Что такое электричество? Информация о электрическом токе. Неразгаданные тайны Теслы

Путь к электричеству начался еще в глубокой древности. Еще греку Фалесу из Милета, жившему в VI–V вв. до нашей эры, было известно свойство янтаря притягивать при натирании легкие предметы – перышки, солому, волосы и даже создавать искорки. Вплоть до шестнадцатого века это был единственный способ электризации тел, не имевший никакого практического применения.

В средние века, когда компас, позволяющий определять курс корабля, стал известен Западу, изучение магнитных явлений приобретает практическое значение. В 1600 г. вышла книга английского ученого Гильберта (1544–1603) «О магните, магнитных телах и большом магните – Земле» . В ней автор описал уже известные свойства магнита, а также собственные открытия. Он доказал, что наэлектризовать можно не только янтарь, но и алмаз, горный хрусталь и ряд других минералов. В отличие от магнита, который способен притягивать только железо (других магнитных материалов в то время не знали), наэлектризованное тело притягивает многие тела. Все тела, обладающие свойством притягивать, он назвал электриками, впервые введя этот термин в употребление (по-гречески янтарь–электрон).Одновременно им были определены вещества, не способные электризоваться.
Вслед за Гильбертом важное место в истории науки об электричестве принадлежит немецкому бургомистру Ото фон Герике (1602–1686) . Его исследования в области электричества заложили начало экспериментальной электростатики. Он сконструировал первое устройство для получения статического электричества – серный шар диаметром 15–20 см, вращающийся на оси. Насадив шар на ось, он наблюдал различные электрические явления. Притянутая к шару пушинка, отталкиваясь от него, парила в воздухе, притягиваясь к другим телам, особенно заостренным, а потом снова к шару. Параллельно, он обнаружил явление взаимного отталкивания двух наэлектризованных тел. Экспериментатор показал, что электростатические заряды могут распространяться по полуметровой льняной нитке, притягивающей к своему концу легкие предметы. Натирая шар рукой в темноте, он обнаружил слабое свечение. При этом роль одного из полюсов выполнял сам изобретатель.

Позднее машину Герике усовершенствовали другие изобретатели. Серный шар был заменен стеклянным, а в качестве одного из полюсов вместо ладоней исследователя применены кожаные подушечки. В 1729 г. англичанин Грей открыл явление электропроводности. Он установил, что электричество способно передаваться от одних тел к другим по металлической проволоке. По шелковой же нити электричество не распространялось. В связи с этим Грей разделил все тела на проводники и не проводники электричества. Французский ученый Дюфе выяснил, что существует два вида электричества. Один вид электричества образуется при натирании стекла, горного хрусталя, шерсти и некоторых других тел. Это электричество Дюфе назвал стеклянным электричеством. Второй вид электричества образуется при натирании янтаря, шелка, бумаги и других веществ. Этот вид электричества Дюфе назвал смоляным. Ученый установил, что тела, наэлектризованные одним видом электричества, отталкиваются, а разными видами – притягиваются. Немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук в 1745 году создали первый конденсатор – «лейденскую банку». Диэлектриком в ней были стенки стеклянной банки, откуда и возникло это название. Это был стеклянный сосуд с водой, обернутый фольгой. В воду погружали металлический стержень, пропущенный через пробку. Они считали, что накоплению электрических зарядов способствует вода, находящаяся в банке.

Американский ученый Бенджамин Франклин (1706–1790) доказал, что вода в накоплении электрических зарядов никакой роли не играет, этим свойством обладает стекло – диэлектрик . В сороковых годах XVIII века он выдвинул теорию о том, что существует электричество только одного рода – особая электрическая материя, состоящая из мельчайших частиц, способных проникать внутрь вещества. Если в теле имеется избыток электрической материи, оно заряжено положительно, при ее недостатке – тело заряжено отрицательно. Франклин предложил стеклянное электричество Дюфе назвать положительным, а смоляное – отрицательным и ввел в практику знаки «плюс» и «минус», а также термины конденсатор, проводник, заряд.

Уже к концу XVIII века свойства и поведение неподвижных зарядов были достаточно изучены и в какой-то мере объяснены. Однако ничего не было известно об электрическом токе – движущихся зарядах, так как не существовало устройства (детектора), которое могло бы регистрировать движение зарядов. Токи, получаемые от электростатической машины, были слишком малы, их нельзя было измерить. В конце XIX в. медик Гальвани (Luigi Aiosio Galvani) открыл первую конструкция детектора не искусственную, а природную – биологическую. Препарируя лягушек, он обнаружил появление в тканях препарированной лягушки кратковременных импульсов электрического тока, способствовавших резкому сокращению ее мышц. Сопоставив свои результаты с предыдущими исследованиями, он сделал вывод о существовании «животного» электричества. В предложенной им теории для описания поведения мышцы использовалась модель электрического конденсатора. Предполагалось, что внешняя поверхность и внутренняя часть лягушечьей мышцы представляют собой обкладки конденсатора. Зарядка такого конденсатора происходит за счет возбуждения спинного мозга, которое передается через нерв. В момент замыкания обкладок «живого» конденсатора металлическим крючком происходит разряд, и в цепи начинает протекать электрический ток, в результате чего и происходят подергивания мышцы. При этом разряд не зависит от того, замыкают цепь проводником из однородного металла или из двух различных металлов. Позже Гальвани предположил, что «животное» электричество в отличии от обычного, «более эффективно действует через разнородные проводники». Однако профессор из Павийского университета Алессандро Вольта (Alessandro Guiseppe Antonio Anastasio Volta), тщательно повторив все опыты Гальвани, не согласился с выводами автора . Вольта утверждал, что явление, открытое Гальвани, чисто физическое, а не физиологическое, и животного электричества не существует. Причина сокращения лягушечьей лапки, по мнению Вольта, который изобрел источник постоянного тока (вольтов столб) лежит в природе разнородных металлов, замыкающих цепь. Александро Вольта, как и Луиджи Гальвани, до конца своих дней твердо придерживался созданных им научных теорий, невзирая на то, что некоторые из них были неверными. Так, он считал, что в основе действия изобретенного им источника тока лежит контактная разность потенциалов. Однако по прошествии длительного времени было установлено, что причиной возникновения электродвижущей силы в гальваническом элементе является химическое взаимодействие металлов с проводящей жидкостью– электролитом. Полная теория гальванического элемента была создана только в конце XIX века. Исследования XX века показали, что явление контактной разности потенциалов существенно влияет на рабочие характеристики различных радиоэлектронных приборов и его необходимо учитывать при их разработке. Контактная разность потенциалов оказывает заметное влияние на вид вольтамперных характеристик электровакуумных ламп. На контактной разности потенциалов основана работа элементов полупроводниковой электроники: p-n-переходов и контактов «металл-полупроводник» .

Таким образом, XIX век стал веком теоретического осмысления природы магнетизма и электричества. Именно в этом веке теоретически было доказано наличие электромагнитных волн, что и предопределило техническую революцию в области связи, а затем и телекоммуникационных технологий.

Электричество — это движущийся в определенном направлении поток частиц. Они обладают неким зарядом. По-другому, электричество — это энергия, которая получается при движении, а также освещение, появляющееся после получения энергии. Термин ввел ученый Уильям Гилберт в 1600 году. При проведении опытов с янтарем еще древнегреческий Фалес обнаружил, что минералом приобретался заряд. «Янтарь» в переводе с греческого означает «электрон». Отсюда пошло и название.

Электричество - это...

Благодаря электричеству, вокруг проводников тока или тел, обладающих зарядом, создается электрическое поле. Через него появляется возможность воздействовать на другие тела, у которых также есть некий заряд.

Все знают, что заряды бывают положительными и отрицательными. Конечно, это условное деление, но по сложившейся истории их так и продолжают обозначать.

Если тела заряжены одинаково, они будут отталкиваться, а если по-разному — притягиваться.

Суть электричества заключается не только в создании электрического поля. Возникает и магнитное поле. Поэтому между ними имеется родство.

Больше века спустя, в 1729 году, Стивен Грей установил, что есть тела, обладающие очень большим сопротивлением. Они способны проводить

В настоящее время больше всего электричеством занимается термодинамика. Но квантовые свойства электромагнетизма изучает квантовая термодинамика.

История

Вряд ли можно назвать конкретного человека, открывшего явление. Ведь и по сей день продолжаются исследования, выявляются новые свойства. Но в науке, которую нам преподают в школе, называют несколько имен.

Считается, что первым, кто заинтересовался электричеством, был живший в Древней Греции. Это он тер янтарь о шерсть и наблюдал, как начинали притягиваться тела.

Затем Аристотель изучал угрей, поражавших врагов, как поняли позже, электричеством.

Позже Плиний писал об электрических свойствах смолы.

Ряд интересных открытий закрепили за врачом английской королевы, Вильямом Жильбером.

В середине семнадцатого века, после того как стал известен термин «электричество», бургомистр Отто фон Герике изобрел электростатическую машину.

В восемнадцатом веке Франклин создал целую теорию явления, говоряющую о том, что электричество - это флюид или нематериальная жидкость.

Кроме упомянутых людей, с этим вопросом связывают такие знаменитые имена, как:

  • Кулон;
  • Гальвани;
  • Вольт;
  • Фарадей;
  • Максвелл;
  • Ампер;
  • Лодыгин;
  • Эдисон;
  • Герц;
  • Томсон;
  • Клод.

Несмотря на их неоспоримый вклад, самым могущественным из ученых в мире по праву признают Николу Теслу.

Никола Тесла

Ученый родился в семье сербского православного священника на территории нынешней Хорватии. В шесть лет мальчик обнаружил чудесное явление, когда играл с черной кошкой: ее спина вдруг осветилась полоской голубого цвета, что сопровождалось искрами при прикосновении. Так мальчик впервые узнал, что такое «электричество». Это и определило всю его будущую жизнь.

Ученому принадлежат изобретения и научные работы о:

  • переменном токе;
  • эфире;
  • резонансе;
  • теории полей;
  • радио и еще многом другом.

Многие связывают событие, получившее название с именем Николы Теслы, считая, что огромный взрыв в Сибири был вызван не падением космического тела, а опытом, проводимым ученым.

Природное электричество

Одно время в научных кругах существовало мнение, что электричества в природе не существует. Но эту версию опровергли тогда, когда Франклином была установлена электрическая природа молнии.

Именно благодаря ей аминокислоты начали синтезироваться, а значит, и появилась жизнь. Установлено, что движения, дыхание и другие процессы, происходящие в организме, возникают от нервного импульса, который имеет электрическую природу.

Всем известные рыбы — электрические скаты - и некоторые другие виды защищаются таким образом, с одной стороны, и поражают жертву, с другой.

Применение

Подключение электричества происходит за счет работы генераторов. На электростанциях создается энергия, передаваемая по специальным линиям. Ток образуется за счет преобразования внутренней или в электрическую. Станции, которые ее вырабатывают, где происходит подключение или отключение электричества, бывают различных видов. Среди них выделяют:

  • ветровые;
  • солнечные;
  • приливные;
  • гидроэлектростанции;
  • тепловые атомные и другие.

Подключение электричества сегодня происходит практически везде. Представить себе жизнь без него современный человек не может. С помощью электричества производится освещение, передается информация по телефону, радио, телевидению… За счет него функционирует такой транспорт, как трамваи, троллейбусы, электрички, поезда метро. Появляются и все смелее заявляют о себе электромобили.

Если происходит отключение электричества в доме, то человек часто становится беспомощным в разных делах, так как даже бытовые приборы работают при помощи этой энергии.

Неразгаданные тайны Теслы

Свойства явления изучали с древних времен. Человечество узнало, как провести электричество, используя различные источники. Это в значительной степени облегчило им жизнь. Тем не менее в будущем людям еще предстоит немало открытий, связанных с электричеством.

Некоторые из них, может быть, даже уже были сделаны известным Николой Теслой, но затем были засекречены или уничтожены им самим. Биографы утверждают, что в конце жизни большинство записей ученый собственноручно сжег, осознав, что человечество не готово к ним и может навредить себе, использовав его открытия как самое мощное оружие.

Но по другой версии, считается, что часть записей была изъята спецслужбами США. Истории известен эсминец ВМФ США «Элдридж», который не только обладал способностью быть невидимым для радаров, но и перемещался моментально в пространстве. Есть свидетельства эксперимента, после которого часть экипажа тогда погибла, другая часть исчезла, а оставшиеся в живых сошли с ума.

Так или иначе, понятно, что все тайны электричества еще не раскрыты. Значит, человечество нравственно еще не готово к этому.

Подвесив на двух нитях лёгкие шарики из фольги и коснувшись каждого из них стеклянной палочкой, потёртой о шёлк, можно увидеть, что шарики оттолкнутся дpуг от друга. Если потом коснуться одного шарика стеклянной палочкой, потёpтой о шёлк, а другого эбонитовой палочкой, потёpтoй о мех, то шарики притянутся дpуг к другу. Это означает, что стеклянная и эбонитовая палочки при трении приобретают заряды разных знаков , т.е. в природе существуют два рода электрических зарядов , имеющих противоположные знаки: положительный и отрицательный. Условились считать, что стеклянная палочка, потёртая о шёлк, приобретает положительный заряд , а эбонитовая палочка, потёртая о мех, приобретает отрицательный заряд .

Из описанного опыта также следует, что заряженные тела взаимодействуют друг с другом . Такое взаимодействие зарядов называют электрическим. При этом одноимённые заряды, т.е. заряды одного знака, отталкиваются друг от друга, а разноимённые заряды притягиваются друг к другу.

На явлении отталкивания одноимённо заряженных тел основано устройство электроскопа - прибора, позволяющего определить, заряжено ли данное тело, и электрометра , прибора, позволяющего оценить значение электрического заряда.

Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.

Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.

Заряд обозначают буквой q , за единицу заряда принят кулон : [q ] = 1 Кл .

Если коснуться заряженной палочкой одного электрометра, а затем этот электрометр соединить металлическим стержнем с другим электрометром, то заряд, находящийся на первом электрометре, поделится между двумя электрометрами. Можно затем соединить электрометр с ещё несколькими электрометрами, и заряд будет делиться между ними. Таким образом, электрический заряд обладает свойством делимости . Пределом делимости заряда, т.е. наименьшим зарядом, существующим в природе, является заряд электрона . Заряд электрона отрицателен и равен 1,6*10 -19 Кл . Любой другой заряд кратен заряду электрона.

Простые опыты по электризации различных тел иллюстрируют следующие положения.

1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.

2. Заряды (или заряженные тела ) взаимодействуют друг с другом. Одноименные заряды оттал-киваются, а разноименные заряды притягиваются.

3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда . При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — поло-жительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями заря-дов с помощью электрометров.

Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов; атомы , в свою очередь, состоят из элементарных частиц — отрицательно заряженных электронов , положительно заряженных протонов и нейтральных частиц - нейтронов . Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов.

Элементарный электрический заряд (е ) — это наименьший электрический заряд, положи-тельный или отрицательный, равный величине заряда электрона:

е = 1,6021892(46) · 10 -19 Кл .

Заряженных элементарных частиц существует много, и почти все они обладают зарядом +e или -e , однако эти частицы весьма недолговечны. Они живут меньше миллионной доли се-кунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.

Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома , вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электроцентралей.

В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными; тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.

Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приоб-ретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся заря-дов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

Определение заряда.

Следует особо подчеркнуть, что заряд является неотъемлемым свойством частицы. Частицу без заряда представить себе можно, но заряд без частицы — нельзя.

Проявляют себя заряженные частицы в притяжении (разноименные заряды) либо в отталкивании (одноименные заряды) с силами, на много порядков превышающими гравитационные. Так, сила электрического притяжения электрона к ядру в атоме водорода в 10 39 раз больше силы гра-витационного притяжения этих частиц. Взаимодействие между заряженными частицами называется электромагнитным взаимодействием , а электрический заряд определяет интенсивность электромагнитных взаимодействий.

В современной физике так определяют заряд:

Электрический заряд — это физическая величина , являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.

Или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом .

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением.. Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

Властелин мира - Никола Тесла

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле .

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше. Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний. Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток. Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века. Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа. Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд., то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно. Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...