Какие зависимости существуют между синусом косинусом. Зависимость между тангенсом и котангенсом


В этой статье мы всесторонне рассмотрим . Основные тригонометрические тождества представляют собой равенства, устанавливающие связь между синусом, косинусом, тангенсом и котангенсом одного угла, и позволяют находить любую из этих тригонометрических функций через известную другую.

Сразу перечислим основные тригонометрические тождества, которые разберем в этой статье. Запишем их в таблицу, а ниже дадим вывод этих формул и приведем необходимые пояснения.

Навигация по странице.

Связь между синусом и косинусом одного угла

Иногда говорят не об основных тригонометрических тождествах, перечисленных в таблице выше, а об одном единственном основном тригонометрическом тождестве вида . Объяснение этому факту достаточно простое: равенства получаются из основного тригонометрического тождества после деления обеих его частей на и соответственно, а равенства и следуют из определений синуса, косинуса, тангенса и котангенса . Подробнее об этом поговорим в следующих пунктах.

То есть, особый интерес представляет именно равенство , которому и дали название основного тригонометрического тождества.

Прежде чем доказать основное тригонометрическое тождество, дадим его формулировку: сумма квадратов синуса и косинуса одного угла тождественно равна единице. Теперь докажем его.

Основное тригонометрическое тождество очень часто используется при преобразовании тригонометрических выражений . Оно позволяет сумму квадратов синуса и косинуса одного угла заменять единицей. Не менее часто основное тригонометрическое тождество используется и в обратном порядке: единица заменяется суммой квадратов синуса и косинуса какого-либо угла.

Тангенс и котангенс через синус и косинус

Тождества, связывающие тангенс и котангенс с синусом и косинусом одного угла вида и сразу следуют из определений синуса, косинуса, тангенса и котангенса. Действительно, по определению синус есть ордината y, косинус есть абсцисса x, тангенс есть отношение ординаты к абсциссе, то есть, , а котангенс есть отношение абсциссы к ординате, то есть, .

Благодаря такой очевидности тождеств и часто определения тангенса и котангенса дают не через отношение абсциссы и ординаты, а через отношение синуса и косинуса. Так тангенсом угла называют отношение синуса к косинусу этого угла, а котангенсом – отношение косинуса к синусу.

В заключение этого пункта следует отметить, что тождества и имеют место для всех таких углов , при которых входящие в них тригонометрические функции имеют смысл. Так формула справедлива для любых , отличных от (иначе в знаменателе будет нуль, а деление на нуль мы не определяли), а формула - для всех , отличных от , где z - любое .

Связь между тангенсом и котангенсом

Еще более очевидным тригонометрическим тождеством, чем два предыдущих, является тождество, связывающее тангенс и котангенс одного угла вида . Понятно, что оно имеет место для любых углов , отличных от , в противном случае либо тангенс, либо котангенс не определены.

Доказательство формулы очень просто. По определению и , откуда . Можно было доказательство провести и немного иначе. Так как и , то .

Итак, тангенс и котангенс одного угла, при котором они имеют смысл, есть .

Открытый урок по алгебре и началам анализа по теме: «Зависимость между синусом и косинусом одного и того же угла» (10 класс)

Цель: восприятие учащимися и первичное осознание нового учебного материала, осмысливание связей и отношений в объектах изучения

Образовательная : вывод формул зависимости между синусом и косинусом одного и того же угла (числа); обучение применению этих формул для вычисления значений синуса, косинуса по заданному значению одного из них.

Развивающая : учить анализировать, сравнивать, строить аналогии, обобщать и систематизировать, доказывать и опровергать, определять и объяснять понятия, развивать и совершенствовать умения применять имеющиеся у учащихся знания в различных ситуациях; развивать грамотную математическую речь учащихся, умение давать лаконичные формулировки

Воспитательная: воспитание добросовестного отношения к труду и положительного отношения к знаниям, воспитывать у учащихся аккуратность, умение слушать, высказывать свое мнение; культуру поведения.

Здоровье-сберегающая : создание комфортного психологического климата на уроке, атмосферы сотрудничества: ученик – учитель.

Знания и умения: определений основных тригонометрических функций (синуса, косинуса); знаков тригонометрических функций по четвертям; множества значений тригонометрических функций; основных формул тригонометрии. У мение правильно выбрать нужную формулу для решения конкретного задания; работать с простыми дробями; выполнять преобразование тригонометрических выражений.

Ход урока

    Организационный момент:

Проверить готовность учащихся к уроку. Открытие на компьютерах сайта учителя(Приложение 1).

    Устная работа по пройденной теме : «Знаки синуса, косинуса и тангенса»

На доске:

Задание:

Расставить номера четвертей координатной плоскости и определить знаки синуса, косинуса, тангенса и котангенса.

    Самостоятельная работа по теме: «Знаки синуса, косинуса и тангенса»

Учащиеся открывают на сайте раздел «Задания к уроку по тригонометрии». Самопроверка

(Учащиеся выполняют задание №1, проверяют свои работы и оцениваю себя)

    Объяснение нового материала

На доске:

    х = … α , … ≤ cos α≤ … 2)* tg α = , α≠ …

y = … α, … ≤ sin α≤ … ctg α = , α≠ …

Задание: дописать формулы

Учитель : «Мы с вами изучили каждое понятие отдельно. Как вы считаете какую тему далее логично изучить?»

( Предполагаемый ответ: «Зависимость между этими понятиями»)

Формулируется тема урока: «Зависимость между синусом и косинусом одного и того же угла»

Учитель : «Есть несколько путей решения этой проблемы»

Используя уравнение единичной окружности

Используя теорему Пифагора

Учитель : «Давайте рассмотрим оба и выберем наиболее рациональный»

На доске:


Учащиеся выводят равенство cos 2 α + sin 2 α = 1

Учитель : «Мы получили равенство справедливое при любых значениях, входящих в него букв. Как называют такие равенства?»

( Предполагаемый ответ : тождества)

Учитель : «Вспомните, как называется тождество cos 2 α + sin 2 α = 1 »

    Закрепление изученного материала

А) Учитель: «Откройте учебник стр.147, № 457(2;4)»(вызванные учащиеся решают у доски)

Б) Учитель: «Приступите к выполнению задания №2. Работаем по вариантам» (Обсуждение полученных результатов)

На доске:

1 вариант 2 вариант

Учитель: «В данных формулах перед корнем стоят знаки « ±» . От чего зависит какой знак ставить в формуле?»

(Предполагаемый ответ: «От того, в какой четверти расположен угол поворота точки P(1;0)»)

В) Учитель: «Приступите к выполнению задания №3». (Учащиеся решают задания, проверка на доске)

    Подведение итогов урока

Учитель: «Молодцы! Итог урока мы подведем с помощью кроссворда» (Задание 4) (Учащиеся работают в парах за компьютером)

7) Рефлексия в форме анкетирования (приложение 2)

Учитель: «Сделайте вывод о своей работе на уроке, заполнив тест».

8) Домашнее задание

§25, №456, 457(1;3),460(1;3).

Доклад

Попробуем отыскать зависимость между основными тригонометрическими функциями одного и того же угла.

Соотношение между косинусом и синусом одного и того же угла

На следующем рисунке представлена система координат Оху с изображенной в ней частью единичной полуокружности ACB с центром в точке О. Эта часть является дугой единичной окружности. Единичная окружность описывается уравнением

  • x 2 +y 2 =1.

Как уже известно ординату у и абсциссу х можно представить в виде синуса и косинуса угла по следующим формулам:

  • sin(a) = у,
  • cos(a) = х.

Подставив эти значения в уравнения единичной окружности имеем следующее равенство

  • (sin(a)) 2 + (cos(a)) 2 =1,

Данное равенство, выполняется при любых значениях угла а. Оно называется основное тригонометрическое тождество.

Из основного тригонометрического тождества, можно выразить одну функцию через другую.

  • sin(a) = ±√(1-(cos(a)) 2),
  • cos(a) = ±√(1-(sin(a)) 2).

Знак в правой части этой формулы определяется знаком выражения, которое стоит в левой части этой формулы.

Например.

Вычислить sin(a), если cos(a)=-3/5 и pi

Воспользуемся формулой приведенной выше:

  • sin(a) = ±√(1-(cos(a)) 2).

Так как pi

  • sin(a) = ±√(1-(cos(a)) 2) = - √(1 – 9/25) = - 4/5.

Соотношение между тангенсом и котангенсом одного и того же угла

Теперь, попробуем найти зависимость, между тангенсом и котангенсов.

По определению tg(a) = sin(a)/cos(a), ctg(a) = cos(a)/sin(a).

Перемножим эти равенства, получим tg(a)*ctg(a) =1.

Из этого равенства можно выразить одну функцию через другую. Получим:

  • tg(a) = 1/ctg(a),
  • ctg(a) = 1/tg(a).

Следует понимать, что эти равенства справедливы лишь тогда, когда tg и ctg существуют, то есть для любых а, кроме а=k*pi/2, при любом целом k.

Теперь попробуем используя основное тригонометрическое тождество найти зависимости между тангенсом и косинусом.

Поделим основное тригонометрическое тождество, на (cos(a)) 2 . (cos(a) не равен нулю, иначе бы тангенс не существовал бы.

Получим следующее равенство ((sin(a)) 2 + (cos(a)) 2)/ (cos(a)) 2 =1/(cos(a)) 2 .

Разделив почленно получаем:

  • 1+(tg(a)) 2 = 1/(cos(a)) 2 .

Как уже отмечалось выше, эта формула верна если cos(a) не равен нулю, то есть для всех углов а, кроме а=pi/2 +pi*k, при любом целом k.

Тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

tg \alpha = \frac{\sin \alpha}{\cos \alpha}, \enspace ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

tg \alpha \cdot ctg \alpha = 1

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

tg \alpha = \frac{\sin \alpha}{\cos \alpha},\enspace

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой y является синус, а абсциссой x — косинус. Тогда тангенс будет равен отношению \frac{y}{x}=\frac{\sin \alpha}{\cos \alpha} , а отношение \frac{x}{y}=\frac{\cos \alpha}{\sin \alpha} — будет являться котангенсом.

Добавим, что только для таких углов \alpha , при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества , ctg \alpha=\frac{\cos \alpha}{\sin \alpha} .

Например: tg \alpha = \frac{\sin \alpha}{\cos \alpha} является справедливой для углов \alpha , которые отличны от \frac{\pi}{2}+\pi z , а ctg \alpha=\frac{\cos \alpha}{\sin \alpha} — для угла \alpha , отличного от \pi z , z — является целым числом.

Зависимость между тангенсом и котангенсом

tg \alpha \cdot ctg \alpha=1

Данное тождество справедливо только для таких углов \alpha , которые отличны от \frac{\pi}{2} z . Иначе или котангенс или тангенс не будут определены.

Опираясь на вышеизложенные пункты, получаем, что tg \alpha = \frac{y}{x} , а ctg \alpha=\frac{x}{y} . Отсюда следует, что tg \alpha \cdot ctg \alpha = \frac{y}{x} \cdot \frac{x}{y}=1 . Таким образом, тангенс и котангенс одного угла, при котором они имеют смысл, являются взаимно обратными числами.

Зависимости между тангенсом и косинусом, котангенсом и синусом

tg^{2} \alpha + 1=\frac{1}{\cos^{2} \alpha} — сумма квадрата тангенса угла \alpha и 1 , равна обратному квадрату косинуса этого угла. Данное тождество справедливо для всех \alpha , отличных от \frac{\pi}{2}+ \pi z .

1+ctg^{2} \alpha=\frac{1}{\sin^{2}\alpha} — сумма 1 и квадрат котангенса угла \alpha , равняется обратному квадрату синуса данного угла. Данное тождество справедливо для любого \alpha , отличного от \pi z .

Примеры с решениями задач на использование тригонометрических тождеств

Пример 1

Найдите \sin \alpha и tg \alpha , если \cos \alpha=-\frac12 и \frac{\pi}{2} < \alpha < \pi ;

Показать решение

Решение

Функции \sin \alpha и \cos \alpha связывает формула \sin^{2}\alpha + \cos^{2} \alpha = 1 . Подставив в эту формулу \cos \alpha = -\frac12 , получим:

\sin^{2}\alpha + \left (-\frac12 \right)^2 = 1

Это уравнение имеет 2 решения:

\sin \alpha = \pm \sqrt{1-\frac14} = \pm \frac{\sqrt 3}{2}

По условию \frac{\pi}{2} < \alpha < \pi . Во второй четверти синус положителен, поэтому \sin \alpha = \frac{\sqrt 3}{2} .

Для того, чтобы найти tg \alpha , воспользуемся формулой tg \alpha = \frac{\sin \alpha}{\cos \alpha}

tg \alpha = \frac{\sqrt 3}{2} : \frac12 = \sqrt 3

Пример 2

Найдите \cos \alpha и ctg \alpha , если и \frac{\pi}{2} < \alpha < \pi .

Показать решение

Решение

Подставив в формулу \sin^{2}\alpha + \cos^{2} \alpha = 1 данное по условию число \sin \alpha=\frac{\sqrt3}{2} , получаем \left (\frac{\sqrt3}{2}\right)^{2} + \cos^{2} \alpha = 1 . Это уравнение имеет два решения \cos \alpha = \pm \sqrt{1-\frac34}=\pm\sqrt\frac14 .

По условию \frac{\pi}{2} < \alpha < \pi . Во второй четверти косинус отрицателен, поэтому \cos \alpha = -\sqrt\frac14=-\frac12 .

Для того, чтобы найти ctg \alpha , воспользуемся формулой ctg \alpha = \frac{\cos \alpha}{\sin \alpha} . Соответствующие величины нам известны.

ctg \alpha = -\frac12: \frac{\sqrt3}{2} = -\frac{1}{\sqrt 3} .



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...