Оболочки Земли. Литосфера. Строение Земли и свойства земной коры. Температура внутри земли

Цели и задачи урока:

  • познакомить учащихся с главными оболочками Земли;
  • рассмотреть особенности внутреннего строения Земли, свойства земной коры;
  • дать представление о способах изучения земной коры.

Учебно - наглядный комплекс:

  • Глобус,
  • схема строения земной коры (мультимедийная презентация),
  • учебник для 6 класса “Начальный курс географии” Герасимова Т.П., Неклюкова Н.П.

Формы проведения урока:

Знакомство с основными оболочками Земли, их определение; работа со схемой “Внутреннее строение Земли”; работа с таблицей “Земная кора и особенности ее строения”; рассказ о способах изучения земной коры.

Термины и понятия:

  • атмосфера,
  • гидросфера,
  • литосфера,
  • земная кора,
  • мантия,
  • ядро Земли,
  • материковая земная кора,
  • океаническая земная кора,
  • раздел Мохоровичича,
  • сверхглубокие скважины.

Географические объекты:

Кольский полуостров.

Объяснение нового материала:

  • Объяснительное чтение учебника, конспектирование (стр.38).(использование мультимедийной презентации).
  • Строение Земли (рассматриваем рис.22, стр.39), комментированное чтение, составление рисунка-конспекта в тетради (использование мультимедийной презентации).
  • Свойства земной коры. Включение в конспект работы с рис.23, стр.40.(Использование мультимедийной презентации)
  • Решение задач на определение температуры, изменяющейся с погружением в глубь Земли.
  • Изучение земной коры. Работа с рис.24, стр.40.
  • Закрепление нового материала. (Использование мультимедийной презентации).
  • 1.Объяснительное чтение учебника, конспектирование.

    Подчеркнуть карандашом и записать в тетради: (использование мультимедийной презентации).

    Внешние оболочки земли:

    • Воздух – газообразная оболочка –атмосфера
    • вода – водная оболочкагидросфера
    • горные породы, которые слагают сушу и дно океанов – земная кора
    • живые организмы вместе с той средой, где они живут, составляют биосферу.

    2. Строение Земли (рассматриваем рис. 22, стр.39). Использование мультимедийной презентации. Комментированное чтение, составление рисунка-конспекта в тетради.

    Литосфера – это твердая оболочка Земли, включающая земную кору и верхнюю часть мантии. Мощность литосферы составляет в среднем от 70 до 250 км.

    Радиус Земли (экваториальный) = 6378 км

    3. Свойства земной коры. Включение в конспект работы с рис. 23 стр.40 (использование мультимедийной презентации).

    Земная кора – твердая каменная оболочка Земли, состоящая из твердых минералов и горных пород.

    Земная кора

    4. Решение задач на определение температуры, изменяющейся с погружением в глубь Земли.

    От мантии внутреннее тепло Земли передается земной коре. Верхний слой земной коры – до глубины 20-30м подвержен влиянию внешних температур, а ниже температура постепенно повышается: на каждые 100м глубины на +3С. Глубже, температура уже в значительной степени зависит от состава пород.

    Задание: Какова температура горных пород в шахте, где добывается каменный уголь, если ее глубина 1000м, а температура слоя земной коры, который уже не зависит от времени года составляет +10С

    Решаем по действиям:

  • Сколько раз произойдет повышение температуры горных пород с глубиной?
    1. На сколько градусов повышается температура земной коры в шахте:
    1. Какой будет температура слоя земной коры в шахте?

    10С+(+30С)= +40С

    Температура = +10С +(1000:100 3С)=10С +30С =40С

    Решить задачу: Какова температура земной коры в шахте, если ее глубина 1600м, а температура слоя земной коры, не зависящего от времени года -5 С?

    Температура воздуха =(-5С)+(1600:100 3С)=(-5С)+48С =+43С.

    Запишите условие задачи и решите ее дома:

    Какова температура земной коры в шахте, если ее глубина 800м, а температура слоя земной коры, не зависящего от времени года +8?С?

    Решите задачи, приведенные в конспекте урока

    5. Изучение земной коры. Работа с рис. 24 стр.40, текстом учебника.

    Бурение Кольской сверхглубокой скважины началось в 1970году, ее глубина до 12-15км. Подсчитайте, какую часть земного радиуса это составляет.

    R Земли = 6378км (экваториальный)

    6356 км (полярный) или меридиональный

    530-531 часть экваториального.

    Глубина самой глубокой в мире шахты в 4 раза меньше. Несмотря на многочисленные исследования, мы еще очень мало знаем о недрах собственной планеты. Словом, если вновь обратиться к приведенному сравнению, мы еще никак не можем “проколоть скорлупку”.

    1. Закрепление нового материала. Использование мультимедийной презентации
    2. .

      Тесты и задания для проверки.

    1. Определите оболочку Земли: земная кора.

  • гидросфера.
  • атмосфера
  • биосфера.
  • А. воздушная

    Б. твердая.

    Г. водная.

    Ключ проверки:

    2. Определите, о какой оболочке Земли идет речь: Земная кора

  • Мантия
  • Ядро
  • а/ ближе всего к центру Земли

    б/ толщина от 5 до 70км

    в/ в переводе с латыни “покрывало”

    г/ температура вещества +4000 С+5000 С

    д/ верхняя оболочка Земли

    е/ толщина около 2900км

    ж/ состояние вещества особое: твердое и пластичное

    з/ состоит из материковой и океанической частей

    и/ основной элемент состава – железо.

    Ключ проверки:

    3. Землю по ее внутреннему строению иногда сравнивают с куриным яйцом. Что хотят показать этим сравнением?

    Домашнее задание: §16, задания и вопросы после параграфа, задача в тетради.

    Материал, используемый учителем во время объяснения новой темы.

    Земная кора.

    Земная кора в масштабе всей Земли представляет тончайшую пленку и по сравнению с радиусом Земли ничтожна. Она достигает максимальной толщины 75км под горными массивами Памира, Тибета, Гималаев. несмотря на маленькую мощность, земная кора имеет сложное строение.

    Верхние ее горизонты довольно хорошо изучены при помощи бурения скважин.

    Строение и состав земной коры под океанами и на континентах очень сильно различаются. Поэтому и принято выделять два основных типа земной коры – океаническую и континентальную.

    Земная кора океанов занимает примерно56% поверхности планеты, и главной ее чертой является небольшая толщина – в среднем около 5-7 км. Но даже такая тонкая земная кора подразделяется на два слоя.

    Первый слой – осадочный, представлен глинами, известковыми илами. Второй слой сложен базальтами – продуктами извержений вулканов. Мощность базальтового слоя на дне океанов не превышает 2 км.

    Континентальная (материковая) земная кора занимает площадь меньше, чем океаническая, около 44% поверхности планеты. Континентальная кора толще океанической, ее средняя мощность 35-40км, а в области гор достигает 70-75 км. Она состоит из трех слоев.

    Верхний слой слагают разнообразные осадки, их мощность в некоторых впадинах, например, в Прикаспийской низменности, составляет 20-22 км. Преобладают отложения мелководий – известняки, глины, пески, соли и гипс. Возраст пород 1,7 млрд.лет.

    Второй слой – гранитный – он хорошо изучен геологами, т.к. имеются выходы его на поверхность, а также предпринимались попытки пробурить его, хотя попытки пробурить весь слой гранита оказались неудачными.

    Состав третьего слоя не очень ясен. Предполагают, что он должен быть сложен породами типа базальтов. Мощность его составляет 20-25 км. В основании третьего слоя прослеживается поверхность Мохоровичича.

    Повехность Мохо.

    В 1909г. на Балканском полуострове, около г.Загреба, произошло сильное землетрясение. Хорватсякий геофизик Андрия Мохоровичич,изучая сейсмограмму, записанную в момент этого события, заметил, что на глубине примерно 30 км скорость волн существенно увеличивается. Данное наблюдение подтвердили и другие сейсмологи. Значит, существует некий раздел, ограничивающий снизу земную кору. Для его обозначения ввели особый термин – поверхность Мохоровичича (или раздел Мохо).

    Под корой на глубинах от 30-50 до 2900 км расположена мантия Земли. Из чего же она состоит? Главным образом из горных пород, богатых магнием и железом.

    Мантия занимает до 82% объема планеты и подразделяется на верхнюю и нижнюю. Первая залегает ниже поверхности Мохо до глубины 670 км. Быстрое падение давления в верхней части мантии и высокая температура приводят к плавлению ее вещества.

    На глубине от 400 км под материками и 10-150 км под океанами, т.е. в верхней мантии, был обнаружен слой, где сейсмические волны распространяются сравнительно медленно. Этот слой назвали астеносферой (от греч. “астенес” - слабый). Здесь доля расплава составляет 1-3%, более пластичная. Чем остальная мантия, астеносфера служит “смазкой”, по которой перемещаются жесткие литосферные плиты.

    По сравнению с породами, слагающими земную кору, породы мантии отличаются большой плотностью и скорость распространения сейсмических волн в них заметно выше.

    В самом “подвале” нижней мантии – на глубине 1000км и до поверхности ядра – плотность постепенно увеличивается. Из чего состоит нижняя мантия, пока остается загадкой.

    Предполагают, что поверхность ядра состоит из вещества, обладающего свойствами жидкости. Граница ядра находится на глубине 2900км.

    А вот внутренняя область, начинающаяся с глубины 5100км, ведет себя как твердое тело. Это обусловлено очень высоким давлением. Даже на верхней границе ядра теоретически рассчитанное давление составляет около 1,3 млн.атм. а в центре достигает 3 млн.атм. Температура здесь может превышать 10000С. Каждый куб. см вещества земного ядра весит 12 -14 г.

    Очевидно, вещество внешнего ядра Земли гладкое, почти как пушечное ядро. Но оказалось, что перепады “границы” достигают 260км.

  • Найдите соответствия:
    1. земная кора океанического типа.
    2. материковая земная кора
    3. мантия
    4. ядро

    а. состоит из гранита, базальта и осадочных пород.

    б. температура +2000, состояние вязкое, ближе к твердому.

    в. толщина слоя 3-7 км.

    г. температура от 2000 до 5000С, твердое, состоит из двух слоев.

    _______________________________________________________________________________

    1. Реши задачи:

    ________________________________________________________________________________

    Чтобы рассчитать, каких значений достигает давление внутри Земли, вызванное весом горных пород, слагающих различные оболочки, нужно знать плотность пород на всех глубинах и величину силы тяжести также на всех глубинах вплоть до центра.

    Как мы видели, плотность пород с глубиною растет, хотя и неравномерно. От 2,5 на поверхности она доходит до 3,4 на глубине около 100 км и до 6,0 на уровне 2900 км ниже поверхности. Здесь, на границе ядра, в величине плотности наблюдается скачок: она сразу достигает значения 9,5 (приблизительно), а далее снова растет равномерно, доходя в центре ядра до 12,5 (по М. С. Молоденскому, 1955) (см. рис. 8).

    Рис. 8. Изменение плотности внутри Земли.


    Что касается силы тяжести, то о ней можно сказать следующее. Сила тяжести - сила, с которой Земля притягивает к себе все тела. Под влиянием этой силы тела, находящиеся в свободном состоянии (например, в воздухе), падают на Землю, т. е. движутся по направлению к центру Земли, постепенно убыстряясь, т. е. получая «ускорение». Величину «ускорения силы тяжести» можно вычислить. На поверхности Земли ускорение силы тяжести равно приблизительно 9,8 м/сек 2 ; в глубине Земли оно сначала немного возрастает, достигая максимума близ поверхности ядра, а затем быстро падает, доходя в центре Земли до нуля (рис. 9). Это понятно: точка, находящаяся в центре земного шара, притягивается всеми окружающими ее частями, с одинаковой силой по всем радиусам, а в итоге равнодействующая будет равна нулю.



    Рис. 9. Изменение ускорения силы тяжести внутри Земли.


    Обладая указанными сведениями, мы можем вычислить вес столбика пород с поперечным сечением, равным 1 кв. сантиметру, и длиной, равной радиусу Земли или любой его части. Это и будет давление, оказываемое весом вышележащих пород на элементарную площадку (1 кв. см )в глубине Земли. Расчеты приводят к следующим цифрам: у «подошвы» земной коры, т. е. у основания сиалической оболочки (на глубине 50 км ) - около 13 тыс. атмосфер, т. е. около 13 тонн на квадратный сантиметр; на границе ядра - около 1,4 миллиона атмосфер; в центре Земли - около 3 млн. атмосфер (рис. 10). Три миллиона атмосфер - это приблизительно три тысячи тонн на квадратный сантиметр. Это - огромная величина. Ни в одной лаборатории достичь таких давлений пока не удалось.



    Рис. 10. Изменения давления внутри Земли.


    Перейдем к температуре. По данным измерений в буровых скважинах, а также в шахтах, выяснено, что с глубиной температура растет, поднимаясь приблизительно на 3° на протяжении каждых 100 метров. Подобный темп роста температуры сохраняется всюду, на всех материках, но лишь в наружных частях Земли, близ самой ее поверхности. С глубиной величина «геотермического градиента» (геотермический градиент - изменение температуры в градусах на каждый сантиметр) падает. Вычисления, основанные на учете теплопроводности горных пород, показывают, что геотермический градиент, известный для наружных частей земного шара, сохраняется не далее, чем на протяжении первых 20 км ; ниже рост температуры заметно замедляется. У подошвы сиалической оболочки вряд ли температура будет выше 900°; на глубине 100 км - около 1500°; дальше рост ее еще более замедляется. Что касается центральных частей Земли, в частности ядра, то с достоверностью о них оказать что-либо очень трудно. Специалисты, изучавшие этот вопрос, полагают, что недра Земли нагреты не выше, чем на 2–3 тысячи градусов (рис. 11).



    Рис. 11. Изменение температуры внутри Земли.


    Может быть, интересно для сравнения напомнить, что в центре Солнца температура оценивается в 1 миллион градусов, на поверхности Солнца - около 6000°. Волосок горящей электрической лампочки накален до 3000°.

    Интересные данные имеются по вопросу об источниках тепла и тепловом режиме земного шара. Когда-то считалось, что Земля сохраняет в себе «первозданное» тепло, оставленное ей «в наследство» Солнцем, и постепенно теряет его, остывая и сокращаясь в объеме. Открытие радиоактивных элементов изменило прежние представления. Оказалось, что породы, слагающие земную кору, содержат радиоактивные элементы, которые самопроизвольно и непрерывно выделяют тепло. Количество этого тепла оценивается приблизительно в 6 миллионных долей малой калории на 1 кубический сантиметр породы в год, а для того, чтобы покрыть весь расход тепла, излучаемого земной поверхностью в мировое пространство, нужно, чтобы такой же элементарный кубик породы выделял всего лишь три десятимиллионные части малой калории в год. Другими словами, нет никаких оснований полагать, что земной шар остывает. Скорее, наоборот, он может разогреваться. На этом основании в последние годы предложены новые гипотезы развития земной коры и происхождения движений, испытываемых ею.

    Учитывая наличие высокой температуры в недрах Земли, мы вправе поставить такой вопрос: в каком же физическом («агрегатном») состоянии находятся внутренние части Земли? В твердом или жидком, или, быть может, газообразном?

    Последняя версия, т. е. представление о газообразном состоянии вещества внутри Земли, может быть сразу отклонена. Чтобы превратить в газ минералы, слагающие Землю, нужна гораздо более высокая температура, чем та, которая допустима, судя по изложенным выше данным.

    Но в жидком состоянии породы могут оказаться. Известно, например, что «кислые» породы плавятся при 1000°, «основные» - при 1000–1200°, «ультраосновные» - при 1300–1400°. Это значит, что уже на глубине 100–130 км породы должны бы расплавиться. Но там очень высокое давление, а давление повышает температуру плавления. Чье же влияние окажется бóльшим: высокой температуры или высокого давления?

    Здесь нужно снова обратиться к помощи сейсмических наблюдений. Продольные и поперечные волны свободно проходят через все оболочки Земли, заключенные между поверхностью Земли и границей ядра; следовательно, всюду здесь вещество ведет себя, как твердое. С таким выводом согласуется заключение астрономов и геофизиков, которые показали, что твердость Земли в целом близка к твердости стали. По вычислениям В. Ф. Бончковского, твердость Земли оценивается в 12 · 10 11 дин на квадратный сантиметр, что в четыре раза больше твердости гранита.

    Таким образом, совокупность современных данных говорит о том, что все оболочки Земли (кроме ее ядра!) должны считаться находящимися в твердом состоянии. Жидкое состояние материи можно допустить лишь для совершенно незначительных участков в толще земной коры, с которыми непосредственно связаны вулканы.

    Земля расположена достаточно близко к Солнцу, чтобы получаемой энергии хватало на поддержание тепла и существования воды в жидком виде. В основном благодаря этому наша планета пригодна для жизни.

    Как мы помним из уроков географии, Земля состоит из различных слоев. Чем дальше к центру планеты, тем обстановка все больше накаляется. К счастью для нас, на коре, самом верхнем геологическом слое, температура относительно стабильная и комфортная. Однако ее значения могут сильно меняться в зависимости от места и времени.

    Johan Swanepoel | shutterstock.com

    Структура Земли

    Как и другие планеты земной группы, наша планета состоит из силикатных пород и металлов, которые дифференцируются между твердым металлическим ядром, расплавленным внешним ядром, силикатной мантией и корой. Внутреннее ядро имеет примерный радиус 1220 км, а внешнее — около 3400 км.

    Затем следуют мантия и земная кора. Толщина мантии составляет 2890 км. Это самый толстый слой Земли. Она состоит из силикатных пород, богатых железом и магнием. Высокие температуры внутри мантии делают твердый силикатный материал достаточно пластичным.

    Верхний слой мантии разделен на литосферу и астеносферу. Первая состоит из коры и холодной жесткой верхней части мантии, в то время как астеносфера обладает некоторой пластичностью, из-за чего покрывающая ее литосфера неустойчива и подвижна.

    Земная кора

    Кора является внешней оболочкой Земли и составляет лишь 1 % от ее общей массы. Толщина коры меняется в зависимости от места. На континентах она может достигать 30 км, а под океанами — всего 5 км.

    Оболочка состоит из множества магматических, метаморфических и осадочных пород и представлена системой тектонических плит. Эти плиты плавают над мантией Земли, и, предположительно, конвекция в мантии приводит к тому, что они находятся в постоянном движении.

    Иногда тектонические плиты сталкиваются, расходятся или скользят друг о друга. Все три типа тектонической активности лежат в основе формирования земной коры и приводят к периодическому обновлению ее поверхности в течение миллионов лет.

    Диапазон температуры

    На внешнем слое коры, где она соприкасается с атмосферой, ее температура совпадает с температурой воздуха. Таким образом, она может нагреваться до 35 °C в пустыне и быть ниже нуля в Антарктиде. В среднем температура поверхности коры составляет около 14 °C.

    Как видно, диапазон значений довольно широк. Но стоит учесть тот факт, что большая часть земной коры лежит под океанами. Вдали от солнца, где она встречается с водой, температура может составлять лишь 0...+3 °C.

    Если же начать копать яму в континентальной коре, то температура будет заметно возрастать. Например, внизу самой глубокой в мире шахты «Тау-Тона» (3,9 км) в Южной Африке она достигает 55 °C. Шахтерам, работающим там весь день, не обойтись без кондиционера.

    Таким образом, средняя температура поверхности может варьироваться от изнуряющей знойной до люто морозной в зависимости от местоположения (на суше или под водой), времен года и времени суток.

    И все же земная кора остается единственным местом в Солнечной системе, где температура достаточно стабильна, чтобы жизнь на ней продолжала процветать. Добавьте к этому нашу жизнеспособную атмосферу и защитную магнитосферу, и вы поймете, что нам действительно крупно повезло!

    В чём же причина большой твёрдости Земли? Одета ли она чрезвычайно твёрдой и толстой корой? Или, может быть, она целиком - очень твёрдое тело?

    Пока о состоянии вещества Земли мы можем судить только по тому, чтó наблюдаем на её поверхности.

    Люди пробурили скважины на 5–6 километров вглубь Земли. Оказалось, что на такой глубине температура горных пород выше 100 градусов.

    Поднятие температуры, наблюдающееся при углублении в земные недра, препятствует проведению шахт глубже 2,5 километра.

    В верхних слоях земной коры температура обычно повышается на 1 градус через каждые 30–50 метров. Но в некоторых местностях, например на Камчатке и в районе Минеральных Вод на Северном Кавказе, она повышается гораздо быстрее, в других же местностях, например в западной части Донецкого бассейна, наоборот, - значительно медленней.

    Пока ещё не известно, как быстро повышается температура на глубине, бóльшей 6 километров. Однако извержения огненно-жидкой лазы вулканами доказывают, что на глубине 2–3 десятков километров температура очень высока.

    Вулканическая лава имеет температуру около 1000 градусов. Значит, горные породы на той глубине, откуда поднимается лава, нагреты не меньше, чем до той же температуры.

    Всё это говорит как будто о том, что Земля внутри расплавлена. Так именно и считали учёные до недавнего времени. Однако теперь это мнение отвергнуто: по современным данным науки Земля - твёрдое тело.

    Твёрдым телом называют такое, у которого частицы сопротивляются сдвигу относительно друг друга без изменения объёма тела. Таковы, например, металлы. Стремясь изменить форму металлического кубика, мы встречаем большое сопротивление его частиц сдвигу.

    Частицы жидкого тела, например, воды или расплавленного металла, не сопротивляются сдвигу. Поэтому жидкость принимает любую форму сосуда, в который она налита.

    Изменению же объёма сопротивляются и твёрдые, и жидкие, и газообразные тела.

    Как теперь предполагают, температура внутри Земли нигде не превышает 2000–2500 градусов. Правда, нагретые до такой температуры на земной поверхности горные породы расплавляются. Но внутри Земли они находятся под огромным давлением, которое препятствует расширению объёма, сопровождающего плавление почти всех тел.

    Поэтому, несмотря на такую высокую температуру, горные породы внутри Земли остаются твёрдыми.

    Только в тех случаях, когда земная кора раскалывается, образуя глубокие трещины, на дне которых давление резко уменьшается, раскалённые твёрдые горные породы расплавляются. Образующаяся лава поднимается по трещине и изливается на поверхность.

    О состоянии горных пород на больших глубинах мы не можем узнать с помощью шахт и буровых скважин, которыми можно исследовать лишь самую верхнюю часть земной коры. Лишь наблюдения над распространением сейсмических колебаний в земле позволяют судить о том, какова она внутри.

    Землетрясения - не редкое явление в природе. Земная кора почти всегда находится в колебательном состоянии, хотя это можно заметить только с помощью очень чувствительных приборов.

    Иногда же, когда сотрясение почвы становится более сильным или даже разрушительным, говорят, что произошло землетрясение .

    Толчки, колеблющие почву, происходят вследствие перемещения глыб земной коры. Эти сдвиги наблюдаются главным образом в горных странах, особенно вдоль берегов Тихого океана и на полосе, простирающейся с севера на юг по середине Атлантического океана. Широкая полоса землетрясений проходит от Охотского моря вдоль южной границы СССР до его западной границы.

    После сильных землетрясений наблюдаются сдвиги в земной коре вдоль образовавшихся трещин. Большей частью земная кора по одну сторону трещины опускается, образуя так называемый сброс. Но бывает, что глыбы земной коры передвигаются вдоль трещины в горизонтальном направлении.

    Так было, например, во время землетрясения в 1906 году в Калифорнии (Северная Америка). Калифорния перерезана трещиной длиной около 750 километров. Во время землетрясения участки земной коры вдоль этой трещины передвинулись относительно друг друга по горизонтали до 6 метров. Это было ясно видно по дорогам и изгородям, пересекавшим трещину.

    Конечно, подобные передвижения больших масс земной коры сопровождаются резкими сотрясениями.

    Прямо над центром землетрясения, находящимся глубоко под землёй, чувствуется вертикальный удар снизу вверх. Но чем дальше от центра землетрясения на земной поверхности, тем более наклонно к ней выходят колебания. В первом случае толчок подбрасывает тела, во втором он валит их.

    Определив угол наклона выхода колебаний землетрясения и зная расстояние до центра его на поверхности, можно вычислить глубину, на которой произошёл толчок.

    Оказалось, что толчок землетрясения большей частью происходит на глубине десятков километров. Изредка наблюдаются сильные толчки и на гораздо больших глубинах, но не глубже 800–900 километров.

    От толчков, производящих землетрясение, происходят упругие колебания, которые распространяются в Земле во все стороны волнами.

    Эти волны дают возможность судить о состоянии вещества глубин Земли: скорость упругих колебаний зависит от плотности и от сопротивления тела сдвигу его частиц, то-есть твёрдости тела; поэтому по скорости распространения этих колебаний можно судить о свойствах среды, в которой они распространяются.

    Колебания бывают двух родов.

    Если ударить по натянутой струне карандашом, то частицы её сдвинутся и этот сдвиг передастся вдоль струны, причём колебания частиц струны произойдут поперек неё.

    Такие - поперечные - колебания могут происходить только в твёрдой среде - металле, камне и им подобных телах, частицы которых сопротивляются сдвигу. В воде, масле и других жидкостях их не может быть, потому что сдвигаемая в сторону частица жидкости не сопротивляется и не возвращается в прежнее положение.

    Но возникают и другие - продольные - колебания. Они подобны колебанию частиц воздуха при распространении звука. В этом случае частицы колеблются по направлению их распространения. Продольные колебания возникают и в жидких телах.

    В начале нынешнего века русский учёный Б. Б. Голицын начал изучение колебаний, которые распространяются через глубины Земли от очень далёких землетрясений.

    Нелегко заметить колебания, которые, возникнув от землетрясения, скажем на Камчатке, достигли Москвы, пройдя через глубины не менее 2000 километров.

    На Камчатке, где произошло землетрясение, почва колебалась очень сильно. Но, достигнув Москвы, колебания настолько ослабевают, что смещения почвы из стороны в сторону не превышают десятых или даже сотых и тысячных долей миллиметра.

    Б. Б. Голицын изобрёл и построил чувствительнейшие приборы, сейсмографы, которые отзываются и на такие ничтожные колебания почвы.

    Сейсмографы Б. Б. Голицына основаны на очень простом явлении.

    Представьте себе, что в подвале, куда не достигают сотрясения почвы от проходящих грузовых машин и поездов, неподвижно висит маятник.

    Когда приходит колебание от далёкого землетрясения и почва сдвигается вправо, маятник по инерции остаётся в покое, а наблюдателю кажется, что маятник отклоняется влево. Когда почва затем двинется влево, будет казаться, что маятник качнулся вправо.

    На конце маятника укреплено перо, которое чертит при этих кажущихся колебаниях на движущейся ленте зигзагообразную линию - сейсмограмму. По ней можно видеть, сколько раз в секунду и с каким размахом «отклонялся» маятник.

    Чтобы приборы давали правильные показания, необходимо соблюдение некоторых условий. Главное из них, чтобы сам маятник не раскачивался, в противном случае он начнёт записывать собственные колебания, а не колебания почвы.

    Сейсмограф - это обычно горизонтальный стержень с грузом на свободном конце. За середину он подвешен к верхней части стойки, а за один из концов прикреплён нитью к её основанию. Так стержень висит горизонтально, поддерживаемый в пространстве двумя нитями (рис. 6).

    Рис. 6. Горизонтальный маятник.


    Стержень колеблется в горизонтальной плоскости. Регулируя длину нити, на которой он подвешен за середину, можно добиться того, что его собственные колебания будут во много раз медленней, чем колебания почвы.

    Такой маятник сам не выйдет из состояния покоя и будет показывать только отклонения почвы. Им и воспользовался Голицын для своего сейсмографа.

    Однако отмечаемые этим прибором отклонения составляют лишь десятые или даже сотые доли миллиметра. Для записи же нужно увеличить их в сотни и тысячи раз.

    Самый простой способ увеличения - прикрепить к маятнику маленькое зеркальце, которое отбрасывает свет лампы - «зайчик» - на далеко отставленный экран. При малейшем повороте зеркала «зайчик» будет заметно передвигаться.

    Маятник остаётся неподвижным, а почва со стоящими на ней лампой и экраном колеблется из стороны в сторону, и «зайчик» передвигается по экрану.

    Отражённый свет падает на фотографическую плёнку, и его движение запечатлевается на ней. Светочувствительная лента приводится в движение часовым механизмом, и светлое пятнышко чертит на ней зигзаги сейсмограммы, так что прибор работает автоматически.

    Для регистрации вертикальных колебаний почвы применяется такое устройство. Стержень, один конец которого с помощью шарнира вращается на вертикальной стойке, подвешен за середину на спиральной пружине. На другом конце стержня укреплён груз с пером, которое касается ленты на вращающемся барабане (рис. 7).



    Рис 7. Сейсмограф, отмечающий вертикальные колебания почвы.


    При вертикальном колебании почвы груз остаётся в покое, а стойки и барабан перемещаются то вверх, то вниз. Наблюдателю же кажется, что колеблется перо и чертит на движущейся ленте зигзагообразную линию.

    Советские учёные изобрели приборы ещё более совершенные, чем построенные Голицыным. Особенную известность получили сейсмографы Д. П. Кирноса, П. М. Никифорова, Г. А. Гамбурцева, Д. А. Харина и других советских учёных. В основном они сходны с сейсмографами Б. Б. Голицына, но показания их более точны, и они удобнее для работы.

    Сейсмографы, установленные на сейсмических станциях нашей страны и других стран мира, отмечают приход колебаний на различные станции, а также определяют угол, под которым выходят эти колебания на поверхность Земли.

    Изучая сейсмограммы, можно мысленно наметить путь, по которому колебания пришли на станцию, и узнать их среднюю скорость.

    Но как определить, с какой скоростью шли колебания на разной глубине?

    Это - сложная задача. Её можно решить, сравнивая время прихода колебаний на разные станции, находящиеся на различном расстоянии от центра землетрясения.

    С помощью таких наблюдений и сложных расчётов учёные доказали, что чем глубже внутрь Земли, тем быстрее распространяются колебания. Это значит, что с глубиной увеличиваются её твёрдость и упругость.

    Наблюдения показали также, что поперечные волны, распространяющиеся только в твёрдых телах, глубже 2900 километров не проходят.

    Повидимому, глубже 2900 километров резко меняются свойства Земли: в центральном ядре Земли, как в жидкостях, не распространяются поперечные колебания.

    При таком давлении сходное с жидкостью пластичное тело может обладать совсем новыми, незнакомыми нам свойствами.

    Это доказывают даже лабораторные опыты. Например, лепёшка из глиняного теста под давлением в десятки тысяч атмосфер слегка вдавливается в твёрдые стальные плиты. Мягкий парафин под таким давлением проникает в сталь.

    Поэтому пока ещё нельзя судить о физических свойствах центрального ядра Земли, находящегося под давлением, в сотни раз большим. Однако по отношению к поперечным колебаниям ядро Земли ведёт себя, как жидкое тело.

    Новейшими исследованиями советских геофизиков доказано, что внутри ядра диаметром около 7000 километров находится меньшее ядро диаметром около 2800 километров. Это меньшее ядро проявляет свойства твёрдого тела, так как в нём, повидимому, могут распространяться и поперечные колебания.

    Примечания:

    О землетрясениях подробно рассказывается в брошюре «Научно-популярной библиотеки»: проф. Г. П. Горшков , Землетрясения.

    В нашей стране, богатой углеводородами, геотермальная энергия - некий экзотический ресурс, который при сегодняшнем положении дел вряд ли составит конкуренцию нефти и газу. Тем не менее этот альтернативный вид энергии может использоваться практически всюду и довольно эффективно.

    Геотермальная энергия - это тепло земных недр. Вырабатывается оно в глубинах и поступает к поверхности Земли в разных формах и с различной интенсивностью.

    Температура верхних слоёв грунта зависит в основном от внешних (экзогенных) факторов - солнечного освещения и температуры воздуха. Летом и днём грунт до определённых глубин прогревается, а зимой и ночью охлаждается вслед за изменением температуры воздуха и с некоторым запаздыванием, нарастающим с глубиной. Влияние суточных колебаний температуры воздуха заканчивается на глубинах от единиц до нескольких десятков сантиметров. Сезонные колебания захватывают более глубокие пласты грунта - до десятков метров.

    На некоторой глубине - от десятков до сотен метров - температура грунта держится постоянной, равной среднегодовой температуре воздуха у поверхности Земли. В этом легко убедиться, спустившись в достаточно глубокую пещеру.

    Когда среднегодовая температура воздуха в данной местности ниже нуля, это проявляется как вечная (точнее, многолетняя) мерзлота. В Восточной Сибири мощность, то есть толщина, круглогодично мёрзлых грунтов достигает местами 200–300 м.

    С некоторой глубины (своей для каждой точки на карте) действие Солнца и атмосферы ослабевает настолько, что на первое место выходят эндогенные (внутренние) факторы и происходит разогрев земных недр изнутри, так что температура с глубиной начинает расти.

    Разогрев глубинных слоёв Земли связывают, главным образом, с распадом находящихся там радиоактивных элементов, хотя называют и другие источники тепла, например физико-химические, тектонические процессы в глубоких слоях земной коры и мантии. Но чем бы это ни было обусловлено, температура горных пород и связанных с ними жидких и газообразных субстанций с глубиной растёт. С этим явлением сталкиваются горняки - в глубоких шахтах всегда жарко. На глубине 1 км тридцатиградусная жара - нормальное явление, а глубже температура ещё выше.

    Тепловой поток земных недр, достигающий поверхности Земли, невелик - в среднем его мощность составляет 0,03–0,05 Вт/м 2 , или примерно 350 Вт·ч/м 2 в год. На фоне теплового потока от Солнца и нагретого им воздуха это незаметная величина: Солнце даёт каждому квадратному метру земной поверхности около 4000 кВт·ч ежегодно, то есть в 10 000 раз больше (разумеется, это в среднем, при огромном разбросе между полярными и экваториальными широтами и в зависимости от других климатических и погодных факторов).


    Незначительность теплового потока из недр к поверхности на большей части планеты связана с низкой теплопроводностью горных пород и особенностями геологического строения. Но есть исключения - места, где тепловой поток велик. Это, прежде всего, зоны тектонических разломов, повышенной сейсмической активности и вулканизма, где энергия земных недр находит выход. Для таких зон характерны термические аномалии литосферы, здесь тепловой поток, достигающий поверхности Земли, может быть в разы и даже на порядки мощнее «обычного». Огромное количество тепла на поверхность в этих зонах выносят извержения вулканов и горячие источники воды.

    Именно такие районы наиболее благоприятны для развития геотермальной энергетики. На территории России это, прежде всего, Камчатка, Курильские острова и Кавказ.


    В то же время развитие геотермальной энергетики возможно практически везде, поскольку рост температуры с глубиной - явление повсеместное, и задача заключается в «добыче» тепла из недр, подобно тому, как оттуда добывается минеральное сырьё.

    В среднем температура с глубиной растёт на 2,5–3°C на каждые 100 м. Отношение разности температур между двумя точками, лежащими на разной глубине, к разности глубин между ними называют геотермическим градиентом.

    Обратная величина - геотермическая ступень, или интервал глубин, на котором температура повышается на 1°C.

    Чем выше градиент и соответственно ниже ступень, тем ближе тепло глубин Земли подходит к поверхности и тем более перспективен данный район для развития геотермальной энергетики.

    В разных районах, в зависимости от геологического строения и других региональных и местных условий, скорость роста температуры с глубиной может резко различаться. В масштабах Земли колебания величин геотермических градиентов и ступеней достигают 25 крат. Например, в штате Орегон (США) градиент составляет 150°C на 1 км, а в Южной Африке - 6°C на 1 км.

    Вопрос, какова температура на больших глубинах - 5, 10 км и более? При сохранении тенденции температура на глубине 10 км должна составлять в среднем примерно 250–300°C. Это более или менее подтверждается прямыми наблюдениями в сверхглубоких скважинах, хотя картина существенно сложнее линейного повышения температуры.

    Например, в Кольской сверхглубокой скважине, пробурённой в Балтийском кристаллическом щите, температура до глубины 3 км меняется со скоростью 10°C/1 км, а далее геотермический градиент становится в 2–2,5 раза больше. На глубине 7 км зафиксирована уже температура 120°C, на 10 км - 180°C, а на 12 км - 220°C.

    Другой пример - скважина, заложенная в Северном Прикаспии, где на глубине 500 м зарегистрирована температура 42°C, на 1,5 км - 70°C, на 2 км - 80°C, на 3 км - 108°C.

    Предполагается, что геотермический градиент уменьшается начиная с глубины 20–30 км: на глубине 100 км предположительные температуры около 1300–1500°C, на глубине 400 км - 1600°C, в ядре Земли (глубины более 6000 км) - 4000–5000°C.

    На глубинах до 10–12 км температуру измеряют через пробурённые скважины; там же, где их нет, её определяют по косвенным признакам так же, как и на бóльших глубинах. Такими косвенными признаками могут быть характер прохождения сейсмических волн или температура изливающейся лавы.

    Впрочем, для целей геотермальной энергетики данные о температурах на глубинах более 10 км пока не представляют практического интереса.

    На глубинах в несколько километров много тепла, но как его поднять? Иногда эту задачу решает за нас сама природа с помощью естественного теплоносителя - нагретых термальных вод, выходящих на поверхность или же залегающих на доступной для нас глубине. В ряде случаев вода в глубинах разогрета до состояния пара.

    Строгого определения понятия «термальные воды» нет. Как правило, под ними подразумевают горячие подземные воды в жидком состоянии или в виде пара, в том числе выходящие на поверхность Земли с температурой выше 20°C, то есть, как правило, более высокой, чем температура воздуха.

    Тепло подземных вод, пара, пароводяных смесей - это гидротермальная энергия. Соответственно энергетика, основанная на её использовании, называется гидротермальной.

    Сложнее обстоит дело с добычей тепла непосредственно сухих горных пород - петротермальной энергии, тем более что достаточно высокие температуры, как правило, начинаются с глубин в несколько километров.

    На территории России потенциал петротермальной энергии в сто раз выше, чем у гидротермальной, - соответственно 3500 и 35 трлн тонн условного топлива. Это вполне естественно - тепло глубин Земли имеется везде, а термальные воды обнаруживаются локально. Однако из-за очевидных технических трудностей для получения тепла и электроэнергии в настоящее время используются большей частью термальные воды.

    Воды температурой от 20–30 до 100°C пригодны для отопления, температурой от 150°C и выше - и для выработки электроэнергии на геотермальных электростанциях.

    В целом же геотермальные ресурсы на территории России в пересчёте на тонны условного топлива или любую другую единицу измерения энергии примерно в 10 раз выше запасов органического топлива.

    Теоретически только за счёт геотермальной энергии можно было бы полностью удовлетворить энергетические потребности страны. Практически же на данный момент на большей части её территории это неосуществимо по технико-экономическим соображениям.

    В мире использование геотермальной энергии ассоциируется чаще всего с Исландией - страной, расположенной на северном окончании Срединно-Атлантического хребта, в исключительно активной тектонической и вулканической зоне. Наверное, все помнят мощное извержение вулкана Эйяфьятлайокудль (Eyjafjallajökull ) в 2010 году.

    Именно благодаря такой геологической специфике Исландия обладает огромными запасами геотермальной энергии, в том числе горячих источников, выходящих на поверхность Земли и даже фонтанирующих в виде гейзеров.

    В Исландии в настоящее время более 60% всей потребляемой энергии берут из Земли. В том числе за счёт геотермальных источников обеспечивается 90% отопления и 30% выработки электроэнергии. Добавим, что остальная часть электроэнергии в стране производится на ГЭС, то есть также с использованием возобновляемого источника энергии, благодаря чему Исландия выглядит неким мировым экологическим эталоном.

    «Приручение» геотермальной энергии в XX веке заметно помогло Исландии в экономическом отношении. До середины прошлого столетия она была очень бедной страной, сейчас занимает первое место в мире по установленной мощности и производству геотермальной энергии на душу населения и находится в первой десятке по абсолютной величине установленной мощности геотермальных электростанций. Однако её население составляет всего 300 тысяч человек, что упрощает задачу перехода на экологически чистые источники энергии: потребности в ней в целом невелики.

    Помимо Исландии высокая доля геотермальной энергетики в общем балансе производства электроэнергии обеспечивается в Новой Зеландии и островных государствах Юго-Восточной Азии (Филиппины и Индонезия), странах Центральной Америки и Восточной Африки, территория которых также характеризуется высокой сейсмической и вулканической активностью. Для этих стран при их нынешнем уровне развития и потребностях геотермальная энергетика вносит весомый вклад в социально-экономическое развитие.

    Использование геотермальной энергии имеет весьма давнюю историю. Один из первых известных примеров - Италия, местечко в провинции Тоскана, ныне называемое Лардерелло, где ещё в начале XIX века местные горячие термальные воды, изливавшиеся естественным путём или добываемые из неглубоких скважин, использовались в энергетических целях.


    Вода из подземных источников, богатая бором, употреблялась здесь для получения борной кислоты. Первоначально эту кислоту получали методом выпаривания в железных бойлерах, а в качестве топлива брали обычные дрова из ближайших лесов, но в 1827 году Франческо Лардерел (Francesco Larderel) создал систему, работавшую на тепле самих вод. Одновременно энергию природного водяного пара начали использовать для работы буровых установок, а в начале XX века - и для отопления местных домов и теплиц. Там же, в Лардерелло, в 1904 году термальный водяной пар стал энергетическим источником для получения электричества.


    Примеру Италии в конце XIX-начале XX века последовали некоторые другие страны. Например, в 1892 году термальные воды впервые были использованы для местного отопления в США (Бойсе, штат Айдахо), в 1919-м - в Японии, в 1928-м - в Исландии.

    В США первая электростанция, работавшая на гидротермальной энергии, появилась в Калифорнии в начале 1930-х годов, в Новой Зеландии - в 1958 году, в Мексике - в 1959-м, в России (первая в мире бинарная ГеоЭС) - в 1965-м.

    Старый принцип на новом источнике

    Выработка электроэнергии требует более высокой температуры гидроисточника, чем для отопления, - более 150°C. Принцип работы геотермальной электростанции (ГеоЭС) сходен с принципом работы обычной тепловой электростанции (ТЭС). По сути, геотермальная электростанция - разновидность ТЭС.


    На ТЭС в роли первичного источника энергии выступают, как правило, уголь, газ или мазут, а рабочим телом служит водяной пар. Топливо, сгорая, нагревает воду до состояния пара, который вращает паровую турбину, а она генерирует электричество.

    Отличие ГеоЭС состоит в том, что первичный источник энергии здесь - тепло земных недр и рабочее тело в виде пара поступает на лопасти турбины электрогенератора в «готовом» виде прямо из добывающей скважины.

    Существуют три основные схемы работы ГеоЭС: прямая, с использованием сухого (геотермального) пара; непрямая, на основе гидротермальной воды, и смешанная, или бинарная.

    Применение той или иной схемы зависит от агрегатного состояния и температуры энергоносителя.

    Самая простая и потому первая из освоенных схем - прямая, в которой пар, поступающий из скважины, пропускается непосредственно через турбину. На сухом пару работала и первая в мире ГеоЭС в Лардерелло в 1904 году.


    ГеоЭС с непрямой схемой работы в наше время самые распространённые. Они используют горячую подземную воду, которая под высоким давлением нагнетается в испаритель, где часть её выпаривается, а полученный пар вращает турбину. В ряде случаев требуются дополнительные устройства и контуры для очистки геотермальной воды и пара от агрессивных соединений.


    Отработанный пар поступает в скважину нагнетания либо используется для отопления помещений, - в этом случае принцип тот же, что при работе ТЭЦ.

    На бинарных ГеоЭС горячая термальная вода взаимодействует с другой жидкостью, выполняющей функции рабочего тела с более низкой температурой кипения. Обе жидкости пропускаются через теплообменник, где термальная вода выпаривает рабочую жидкость, пары которой вращают турбину.


    Эта система замкнута, что решает проблемы выбросов в атмосферу. Кроме того, рабочие жидкости со сравнительно низкой температурой кипения позволяют использовать в качестве первичного источника энергии и не очень горячие термальные воды.

    Во всех трёх схемах эксплуатируется гидротермальный источник, но для получения электричества можно использовать и петротермальную энергию.

    Принципиальная схема в этом случае также достаточно проста. Необходимо пробурить две соединяющиеся между собою скважины - нагнетательную и эксплуатационную. В нагнетательную скважину закачивается вода. На глубине она нагревается, затем нагретая вода или образовавшийся в результате сильного нагрева пар по эксплуатационной скважине подаётся на поверхность. Далее всё зависит от того, как используется петротермальная энергия - для отопления или для производства электроэнергии. Возможен замкнутый цикл с закачиванием отработанного пара и воды обратно в нагнетательную скважину либо другой способ утилизации.


    Недостаток такой системы очевиден: для получения достаточно высокой температуры рабочей жидкости нужно бурить скважины на большую глубину. А это серьёзные затраты и риск существенных потерь тепла при движении флюида вверх. Поэтому петротермальные системы пока менее распространены по сравнению с гидротермальными, хотя потенциал петротермальной энергетики на порядки выше.

    В настоящее время лидер в создании так называемых петротермальных циркуляционных систем (ПЦС) - Австралия. Кроме того, это направление геотермальной энергетики активно развивается в США, Швейцарии, Великобритании, Японии.

    Подарок лорда Кельвина

    Изобретение в 1852 году теплового насоса физиком Уильямом Томпсоном (он же - лорд Кельвин) предоставило человечеству реальную возможность использования низкопотенциального тепла верхних слоёв грунта. Теплонасосная система, или, как её называл Томпсон, умножитель тепла, основана на физическом процессе передачи тепла от окружающей среды к хладагенту. По сути, в ней используют тот же принцип, что и в петротермальных системах. Отличие - в источнике тепла, в связи с чем может возникнуть терминологический вопрос: насколько тепловой насос можно считать именно геотермальной системой? Дело в том, что в верхних слоях, до глубин в десятки-сотни метров, породы и содержащиеся в них флюиды нагреваются не глубинным теплом земли, а солнцем. Таким образом, именно солнце в данном случае - первичный источник тепла, хотя забирается оно, как и в геотермальных системах, из земли.

    Работа теплового насоса основана на запаздывании прогрева и охлаждения грунта по сравнению с атмосферой, в результате чего образуется градиент температур между поверхностью и более глубокими слоями, которые сохраняют тепло даже зимой, подобно тому, как это происходит в водоёмах. Основное назначение тепловых насосов - обогрев помещений. По сути - это «холодильник наоборот». И тепловой насос, и холодильник взаимодействуют с тремя составляющими: внутренней средой (в первом случае - отапливаемое помещение, во втором - охлаждаемая камера холодильника), внешней средой - источником энергии и холодильным агентом (хладагентом), он же - теплоноситель, обеспечивающий передачу тепла или холода.

    В роли хладагента выступает вещество с низкой температурой кипения, что позволяет ему отбирать тепло у источника, имеющего даже сравнительно низкую температуру.

    В холодильнике жидкий хладагент через дроссель (регулятор давления) поступает в испаритель, где из-за резкого уменьшения давления происходит испарение жидкости. Испарение - эндотермический процесс, требующий поглощения тепла извне. В результате тепло из внутренних стенок испарителя забирается, что и обеспечивает охлаждающий эффект в камере холодильника. Далее из испарителя хладагент засасывается в компрессор, где он возвращается в жидкое агрегатное состояние. Это обратный процесс, ведущий к выбросу отнятого тепла во внешнюю среду. Как правило, оно выбрасывается в помещение, и задняя стенка холодильника сравнительно тёплая.

    Тепловой насос работает практически так же, с той разницей, что тепло забирается из внешней среды и через испаритель поступает во внутреннюю среду - систему отопления помещения.

    В реальном тепловом насосе вода нагревается, проходя по внешнему контуру, уложенному в землю или водоём, далее поступает в испаритель.

    В испарителе тепло передаётся во внутренний контур, заполненный хладагентом с низкой температурой кипения, который, проходя через испаритель, переходит из жидкого состояния в газообразное, забирая тепло.

    Далее газообразный хладагент попадает в компрессор, где сжимается до высокого давления и температуры, и поступает в конденсатор, где происходит теплообмен между горячим газом и теплоносителем из системы отопления.

    Для работы компрессора требуется электроэнергия, тем не менее коэффициент трансформации (соотношение потребляемой и вырабатываемой энергии) в современных системах достаточно высок, чтобы обеспечить их эффективность.

    В настоящее время тепловые насосы довольно широко используются для отопления помещений, главным образом, в экономически развитых странах.

    Экокорректная энергетика

    Геотермальная энергетика считается экологически чистой, что в целом справедливо. Прежде всего, в ней используется возобновляемый и практически неисчерпаемый ресурс. Геотермальная энергетика не требует больших площадей, в отличие от крупных ГЭС или ветропарков, и не загрязняет атмосферу, в отличие от углеводородной энергетики. В среднем ГеоЭС занимает 400 м 2 в пересчёте на 1 ГВт вырабатываемой электроэнергии. Тот же показатель для угольной ТЭС, к примеру, составляет 3600 м 2 . К экологическим преимуществам ГеоЭС относят также низкое водопотребление - 20 литров пресной воды на 1 кВт, тогда как для ТЭС и АЭС требуется около 1000 литров. Отметим, что это экологические показатели «среднестатистической» ГеоЭС.

    Но отрицательные побочные эффекты всё же имеются. Среди них чаще всего выделяют шум, тепловое загрязнение атмосферы и химическое - воды и почвы, а также образование твёрдых отходов.

    Главный источник химического загрязнения среды - собственно термальная вода (с высокой температурой и минерализацией), нередко содержащая большие количества токсичных соединений, в связи с чем существует проблема утилизации отработанной воды и опасных веществ.

    Отрицательные эффекты геотермальной энергетики могут прослеживаться на нескольких этапах, начиная с бурения скважин. Здесь возникают те же опасности, что и при бурении любой скважины: разрушение почвенно-растительного покрова, загрязнение грунта и грунтовых вод.

    На стадии эксплуатации ГеоЭС проблемы загрязнения окружающей среды сохраняются. Термальные флюиды - вода и пар - обычно содержат углекислый газ (CO 2), сульфид серы (H 2 S), аммиак (NH 3), метан (CH 4), поваренную соль (NaCl), бор (B), мышьяк (As), ртуть (Hg). При выбросах во внешнюю среду они становятся источниками её загрязнения. Кроме того, агрессивная химическая среда может вызывать коррозионные разрушения конструкций ГеоТЭС.

    В то же время выбросы загрязняющих веществ на ГеоЭС в среднем ниже, чем на ТЭС. Например, выбросы углекислого газа на каждый киловатт-час выработанной электроэнергии составляют до 380 г на ГеоЭС, 1042 г - на угольных ТЭС, 906 г - на мазутных и 453 г - на газовых ТЭС.

    Возникает вопрос: что делать с отработанной водой? При невысокой минерализации она после охлаждения может быть сброшена в поверхностные воды. Другой путь - закачивание её обратно в водоносный пласт через нагнетательную скважину, что предпочтительно и преимущественно применяется в настоящее время.

    Добыча термальной воды из водоносных пластов (как и выкачивание обычной воды) может вызывать просадку и подвижки грунта, другие деформации геологических слоёв, микроземлетрясения. Вероятность таких явлений, как правило, невелика, хотя отдельные случаи зафиксированы (например, на ГеоЭС в Штауфен-им-Брайсгау в Германии).

    Следует подчеркнуть, что большая часть ГеоЭС расположена на сравнительно малонаселённых территориях и в странах третьего мира, где экологические требования бывают менее жёсткими, чем в развитых странах. Кроме того, на данный момент количество ГеоЭС и их мощности сравнительно невелики. При более масштабном развитии геотермальной энергетики экологические риски могут возрасти и умножиться.

    Почём энергия Земли?

    Инвестиционные затраты на строительство геотермальных систем варьируют в очень широком диапазоне - от 200 до 5000 долларов на 1 кВт установленной мощности, то есть самые дешёвые варианты сопоставимы со стоимостью строительства ТЭС. Зависят они, прежде всего, от условий залегания термальных вод, их состава, конструкции системы. Бурение на большую глубину, создание замкнутой системы с двумя скважинами, необходимость очистки воды могут многократно увеличивать стоимость.

    Например, инвестиции в создание петротермальной циркуляционной системы (ПЦС) оцениваются в 1,6–4 тыс. долларов на 1 кВт установленной мощности, что превышает затраты на строительство атомной электростанции и сопоставимо с затратами на строительство ветряных и солнечных электростанций.

    Очевидное экономическое преимущество ГеоТЭС - бесплатный энергоноситель. Для сравнения - в структуре затрат работающей ТЭС или АЭС на топливо приходится 50–80% или даже больше, в зависимости от текущих цен на энергоносители. Отсюда ещё одно преимущество геотермальной системы: расходы при эксплуатации более стабильны и предсказуемы, поскольку не зависят от внешней конъюнктуры цен на энергоносители. В целом эксплуатационные затраты ГеоТЭС оцениваются в 2–10 центов (60 коп.–3 руб.) на 1 кВт·ч произведённой мощности.

    Вторая по величине после энергоносителя (и весьма существенная) статья расходов - это, как правило, заработная плата персонала станции, которая может кардинально различаться по странам и регионам.

    В среднем себестоимость 1 кВт·ч геотермальной энергии сопоставима с таковой для ТЭС (в российских условиях - около 1 руб./1 кВт·ч) и в десять раз выше себестоимости выработки электроэнергии на ГЭС (5–10 коп./1 кВт·ч).

    Отчасти причина высокой себестоимости заключается в том, что, в отличие от тепловых и гидравлических электростанций, ГеоТЭС имеет сравнительно небольшую мощность. Кроме того, необходимо сравнивать системы, находящиеся в одном регионе и в сходных условиях. Так, например, на Камчатке, по оценкам экспертов, 1 кВт·ч геотермальной электроэнергии обходится в 2–3 раза дешевле электроэнергии, произведённой на местных ТЭС.

    Показатели экономической эффективности работы геотермальной системы зависят, например, и от того, нужно ли утилизировать отработанную воду и какими способами это делается, возможно ли комбинированное использование ресурса. Так, химические элементы и соединения, извлечённые из термальной воды, могут дать дополнительный доход. Вспомним пример Лардерелло: первичным там было именно химическое производство, а использование геотермальной энергии первоначально носило вспомогательный характер.

    Форварды геотермальной энергетики

    Геотермальная энергетика развивается несколько иначе, чем ветряная и солнечная. В настоящее время она в существенно большей степени зависит от характера самого ресурса, который резко различается по регионам, а наибольшие концентрации привязаны к узким зонам геотермических аномалий, связанных, как правило, с районами развития тектонических разломов и вулканизма.

    Кроме того, геотермальная энергетика менее технологически ёмкая по сравнению с ветряной и тем более с солнечной энергетикой: системы геотермальных станций достаточно просты.

    В общей структуре мирового производства электроэнергии на геотермальную составляющую приходится менее 1%, но в некоторых регионах и странах её доля достигает 25–30%. Из-за привязки к геологическим условиям значительная часть мощностей геотермальной энергетики сосредоточена в странах третьего мира, где выделяются три кластера наибольшего развития отрасли - острова Юго-Восточной Азии, Центральная Америка и Восточная Африка. Два первых региона входят в Тихоокеанский «огненный пояс Земли», третий привязан к Восточно-Африканскому рифту. С наибольшей вероятностью геотермальная энергетика и далее будет развиваться в этих поясах. Более отдалённая перспектива - развитие петротермальной энергетики, использующей тепло слоёв земли, лежащих на глубине нескольких километров. Это практически повсеместно распространённый ресурс, но его извлечение требует высоких затрат, поэтому петротермальная энергетика развивается прежде всего в наиболее экономически и технологически мощных странах.

    В целом, учитывая повсеместное распространение геотермальных ресурсов и приемлемый уровень экологической безопасности, есть основания предполагать, что геотермальная энергетика имеет хорошие перспективы развития. Особенно при нарастании угрозы дефицита традиционных энергоносителей и росте цен на них.

    От Камчатки до Кавказа

    В России развитие геотермальной энергетики имеет достаточно давнюю историю, и по ряду позиций мы находимся в числе мировых лидеров, хотя в общем энергобалансе огромной страны доля геотермальной энергии пока ничтожно мала.

    Пионерами и центрами развития геотермальной энергетики в России стали два региона - Камчатка и Северный Кавказ, причём если в первом случае речь идёт прежде всего об электроэнергетике, то во втором - об использовании тепловой энергии термальной воды.

    На Северном Кавказе - в Краснодарском крае, Чечне, Дагестане - тепло термальных вод для энергетических целей использовалось ещё до Великой Отечественной войны. В 1980–1990-е годы развитие геотермальной энергетики в регионе по понятным причинам застопорилось и пока из состояния стагнации не вышло. Тем не менее геотермальное водоснабжение на Северном Кавказе обеспечивает теплом около 500 тыс. человек, а, например, город Лабинск в Краснодарском крае с населением 60 тыс. человек полностью отапливается за счёт геотермальных вод.

    На Камчатке история геотермальной энергетики связана, прежде всего, со строительством ГеоЭС. Первые из них, до сих пор работающие Паужетская и Паратунская станции, были построены ещё в 1965–1967 годах, при этом Паратунская ГеоЭС мощностью 600 кВт стала первой станцией в мире с бинарным циклом. Это была разработка советских учёных С. С. Кутателадзе и А. М. Розенфельда из Института теплофизики СО РАН, получивших в 1965 году авторское свидетельство на извлечение электроэнергии из воды с температурой от 70°C. Эта технология впоследствии стала прототипом для более 400 бинарных ГеоЭС в мире.

    Мощность Паужетской ГеоЭС, введённой в эксплуатацию в 1966 году, изначально составляла 5 МВт и впоследствии была наращена до 12 МВт. В настоящее время на станции идёт строительство бинарного блока, который увеличит её мощность ещё на 2,5 МВт.

    Развитие геотермальной энергетики в СССР и России тормозилось доступностью традиционных энергоносителей - нефти, газа, угля, но никогда не прекращалось. Крупнейшие на данный момент объекты геотермальной энергетики - Верхне-Мутновская ГеоЭС с суммарной мощностью энергоблоков 12 МВт, введённая в эксплуатацию в 1999 году, и Мутновская ГеоЭС мощностью 50 МВт (2002 год).

    Мутновская и Верхне-Мутновская ГеоЭС - уникальные объекты не только для России, но и в мировом масштабе. Станции расположены у подножия вулкана Мутновский, на высоте 800 метров над уровнем моря, и работают в экстремальных климатических условиях, где 9–10 месяцев в году зима. Оборудование Мутновских ГеоЭС, на данный момент одно из самых современных в мире, полностью создано на отечественных предприятиях энергетического машиностроения.

    В настоящее время доля Мутновских станций в общей структуре энергопотребления Центрально-Камчатского энергетического узла составляет 40%. В ближайшие годы планируется увеличение мощности.


    Отдельно следует сказать о российских петротермальных разработках. Крупных ПЦС у нас пока нет, однако есть передовые технологии бурения на большую глубину (порядка 10 км), которые также не имеют аналогов в мире. Их дальнейшее развитие позволит кардинально снизить затраты на создание петротермальных систем. Разработчики данных технологий и проектов - Н. А. Гнатусь, М. Д. Хуторской (Геологический институт РАН), А. С. Некрасов (Институт народнохозяйственного прогнозирования РАН) и специалисты Калужского турбинного завода. Сейчас проект петротермальной циркуляционной системы в России находится на экспериментальной стадии.

    Перспективы у геотермальной энергетики в России есть, хотя и сравнительно отдалённые: на данный момент достаточно велик потенциал и сильны позиции традиционной энергетики. В то же время в ряде отдалённых районов страны использование геотермальной энергии экономически выгодно и востребовано уже сейчас. Это территории с высоким геоэнергетическим потенциалом (Чукотка, Камчатка, Курилы - российская часть Тихоокеанского «огненного пояса Земли», горы Южной Сибири и Кавказ) и одновременно удалённые и отрезанные от централизованного энергоснабжения.

    Вероятно, в ближайшие десятилетия геотермальная энергетика в нашей стране будет развиваться именно в таких регионах.



    Последние материалы раздела:

    Изменение вида звездного неба в течение суток
    Изменение вида звездного неба в течение суток

    Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

    Развитие критического мышления: технологии и методики
    Развитие критического мышления: технологии и методики

    Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

    Онлайн обучение профессии Программист 1С
    Онлайн обучение профессии Программист 1С

    В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...