохранения импульса лежит в основе реактивного движения.Реактивное движение - это такое движение тела, которое возникает после отде­ления от тела его части.

Пусть тело массой т покоилось. От тела отде­лилась какая-то его часть т 1 со скоростью v 1 . Тогда

оставшаяся часть придет в движение в противопо­ложную сторону со скоростью v 2 , масса оставшейся части т 2 Действительно, сумма импульсов обоих частей тела до отделения была равна нулю и после разделения будет равна нулю:

т 1 v 1 +m 2 v 2 = 0, отсюда v 1 = -m 2 v 2 /m 1 .

Большая заслуга в развитии теории реак­тивного движения принадлежит К. Э. Циолковскому.

Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рас­считал запасы топлива, необходимые для преодоле­ния силы земного притяжения; основы теории жид­костного реактивного двигателя, а так же элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одно­временно) и последовательный (реактивные двигате­ли работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигате­лем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций и подробно рассмотрел условия жизни и жизнеобеспе­чения на них. Технические идеи Циолковского нахо­дят применение при создании современной ракетно-космической техники. Движение с помощью реак­тивной струи, по закону сохранения импульса, ле­жит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактив­ный принцип.

В чем причина движения тел? Ответ на этот вопрос дает раздел механики, называемый динамикой .
Как можно изменить скорость тела, заставить его двигаться быстрее или медленнее? Только при взаимодействии с другими телами. При взаимодействии тела могут поменять не только скорость, но и направление движения и деформироваться, изменив при этом форму и объем. В динамике для количественной меры взаимодействия тел друг на друга введена величина названная силой . А изменение скорости за время действия силы характеризуется ускорением. Сила есть причина ускорения.

Понятие силы

Сила – это векторная физическая величина, характеризующая действие одного тела на другое, проявляющееся в деформации тела или изменении его движения относительно других тел.

Сила обозначается буквой F. За единицу измерения в системе СИ принят Ньютон (Н), который равен силе, под действием которой тело массой в один килограмм получает ускорение в один метр на секунду в квадрате. Сила F полностью определена, если заданы ее модуль, направление в пространстве и точка приложения.
Для измерения сил служит специальный прибор называемый динамометром .

Сколько же сил в природе?

Силы можно разделить на два типа:

  1. Действуют при непосредственном взаимодействии, контактные (упругие силы, силы трения);
  2. Действуют на расстоянии, дальнодействующие (сила притяжения, сила тяжести, магнитные, электрические).

При непосредственном взаимодействии, например выстрел из игрушечного пистолета, тела испытывают изменение формы и объема по сравнению с первоначальным состоянием, то есть деформацию сжатия, растяжения, изгиба. Сжата пружина пистолета перед выстрелом, деформируется пулька при ударе о пружину. В данном случае силы действуют в момент деформации и исчезают вместе с ней. Силы такие называют упругими. Силы трения возникают при непосредственном взаимодействии тел, когда они катятся, скользят друг относительно друга.

Примером сил, действующих на расстоянии, может служить камень, брошенный вверх, вследствие притяжения он упадет на Землю, приливы и отливы, возникающие на океанских побережьях. С увеличением расстояния такие силы убывают.
В зависимости от физической природы взаимодействия силы можно разделить на четыре группы:

  • слабые;
  • сильные;
  • гравитационные;
  • электромагнитные.

Со всеми типами этих сил мы встречаемся в природе.
Гравитационные или силы всемирного тяготения являются самыми универсальными, все, что имеет массу способно испытывать эти взаимодействия. Они вездесущи и всепроникающие, но очень слабы, поэтому мы их не замечаем, особенно на огромных расстояниях. Гравитационные силы дальнодействующие, связывают все тела во Вселенной.

Электромагнитные взаимодействия возникают между заряженными телами или частицами, посредством действия электромагнитного поля. Электромагнитные силы позволяют нам видеть предметы, так как свет это одна из форм электромагнитных взаимодействий.

Слабые и сильные взаимодействия стали известны благодаря изучению строения атома и атомного ядра. Сильные взаимодействия возникают между частицами в ядрах. Слабые характеризуют взаимные превращения друг в друга элементарных частиц, действуют при реакциях термоядерного синтеза и радиоактивных распадах ядер.

Если на тело действует несколько сил?

При действии нескольких сил на тело одновременно заменяют это действие одной силой, равной их геометрической сумме. Полученную в этом случае силу называют равнодействующей. Она сообщает телу то же ускорение, что и одновременно действующие на тело силы. Это так называемый принцип суперпозиции сил.

Давление – это скалярная величина, которая равна отношению силы, которая действует перпендикулярно поверхности, к площади этой поверхности.

S — площадь поверхности или опоры тела;
F — сила давления (любая сила, которая действует на тело перпендикулярно поверхности, чаще всего это вес тела).

Единица давления – паскаль (Па). Названа в честь французского учёного Блеза Паскаля.

[р] = 1 Па = 1Н/м 2

Паскаль – давление, которое создаёт нормальная сила в 1 Н на площадь 1 м 2 .

Из формулы видно, что результат действия силы на поверхность зависит не только от ее величины, но и от площади опоры давящего тела. На картинке видно, что человек в ботинках идёт по снегу, глубоко проваливаясь при каждом шаге. Но если он наденет лыжи, то может идти не проваливаясь в снег. На лыжах и без человек действует на снег с одной и той же силой, которая равна его весу. Но действие этой силы различно в обоих случаях, потому что различна площадь поверхности, на которую давит человек.

Площадь подошвы примерно в 10 раз меньше площади поверхности лыжи, поэтому человек на лыжах давит на каждый квадратный сантиметр площади поверхности снега с силой в десять раз меньшей.

Задача

Расчитайте давление конькобежца массой 60 кг на лёд, если ширина лезвия конька 4 мм, а длина лезвия, соприкасающегося со льдом, 30 см? Конькобежец стоит на обоих ногах.

На практике используются также единицы давления килопаскали (кПа) и гектопаскали (гПа):
1 кПа = 1000 Па
1 гПа = 100 Па

Если на середину доски, лежащей горизонтально на двух опорах поставить груз, то под действием силы тяжести некоторое время груз будет двигаться вниз, прогибая доску, а затем остановится.

Эту остановку можно объяснить тем, что кроме силы тяжести, направленной вниз, на доску подействовала другая сила, направленная вверх. При движении вниз доска деформируется, при этом возникает сила, с которой опора действует на тело, лежащее на ней, эта сила направленна вверх, то есть в сторону, противоположную силе тяжести. Такую силу называют силой упругости . Когда сила упругости становится равной силе тяжести, действующей на тело, опора и тело останавливаются.

Сила упругости — это сила, возникающая при деформации тела (то есть при изменении его формы, размеров) и всегда направлена в сторону, противоположную деформирующей силы.

Причина возникновения силы упругости

Причиной возникновения сил упругости является взаимодействие молекул тела . На малых расстояниях молекулы отталкиваются, а на больших – притягиваются. Конечно речь идёт о расстояниях сравнимых с размерами самих молекул.

В недеформированном теле молекулы находятся на таком расстоянии, при котором силы притяжения и отталкивания уравновешиваются. При деформации тела (при растяжении или сжатии) расстояния между молекулами изменяются – начинают преобладать либо силы притяжения, либо – отталкивания. В результате и возникает сила упругости, которая всегда направлена так, чтобы уменьшить величину деформации тела .

Закон Гука

Если к пружине повесить одну гирьку, то мы увидим, что пружина деформировалась — удлинилась на некоторую величину х . Если к пружине подвесить две одинаковые гирьки, то увидим, что удлинение стало в два раза больше. Удлинение пружины пропорционально силе упругости.

Сила упругости, возникающая при деформации тела, по модулю пропорциональна удлинению тела и направлена так, что стремится уменьшить величину деформации тела.

Закон Гука справедлив только для упругих деформаций, то есть таких видов деформации, которые исчезают, когда деформирующая сила перестаёт действовать!!!

Закон Гука можно записать в виде формулы:

где k — жёсткость пружины;
х — удлинение пружины (равно разнице конечной и начальной длине пружины);
знак «–» показывает, что сила упругости всегда направлена в противоположную сторону деформирующей силы.

«Разновидности» силы упругости

Силу упругости, которая действует со стороны опоры, называют силой нормальной реакции опоры . Нормальная от слова «нормаль», то есть реакция опоры всегда перпендикулярна поверхности.

Силу упругости, которая действует со стороны подвеса, называют силой натяжения нити (подвеса) .

В окружающем нас мире действие одного тела на другое не может быть односторонним. Существует только .

Что является результатом взаимодействия?
1. изменение скорости тела;
2. .

Рассмотрим явление, в результате которого тело меняет свою скорость .
Тележка находится в состоянии покоя относительно стола. Прикрепим к тележке упругую пластину, которая согнута и связана нитью. Если эту нить разрезать, то пластина резко выпрямится, но тележка останется на прежнем месте.
Если поставить рядом от согнутой пластины ещё одну такую же тележку, то после разрезания нити обе тележки придут в движение и разъедутся в разные стороны.

То есть для изменения скорости тележки потребовалось второе тело — вторая тележка.

При взаимодействии тел изменяются скорости тел.

Рассмотрим случаи, когда результатом взаимодействия тел является деформация тел.

На первом рисунке приведён пример, когда теннисный мяч взаимодействует с ракеткой. При этом происходит деформация как сетки ракетки, так и самого мяча.

На втором рисунке показано, что если сжимать тело, то оно при этом деформируется, также как и пальцы руки.

На третьем рисунке показана деформация сетки батута.

При взаимодействии результат зависит от того, на сколько «сильным» будет взаимодействие: сильнее толнёте тележку — тележка наберёт бОльшую скорость; сильнее ударите по мячу — сильнее его «деформируете» и мяч наберёт большую скорость и т.д.

Для количественного определения меры действия одного тела на другое служит физическая величина — сила .

Деформация — это изменение размеров или формы тела.

При контакте взаимодействующих тел приходят в движение отдельные части тела, вследствие чего оба тела деформируются. В зависимости от того как именно части тела смещаются относительно друг друга, различают деформации растяжения, сжатия, кручения, изгиба, сдвига.

Деформация продолжается до тех пор, пока возникшая не уравновесит внешние силы — тогда движение частей тела прекратится.

Плотность — физическая величина, характеризующая физические свойства вещества, которая равна отношению массы тела к занимаемому этим телом объёму.

Плотность (плотность однородного тела или средняя плотность неоднородного) можно расчитать по формуле:

[ρ] = кг/м³; [m] = кг; [V] = м³.

где m - масса тела, V - его объём; формула является просто математической записью определения термина «плотность».

Все вещества состоят из молекул, следовательно масса всякого тела складывается из масс его молекул. Это подобно тому, как масса пакета с конфетами складывается из масс всех конфет в пакете. Если все конфеты одинаковы, то массу пакета с конфетами можно было бы определить, умножив массу одной конфеты на число конфет в пакете.

Молекулы чистого вещества одинаковы. Поэтому масса капли воды равна произведению массы одной молекулы воды на число молекул в капле.

Плотность вещества показывает, чему равна масса 1 м³ этого вещества.

Плотность воды равна 1000 кг/м³, значит, масса 1 м³ воды равна 1000 кг. Это число можно получить, умножив массу одной молекулы воды на число молекул, содержащихся в 1 м³ его объёма.
Плотность льда равна 900 кг/м³, это означает, что масса 1 м³ льда равна 900 кг.
Иногда используют единицу измерения плотности г/см³, поэтому ещё можно сказать, что масса 1см³ льда равна 0,9 г.

Каждое вещество занимает некоторый объём. И может оказаться, что объёмы двух тел равны , а их массы различны. В этом случае говорят, что плотности этих веществ различны.


Также при равенстве масс двух тел их объёмы будут различны. Например, объём льда почти в 9 раз больше объёма железного бруса.

Плотность вещества зависит от его температуры.

При повышении температуры обычно плотность уменьшается. Это связано с термическим расширением, когда при неизменной массе увеличивается объём.

При уменьшении температуры плотность увеличивается. Хотя существуют вещества, плотность которых в определённом диапазоне температур ведёт себя иначе. Например, вода, бронза, чугун. Так, плотность воды имеет максимальное значение при 4 °C и уменьшается как с повышением, так и с понижением температуры относительно этого значения.

При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Вода, кремний, висмут и некоторые другие вещества являются исключениями из данного правила, так как их плотность при затвердевании уменьшается.

Решение задач

Задача №1.
Прямоугольная металлическая пластинка длиной 5 см, шириной 3 см и толщиной 5 мм имеет массу 85 г. Из какого материала она может быть иготовлена?

Анализ физической проблемы. Чтобы ответить на поставленный вопрос, необходимо определить плотность вещества, из которого изготовлена пластинка. Затем, воспользовавшись таблицей плотностей, определить – какому веществу соответствует найденое значение плотности. Эту задачу можно решить в данных единицах (т.е. без перевода в СИ).

Задача №2.
Медный шар объёмом 200 см 3 имеет массу 1,6 кг. Определите, цельный этот шар или пустой. Если шар пустой, то определите объём полости.

Анализ физической проблемы. Если объём меди меньше объёма шара V мед

Задача №3.
Канистра, которая вмещает 20 кг воды, наполнили бензином. Определите массу бензина в канистре.

Анализ физической проблемы. Для определения массы бензина в канистре нам необходимо найти плотность бензина и ёмкость канистры, которая равна объёму воды. Объём воды определим по её массе и плотности. Плотность воды и бензина найдём в таблице. Задачу лучше решать в единицах СИ.

Задача №4.
Из 800 см 3 олова и 100 см 3 свинца изготовили сплав. Какова его плотность? Каково отношение масс олова и свинца в сплаве?

Все физические тела вокруг нас обладают некоторыми общими свойствами. Одним из таких свойств является свойство тел притягиваться к другим телам благодаря гравитационному взаимодействию. Мерой этого свойства является физическая величина, которая называется массой тел .

Также ни одно из тел не может изменить скорость своего движения мгновенно. В результате одинакового воздействия одни тела изменяют свою скорость достаточно быстро, а другие — намного медленнее. Например, чтобы придать определённоую скорость тенисному мячу, нужно меньше времени, чем для придания такой же скорости металлическому шару. В таком случае говорят, что металлический шар более инертный. Мерой такого свойства тела как инетртность является — масса .

Таким образом, масса тела – это физическая величина, которая является мерой инертного и гравитационного свойств тела.

Понятие массы – одно из самых сложных в физике, и при дальнейшем изучении физики это понятие будет расширяться.
На данный момент достаточно уяснить, что каждое физическое тело – человек, пушинка, Луна, микрочастица и т.д. – имеет массу.

Измерение массы

Поскольку масса – физическая величина, то её можно измерить. Чтобы измерить массу любого тела, его необходимо сравнить с телом, массу которого взята за единицу.
За единицу массы в Международной системе единиц (СИ) взят килограмм.

[m] = 1 кг

Кроме килограмма, допускается использование при необходимости, других единиц массы: тонны (т), центнера (ц), грамма (г), миллиграмма (мг)

Кратные единицы:
1 т = 1000 кг
1 ц = 100 кг
1 кг = 1000 г
—Дольные единицы:
1 г = 0,001 кг
1 мг = 0,001 г
1 мг = 0,000 001 кг

Поскольку масса — это одна из основных единиц СИ, поэтому для неё существует эталон. Эталон массы был создан в 1880 году и представлял собой 1 л чистой воды при температуре +4ºС. Однако такой эталон был неудобен. Эталон килограмма изготовлен из платиново-иридиевого сплава, имеет форму цилиндра высотой 39 мм и диаметром 39 мм.

Хранится во Франции, в городе Севре в Международном бюро мер и весов. С эталона изготовлены точные копии, которые есть во многих странах, в частности в Украине (в г. Харькове в Национальном научном центре «Институт метрологии»).

Прибор для измерения массы тела называют весами .

Правила взвешивания

1. Уравновесить весы.
2. Положить взвешиваемое тело на левую чашку весов, а гири – на правую.
3. Добиться равновесия весов с телом и гирями на чашках.
4. Взвешиваемое тело и гири опускать на чашки осторожно.
5. Взвешивать грузы массой, не превышающей предельную нагрузку.
6. Мелкие гири брать пинцетом.
При измерении массы сыпучего вещества на чаши весов подложить бумагу для избежания загрязнения чаши.



Последние материалы раздела:

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...