Как расположены молекулы в жидкости. Как расположены частицы в твердых телах, жидкостях и газах? Монокристаллы и поликристаллы

Молекулы и атомы твёрдого тела расположены в определённом порядке и образуют кристаллическую решётку . Такие твёрдые вещества называют кристаллическими. Атомы совершают колебательные движения около положения равновесия, а притяжение между ними очень велико. Поэтому твёрдые тела в обычных условиях сохраняют объём и имеют собственную форму.

Тепловое равновесие - состояние термодинамической систем, в которое она самопроизвольно переходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды.

Температура - физическая величина, характеризующая среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия. В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы.

Гра́дус Це́льсия (обозначение: °C ) - широко распространённая единица измерения температуры, применяется в Международной системе единиц (СИ) наряду с кельвином.

Ртутный медицинский термометр

Механический термометр

Градус Цельсия назван в честь шведского учёного Андерса Цельсия, предложившего в 1742 году новую шкалу для измерения температуры. За ноль по шкале Цельсия принималась точка плавления льда, а за 100° - точка кипения воды при стандартном атмосферном давлении. (Изначально Цельсий за 100° принял температуру таяния льда, а за 0° - температуру кипения воды. И лишь позднее его современник Карл Линней «перевернул» эту шкалу). Эта шкала линейна в интервале 0-100° и также линейно продолжается в области ниже 0° и выше 100°. Линейность является основной проблемой при точных измерениях температуры. Достаточно упомянуть, что классический термометр, заполненный водой, невозможно разметить для температур ниже 4 градусов Цельсия, так как в этом диапазоне вода начинает снова расширяться.

Первоначальное определение градуса Цельсия зависело от определения стандартного атмосферного давления, потому что и температура кипения воды и температура таяния льда зависят от давления. Это не очень удобно для стандартизации единицы измерения. Поэтому после принятия кельвина K, в качестве основной единицы измерения температуры, определение градуса Цельсия было пересмотрено.

Согласно современному определению, градус Цельсия равен одному кельвину K, а нуль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15:

26)Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.



, где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро N A ), i - число степеней свободы молекул ( в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

В газах обычно расстояние между молекулами и атомами значительно больше размеров молекул, а силы притяжения очень малы. Поэтому газы не имеют собственной формы и постоянного объёма. Газы легко сжимаются, потому что силы отталкивания на больших расстояниях также малы. Газы обладают свойством неограниченно расширяться, заполняя весь предоставленный им объём. Молекулы газа движутся с очень большими скоростями, сталкиваются между собой, отскакивают друг от друга в разные стороны. Многочисленные удары молекул о стенки сосуда создают давление газа .

Движение молекул в жидкостях

В жидкостях молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее. Эти перескоки происходят периодически. Временной отрезок между такими перескоками получил название среднее время оседлой жизни (или среднее время релаксации ) и обозначается буквой?. Иными словами, время релаксации – это время колебаний около одного определённого положения равновесия. При комнатной температуре это время составляет в среднем 10 -11 с. Время одного колебания составляет 10 -12 …10 -13 с.

Время оседлой жизни уменьшается с повышением температуры. Расстояние между молекулами жидкости меньше размеров молекул, частицы расположены близко друг к другу, а межмолекулярное притяжение велико. Тем не менее, расположение молекул жидкости не является строго упорядоченным по всему объёму.

Жидкости, как и твёрдые тела, сохраняют свой объём, но не имеют собственной формы. Поэтому они принимают форму сосуда, в котором находятся. Жидкость обладает таким свойством, как текучесть . Благодаря этому свойству жидкость не сопротивляется изменению формы, мало сжимается, а её физические свойства одинаковы по всем направлениям внутри жидкости (изотропия жидкостей). Впервые характер молекулярного движения в жидкостях установил советский физик Яков Ильич Френкель (1894 – 1952).

Движение молекул в твёрдых телах

Молекулы и атомы твёрдого тела расположены в определённом порядке и образуют кристаллическую решётку . Такие твёрдые вещества называют кристаллическими. Атомы совершают колебательные движения около положения равновесия, а притяжение между ними очень велико. Поэтому твёрдые тела в обычных условиях сохраняют объём и имеют собственную форму.

Кинетическая энергия молекулы

В газе молекулы совершают свободное (изолированное от других молекул) движение, лишь время от времени сталкиваясь друг с другом или со стенками сосуда. До тех пор, пока молекула совершает свободное движение, у нее имеется только кинетическая энергия. Во время столкновения у молекул появляется и потенциальная энергия. Таким образом, полная энергия газа представляют сумму кинетической и потенциальной энергий ее молекул. Чем разреженное газ, тем больше молекул в каждый момент времени пребывает в состоянии свободного движения, имеющих только кинетическую энергию. Следовательно, при разрежении газа уменьшается доля потенциальной энергии в сравнении с кинетической.

Средняя кинетическая энергия молекулы пpи равновесии идеального газа обладает одной очень важной особенностью: в смеси различных газов средняя кинетическая энергия молекулы для различных компонентов смеси одна и та же.

Например, воздух представляет собой смесь газов. Средняя энергия молекулы воздуха для всех его компонентов пpи нормальных условиях, когда воздух еще можно рассматривать как идеальный газ, одинакова. Данное свойство идеальных газов может быть доказано на основании общих статистических соображений. Из него вытекает важное следствие: если два различных газа (в разных сосудах) находятся в тепловом равновесии друг с другом, то средние кинетические энергии их молекул одинаковы.

В газах обычно расстояние между молекулами и атомами значительно больше, чем размеры самих молекул, силы взаимодействия молекул не велики. Вследствие чего газ не имеет собственной формы и постоянного объема. Газ легко сжимается и может неограниченно расширяться. Молекулы газа движутся свободно (поступательно, могут вращаться), лишь иногда сталкиваясь с другими молекулами и стенками сосуда, в котором находится газ, причем движутся с очень большими скоростями.

Движение частиц в твердых телах

Строение твёрдых тел принципиально отлично от строения газов. В них межмолекулярные расстояния малы и потенциальная энергия молекул сравнима с кинетической. Атомы (или ионы, или целые молекулы) нельзя назвать неподвижными, они совершают беспорядочное колебательное движение около средних положений. Чем больше температура, тем больше энергия колебаний, а следовательно, и средняя амплитуда колебаний. Тепловыми колебаниями атомов объясняется и теплоемкость твёрдых тел. Рассмотрим подробнее движения частиц в кристаллических твердых телах. Весь кристалл в целом представляет собой очень сложную связанную колебательную систему. Отклонения атомов от средних положений невелики, и поэтому можно считать, что атомы подвергаются действию квазиупругих сил, подчиняющихся линейному закону Гука. Такие колебательные системы называются линейными.

Существует развитая математическая теория систем, подверженных линейным колебаниям. В ней доказана очень важная теорема, суть которой состоит в следующем. Если система совершает малые (линейные) взаимосвязанные колебания, то путем преобразования координат ее формально можно свести к системе независимых осцилляторов (у которых уравнения колебаний не зависят друг от друга). Система независимых осцилляторов ведет себя подобно идеальному газу в том смысле, что атомы последнего тоже можно рассматривать как независимые.

Именно используя представление о независимости атомов газа, мы приходим к закону Больцмана. Этот очень важный вывод представляет простую и надежную основу для всей теории твёрдого тела.

Закон Больцмана

Число осцилляторов с заданными параметрами (координаты и скорости) определяется так же, как и число молекул газа в заданном состоянии, по формуле:

Энергия осциллятора.

Закон Больцмана (1) в теории твёрдого тела не имеет ограничений, однако формула (2) для энергии осциллятора взята из классической механики. Пpи теоретическом рассмотрении твёрдых тел нужно опираться на квантовую механику, для которой характерна дискретность изменения энергии осциллятора. Дискретность энергии осциллятора становится несущественной только пpи достаточно высоких значениях его энергии. Это значит, что (2) можно пользоваться лишь пpи достаточно высоких температурах. Пpи высоких температурах твёрдого тела, близких к температуре плавления, из закона Больцмана вытекает закон равномерного распределения энергии по степеням свободы. Если в газах на каждую степень свободы в среднем приходится количество энергии, равное (1/2) kT, то у осциллятора одна степень свободы, кроме кинетической, имеет потенциальную энергию. Поэтому на одну степень свободы в твёрдом теле пpи достаточно высокой температуре приходится энергия, равная kT. Исходя из этого закона, нетрудно рассчитать полную внутреннюю энергию твердого тела, а вслед за ней и его теплоемкость. Моль твердого тела содержит NA атомов, а каждый атом имеет три степени свободы. Следовательно, в моле содержится 3 NA осцилляторов. Энергия моля твердого тела

а молярная теплоемкость твердого тела пpи достаточно высоких температурах

Опыт подтверждает этот закон.

Жидкости занимают промежуточное положение между газами и твердыми телами. Молекулы жидкости не расходятся на большие расстояния, и жидкость в обычных условиях сохраняет свой объем. Но в отличие от твердых тел молекулы не только совершают колебания, но и перескакивают с места на место, то есть совершают свободные движения. При повышении температуры жидкости кипят (существует так называемая температура кипения) и переходят в газ. При понижении температуры жидкости кристаллизуются и становятся твердыми веществами. Существует такая точка в поле температур, в которой граница между газом (насыщенным паром) жидкостью исчезает (критическая точка). Картина теплового движения молекул в жидкостях вблизи температуры затвердевания очень похожа на поведение молекул в твердых телах. К примеру, коэффициенты теплоемкости прочти совпадают. Так как теплоемкость вещества при плавлении изменяется слабо, то можно сделать вывод, что характер движения частиц в жидкости близок движению в твердом теле (при температуре плавления). При нагревании свойства жидкости постепенно изменяются, и она становится более похожа на газ. У жидкостей средняя кинетическая энергия частиц меньше потенциальной энергии их межмолекулярного взаимодействия. Энергия межмолекулярного взаимодействия в жидкости и твердых телах отличаются несущественно. Если сравнить теплоту плавления и теплоту испарения, то увидим, что при переходе из одного агрегатного состояния в другое теплота плавления существенно ниже, теплоты парообразования. Адекватное математическое описание структуры жидкости может быть дано лишь с помощью статистической физики. Например, если жидкость состоит из одинаковых сферических молекул, то ее структуру можно описать радиальной функцией распределения g(r), которая дает вероятность обнаружения какой-либо молекулы на расстоянии r от данной, выбранной в качестве точки отсчета. Экспериментально эту функцию можно найти, исследуя дифракцию рентгеновских лучей или нейтронов, можно провести компьютерное моделирование этой функции, используя механику Ньютона.

Кинетическая теория жидкости была разработана Я.И. Френкелем. В этой теории жидкость рассматривается, как и в случае твердого тела, как динамическая система гармонически осцилляторов. Но в отличие от твердого тела положение равновесия молекул в жидкости имеет временный характер. Поколебавшись около одного положения, молекула жидкости перескакивает в новое положение, расположенное по соседству. Такой перескок происходит с затратой энергии. Среднее время «оседлой жизни» молекулы жидкости можно рассчитать как:

\[\left\langle t\right\rangle =t_0e^{\frac{W}{kT}}\left(5\right),\]

где $t_0\ $- период колебаний около одного положения равновесия. Энергия, которую должна получить молекула, чтобы из одного положения перейти в другое, называется энергией активации W, а время нахождения молекулы в положении равновесия -- временем «оседлой жизни» t.

У молекулы воды, например, при комнатной температуре, одна молекула совершает около 100 колебаний и перескакивает в новое положение. Силы притяжения между молекулам жидкости велики, чтобы сохранялся объем, но ограниченность оседлой жизни молекул ведет к возникновению такого явления, как текучесть. Во врем колебаний частицы около положения равновесия они непрерывно соударяются друг с другом, поэтому даже малое сжатие жидкости приводит к резкому «ожесточению» соударений частиц. Это означает резкое повышение давления жидкости на стенки сосуда, в котором ее сжимают.

Пример 1

Задание: Определить удельную теплоёмкость меди. Считать, что температура меди близка к температуре плавления. (Молярная масса меди $\mu =63\cdot 10^{-3}\frac{кг}{моль})$

Согласно закону Дюлонга и Пти моль химически простых веществ при температурах, близких к температуре плавления, имеет теплоемкость:

Удельная теплоемкость меди:

\[С=\frac{с}{\mu }\to С=\frac{3R}{\mu }\left(1.2\right),\] \[С=\frac{3\cdot 8,31}{63\cdot 10^{-3}}=0,39\ \cdot 10^3(\frac{Дж}{кгК})\]

Ответ: Удельная теплоёмкость меди $0,39\ \cdot 10^3\left(\frac{Дж}{кгК}\right).$

Задание: Объясните упрощённо с точки зрения физики процесс растворения соли (NaCl) в воде.

Основу современной теории растворов создал Д.И. Менделеев. Он установил, что при растворении протекают одновременно два процесса: физический -- равномерное распределение частиц растворяемого вещества по всему объему раствора, и химический -- взаимодействие растворителя с растворяемым веществом. Нас интересует физический процесс. Молекулы соли не разрушают молекулы воды. В этом случае нельзя было бы выпарить воду. Если бы молекулы соли присоединялись бы к молекулам воды -- мы получали бы некое новое вещество. И внутрь молекул волы молекулы соли проникнуть не могут.

Между ионами Na+ и Cl-- хлора и полярными молекулами воды возникает ионно-дипольная связь. Она оказывается прочнее, чем ионные связи в молекулах поваренной соли. В результате этого процесса связь между ионами, расположенными на поверхности кристаллов NaCl, ослабляется, ионы натрия и хлора отрываются от кристалла, а молекулы воды образуют вокруг них так называемые гидратные оболочки. Отделившиеся гидратированные ионы под влиянием теплового движения равномерно распределяются между молекулами растворителя.

Расположение молекул в твердых телах. В твердых телах расстояния между молекулами равно размерам молекул, поэтому твердые тела сохраняют форму. Молекулы расположены в определенном порядке, называемом кристаллическая решетка, поэтому в обычных условиях твердые тела сохраняют свой объём.

Картинка 5 из презентации «3 состояния вещества» к урокам физики на тему «Тепловые явления»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока физики, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «3 состояния вещества.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 2714 КБ.

Скачать презентацию

Тепловые явления

«Диффузия в природе» - Широко используется в пищевой промышленности при консервировании овощей и фруктов. При выплавке стали. Примером диффузии может служить перемешивание газов или жидкостей. Что такое диффузия? Диффузия в дыхании. Явление диффузии имеет важные проявления в природе, используется в науке и на производстве.

«Изменение агрегатных состояний вещества» - Агрегатные превращения вещества. Удельная теплота парообразования. Температура кипения. Кипение. Температурный график изменения агрегатных состояний воды. Температура плавления и кристаллизации. Условия парообразования. Агрегатные превращения. Парообразование. Расчет количества теплоты. Процесс плавления и отвердевания.

«3 состояния вещества» - Реши кроссворд. Кристаллизация. Расположение молекул в твердых телах. Примеры процессов. Состояния. Вещество. Свойства газов. Парообразование. Вопросы к кроссворду. Свойства жидкостей. Расположение молекул в жидкостях. Лед. Свойства твердых тел. Конденсация. Характер движения и взаимодействия частиц.

«Диффузия веществ» - Душистые листочки. Темный цвет. Пословицы. Фалес Милетский. Гераклит. Порешаем задачи. Учёные Древней Греции. Диффузии в технике и природе. Задачи любителям биологии. Диффузия. Явление диффузии. Демокрит. Наблюдения. Диффузия в газах.

«Тепловые явления при растворении» - Д.И. Менделеев. Инструктаж. Растворение марганцовокислого калия в воде. Экзотермический процесс. Проверь соседа по парте. Желаем успехов в дальнейшем познании законов физики и химии. Скорость диффузии. Что называется тепловым движением. Взаимное проникновение молекул. Значение растворов. Практические задачи.

«Взаимодействие молекул» - Можно ли соединить два куска железного гвоздя? Притяжение удерживает частицы между собой. I вариант К природным смесям не относят: а) глину; б) цемент; в) почву. Газообразные вещества. II вариант Искусственной смесью является: а) глина; б) цемент; в) почва. Расстояние между молекулами газов больше размеров самих молекул.

Всего в теме 23 презентации

Цели и задачи урока:

  • образовательные – объяснить свойства различных состояний вещества различием в характере движения и взаимодействия молекул, научить применять основные положения теории строения вещества для объяснения его свойств в различных состояниях;
  • воспитательные – продолжать формировать мышление о познаваемости явлений и свойств окружающего мира; интерес к предмету
  • развивающие – развитие логического мышления, умение анализировать свойства тел и особенности явлений на основе имеющихся знаний.

Оборудование:

Тип урока: сообщение новых знаний

ОРГАНИЗАЦИОННЫЙ МОМЕНТ.

Приветствие, проверка готовности класса к уроку, сообщение темы и целей урока.

ПОДГОТОВКА УЧАЩИХСЯ К СОЗНАТЕЛЬНОМУ УСВОЕНИЮ НОВОГО МАТЕРИАЛА (актуализация ранее усвоенного и подведение к целям урока)

Двум ученикам дается индивидуальное задание на проверку физических терминов в виде лото. Остальные ученики отвечают на вопросы, поставленные в ходе демонстраций опытов самими учениками, которыми было получено индивидуальное опережающее задание.

Демонстрации:

Твердое тело попробовать сжать, растянуть, сломать и т.п.

Вопрос: какие свойства твердых тел вы знаете? (Сохраняет форму и объем)

Жидкости. Перелить воду из одной мензурки с делениями в мензурку другой формы тоже с делениями.

Вопрос: какие свойства жидкостей подтверждаются этой демонстрацией?

(Жидкости сохраняют свой объем, но легко меняют форму).

Газы. Перевязать воздушный шарик нитью, затем его надуть, после этого нить развязать.

Вопрос: Что мы видим? Какими свойствами обладают газы? (не сохраняют форму, заполняют весь предоставленный объем)

Учитель. Мы вспомнили с вами свойства вещества во всех трех агрегатных состояниях, а сегодня на уроке мы научимся объяснять вышеперечисленные свойства на основе молекулярного строения вещества.

РАБОТА НАД НОВЫМ МАТЕРИАЛОМ.

Итак, одно и то же вещество может находится в различных состояниях. Например, вода.

Лед, вода, пар – все три состояния одного и того же вещества,

значит, и молекулы его не отличаются друг от друга.

ПОСТАНОВКА ПРОБЛЕМЫ :

Тогда что же является причиной различных агрегатных состояний воды?

Учитель. В конце урока вы сможете с уверенностью ответить на поставленный вопрос! (различные свойства вещества во всех состояниях определяются тем, что его молекулы расположены, взаимодействуют и движутся по-разному).

Теперь давайте рассмотрим, как расположены и как движутся молекулы при различных агрегатных состояниях вещества.

ГАЗЫ.

Только что на опыте с воздушным шаром мы убедились, что газ может занимать весь предоставленный ему объем, может сжиматься, а значит в газах расстояние между молекулами намного больше размеров самих молекул. Расстояние между молекулами газа в десятки раз больше размера молекул, поэтому они слабо притягиваются.

Слово “газ” произведено от греческого “хаос” – беспорядок. Действительно, газообразное состояние вещества является примером существующего в природе полного, совершенного беспорядка во взаимном расположении и движении частиц.

ВЫВОД: Молекулы газа, двигаясь во всех направлениях, почти не притягиваются друг к другу и поэтому не имеют собственной формы и постоянного объема.

ЖИДКОСТИ.

Свойства жидкостей объясняются тем, что промежутки между молекулами малы (рисунок молекул): молекулы в жидкостях расположены так плотно, что расстояние между каждыми двумя молекулами меньше размеров молекул. На таких расстояниях притяжение молекул друг к другу уже значительно. Поэтому молекулы жидкости не расходятся на большие расстояния, и жидкость в обычных условиях сохраняет свой объем.

Однако притяжение молекул жидкости еще не настолько велико, чтобы жидкость сохраняла свою форму. Этим объясняется то, что жидкости принимают форму сосуда, они текучи, их легко перелить.

Жидкость трудно сжимается, так как при этом молекулы сближаются на расстояние, когда заметно проявляется отталкивание.

ТВЕРДЫЕ ТЕЛА.

Твердые тела состоят из кристаллических решеток, в которых упорядоченно расположены молекулы, расстояние между молекулами очень мало по сравнению с размером самих молекул.

Так как сила взаимодействия между молекулами очень большая, то молекулы ограничены в собственном движении, и их положение очень трудно изменить. В твердом теле молекулы непрерывно колеблются около положений равновесия (рис. из учебника физики Гуревича).

Отсутствие систематических перемещений молекул и есть причина того, что мы называем “твердостью”. Именно поэтому твердые тела сохраняют постоянную форму и объем.

Подведем итоги изученного.

В ГАЗАХ:

  • Расстояние между молекулами гораздо больше размеров самих молекул.
  • Молекулы движутся во всех направлениях.
  • Молекулы почти не взаимодействуют друг с другом
  • Молекулы быстро заполняют весь предоставленный объем

В ЖИДКОСТЯХ:

  • Расстояние между молекулами меньше размеров самих молекул.
  • Значительная роль притяжения молекул
  • Появление отталкивания при сближении (жидкость нельзя сжать, т.е. уменьшить объем)
  • Свойство текучести

В ТВЕРДЫХ ТЕЛАХ:

  • Расстояние между молекулами во много раз меньше размеров самих молекул. Притяжение между молекулами еще больше, чем в жидкостях.
  • Расположены молекулы в определенном порядке (кристаллические решетки)
  • Движение молекул только около положения своего равновесия, т.е. в ячейке кристаллической решетки.

Изучение строения вещества показывает, что:

  • все вещества состоят из огромного количества мельчайших частиц (молекул и атомов), между которыми есть промежутки;
  • частицы вещества непрерывно и беспорядочно движутся;
  • частицы вещества взаимодействуют друг с другом: притягиваются на небольших расстояниях и отталкиваются при сжатии.

СИСТЕМАТИЗАЦИЯ ЗНАНИЙ.

Давайте теперь вместе систематизируем все изученное ранее и на сегодняшнем уроке в структурно-логическую схему. Учитель задает вопросы классу, ученики отвечают, а в это время на слайде поочередно загораются ответы в виде схемы, которую учащиеся потом переносят в тетрадь

Что нас окружает?

  • ВИДИМАЯ
  • НЕВИДИМАЯ

Как наз. любые предметы? ТЕЛО

Из чего состоит любое тело? ВЕЩЕСТВО

В каких трех состояниях находится одно и то же вещество?

ТВЕРДОЕ ЖИДКОЕ ГАЗООБРАЗНОЕ

Как расположены молекулы в них?

ЗАКРЕПЛЕНИЕ И ПРИМЕНЕНИЕ ЗНАНИЙ.

1. На экране дается задание: заполнить таблицу из предложенных названий веществ. Каждому ученику выдается пустая табличка, они должны самостоятельно ее заполнить и затем проверить себя по ответам, данным на другом слайде.

Каждому ученику выдается пустая табличка, они должны самостоятельно ее заполнить и затем проверить себя по ответам, данным на другом слайде.

Итоги урока. Домашнее задание.

Ребята, что нового на сегодняшнем уроке вы узнали, как вы можете применить полученные сегодня знания?

Молодцы, спасибо всем за урок, мы сегодня хорошо потрудились.

Д/з: параграф 12, используя материал урока и учебника заполнить прилагающиеся таблички.

Мозговой штурм. Ребята, почему наш округ называется горнозаводской? (ответы) Правильно, потому что заводы перерабатывают то сырье, которое добывают в Уральских горах. В Нижнем Тагиле есть завод ВМЗ. Кто знает как расшифровывается эта аббревиатура? (Выйский механический завод). А фамилия Черепановы вам о чем-нибудь говорит? Да, это наши уральские механики и изобретатели, крепостные заводчиков Демидовых. Отец Ефим Черепанов и его сын Мирон Черепанов в 1810 г. создали машиностроительный завод (позже ВМЗ), они занимались изобретением различных механизмов, первыми изобрели паровую машину-прототип паровоза.

И вот однажды Ефим Черепанов, разговаривая с рабочими, сказал:

Несколько дневных часов летом равноценны трем зимним дням.

Почему так? – спросили они.

Я это установил на опыте, - ответил механик. – Когда моя жена стирает одежду зимой, требуется три дня, чтобы она высохла. А если стирает летом после обеда, то одежда высыхает до вечера.

Выскажите свое отношение к ответу Ефима Черепанова. Почему летом белье сохнет быстрее, чем зимой?



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...