Какую величину называют случайной. Закон распределения случайных величин

Определение случайной величины. Многие случайные собы­тия могут быть оценены количественно случайными величинами.

Случайной называют такую величину, которая принима­ет значения в зависимости от стечения случайных обсто­ятельств.

Случайными величинами являются: число больных на приеме у врача, число студентов в аудитории, число рождений в городе, продолжительность жизни отдельного человека, скорость моле­кулы, температура воздуха, погрешность в измерении какой-либо величины и др. Если пронумеровать шары в урне примерно так, как это делают при разыгрывании тиража лото, то произвольное вынимание шара из урны покажет число, являющееся случайной величиной.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если она принимает счетное множество значений: число букв на произ­вольной странице книги, энергия электрона в атоме, число волос на голове человека, число зерен в колосьях, число молекул в вы­деленном объеме газа и т. п.

Непрерывная случайная величина принимает любые зна­чения внутри некоторого интервала: температура тела, масса зерен в колосьях пшеницы, координата места попадания пули в цель (принимаем пулю за материальную точку) и др.

Распределение дискретной случайной величины. Диск­ретная случайная величина считается заданной, если указаны ее возможные значения и соответствующие им вероятности. Обозна­чим дискретную случайную величину X, ее значения x 1 x 2 , ., а вероятности Р(х 1) = p 1, Р(х 2) = р 2 и т. д. Совокупность X и Р называется распределением дискретной случайной величи­ны (табл. 1).

Таблица 1

Случайной величиной является номер вида спорта в игре «Спортло-10». Общее число видов равно 49. Указать распределение этой случайной величины (табл. 3).

Таблица 3


Значение 1 = 0 соответствует такому случаю, при котором трижды подряд событие А не происходило. Вероятность этого сложного события, по теореме умножения вероятностей (2.6), равна

Значение I = 1 относится к случаю, при котором событие А про­изошло в одном из трех испытаний. По формуле (2.6) получаем

Так как при l = 1 происходят также и два других сложных со­бытия: (А и А и А)и(А и А и А), то необходимо, воспользовав­шись теоремой сложения вероятностей (2.4), получить полную ве­роятность для l = 1, сложив трижды предыдущее выражение:

Значение I = 2 соответствует случаю, при котором событие А произошло в двух из трех испытаний. Рассуждениями, подобны­ми приведенным выше, получим полную вероятность для этого случая:

При 1 = 3 событие А появляется во всех трех испытаниях. Ис­пользуя теорему умножения вероятностей, находим


В общем случае биномиальное распределение позволяет опре­делить вероятность того, что событие А произойдет l раз при п испытаниях:

На основе многолетних наблюдений вызов врача в данный дом оце­нивается вероятностью 0,5. Найти вероятность того, что в течение шести дней произойдет четыре вызова врача; Р(А) = 0,5, п = 6,1 = 4. Т Воспользуемся формулой (2.10):

Числовые характеристики дискретной случайной величи­ны. Во многих случаях, наряду с распределением случайной ве­личины или вместо него, информацию об этих величинах могут дать числовые параметры, получившие название числовых ха­рактеристик случайной величины. Рассмотрим наиболее упот­ребительные из них.

Математическое ожидание (среднее значение) случайной величины есть сумма произведений всех возможных ее значе­
ний на вероятности этих значений:

Пусть при большом числе испытаний п дискретная случайная величина X принимает значения x v x 2 , ..., х п соответственно m 1 , m г, ..., т п раз. Среднее значение равно

Если п велико, то относительные частоты т 1 /п, т 2 /п, ... будут стремиться к вероятностям, а средняя величина - к математиче­скому ожиданию. Именно поэтому математическое ожидание час­то отождествляют со средним значением.

Найти математическое ожидание для дискретной случайной вели­чины, которая задается цифрой на грани при бросании игральной кости (см. табл. 2).

Используем формулу (2.11):

Найти математическое ожидание для дискретной случайной вели­чины, которая определяется тиражом «Спортлото» (см. табл. 3). Согласно формуле (2.11), находим


Возможные значения дискретной случайной величины рассеяны во­круг ее математического ожидания, часть из них превышает М{Х), часть - меньше М{Х). Как оценить степень разброса случайной величины отно­сительно ее среднего значения? Может показаться, что для решения та­кой задачи следует вычислить отклонения всех случайных величин от ее математического ожидания X - М(Х), а затем найти математическое ожидание (среднее значение) этих отклонений: М[Х - М(Х)]. Вез доказа­тельства отметим, что эта величина равна нулю, так как отклонения слу­чайных величин от математического ожидания имеют как положитель­ные, так и отрицательные значения. Поэтому целесообразно учитывать либо абсолютные значения отклонений М[Х - М (X)], либо их квадраты М[Х - М(Х)] 2 . Второй вариант оказывается предпочтительнее, так при­ходят к понятию дисперсии случайной величины.

Дисперсией случайной величины называют математиче­ское ожидание квадрата отклонения случайной величины от ее математического ожидания:


Она означает, что дисперсия равна разности между математи­ческим ожиданием квадрата случайной величины X и квадратом ее математического ожидания.

Найти дисперсию случайной величины, которая задается цифрой на грани при бросании игральной кости (см. табл. 2).

Математическое ожидание этого распределения равно 3,5. Запишем значения квадратов отклонения случайных величин от математического ожидания: (1 - 3,5) 2 = 6,25; (2 - 3,5) 2 = 2,25; (3 - 3,5) 2 = 0,25; (4 - 3,5) 2 = 0,25; (5 - 3,5) 2 = 2,25; (6 - 3,5) 2 = 6,25. По формуле (2.12) с учетом (2.11) няходим дисперсию:

Как следует из (2.12), дисперсия имеет размерность квадрата размерности случайной величины. Для того чтобы оценивать расстояние случайной величины в единицах той же размерности, вводят понятие среднего квадратического отклонения, под которым понимают квадратный корень из дисперсии:

Распределение и характеристики непрерывной случайной величины. Непрерывную случайную величину нельзя задать тем же законом распределения, что и дискретную. В этом случае поступают следующим образом.

Пусть dP - вероятность того, что непрерывная случайная величина X принимает значения между х и х + dx. Очевидно, что Ирм больше интервал dx, тем больше и вероятность dP: dP ~ dx. Шроме того, вероятность должна зависеть и от самой случайной Величины, вблизи которой расположен интервал, поэтому

где f(x) - плотность вероятности, или функция распределения вероятностей. Она показывает, как изменяется вероятность, отнесенная к интервалу dx случайной величины, в зависимости от значения самой этой величины:

Интегрируя выражение (2.15) в соответствующих пределах, находим вероятность того, что случайная величина принимает какое-либо значение в интервале (ab):

Условие нормировки для непрерывной случайной величины имеет вид

Как видно из (2.19), эта функция равна вероятности того, что случайная величина принимает значения, меньшие х:

Для непрерывной случайной величины математическое ожи­дание и дисперсия записываются соответственно в виде

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Случайные величины» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Случайные величины

    Дискретные и непрерывные случайные величины

Одним из основных понятий в теории вероятностей является понятие случайной величины . Случайной величиной называется величина, которая в результате испытания из множества возможных своих значений принимает только одно, причём заранее неизвестно, какое именно.

Случайные величины бывают дискретными и непрерывными . Дискретной случайной величиной (ДСВ) называется случайная величина, которая может принимать конечное число изолированных друг о друга значений, т.е. если возможные значения этой величины можно пересчитать. Непрерывной случайной величиной (НСВ) называется случайная величина, все возможные значения которой сплошь заполняют некоторый промежуток числовой прямой.

Случайные величины обозначаются заглавными буквами латинского алфавита X, Y, Z и т.д. Возможные значения случайных величин обозначаются соответствующими малыми буквами.

Запись
означает «вероятность того, что случайная величинаХ примет значение, равное 5, равна 0.28».

Пример 1 . Один раз бросают игральный кубик. При этом могут выпасть цифры от 1 до 6, обозначающие число очков. Обозначим случайную величину Х ={число выпавших очков}. Эта случайная величина в результате испытания может принять только одно из шести значений: 1, 2, 3, 4, 5 или 6. Следовательно, случайная величина Х есть ДСВ.

Пример 2 . При бросании камня он пролетает некоторое расстояние. Обозначим случайную величину X ={расстояние полёта камня}. Эта случайная величина может принять любое, но только одно, значение из некоторого промежутка. Следовательно, случайная величина Х есть НСВ.

    Закон распределения дискретной случайной величины

Дискретная случайная величина характеризуется значениями, которые она может принимать, и вероятностями, с которыми эти значения принимаются. Соответствие между возможными значениями дискретной случайной величины и соответствующими им вероятностями называется законом распределения дискретной случайной величины .

Если известны все возможные значения
случайной величиныХ и вероятности
появления этих значений, то считают, что закон распределения ДСВХ известен и он может быть записан в виде таблицы:

Закон распределения ДСВ можно изобразить графически, если в прямоугольной системе координат изобразить точки
,
, …,
и соединить их отрезками прямых линий. Полученная фигура называется многоугольником распределения.

Пример 3 . В зерне, предназначенном для очистки, содержится 10% сорняков. Наугад отобраны 4 зерна. Обозначим случайную величину X ={число сорняков среди четырёх отобранных}. Построить закон распределения ДСВ Х и многоугольник распределения.

Решение . По условию примера . Тогда:

Запишем закон распределения ДСВ Х в виде таблицы и построим многоугольник распределения:

    Математическое ожидание дискретной случайной величины

Наиболее важные свойства дискретной случайной величины описываются её характеристиками. Одной из таких характеристик является математическое ожидание случайной величины.

Пусть известен закон распределения ДСВ Х :

Математическим ожиданием ДСВ Х называется сумма произведений каждого значения этой величины на соответствующую вероятность:
.

Математическое ожидание случайной величины приближённо равно среднему арифметическому всех её значений. Поэтому в практических задачах часто за математическое ожидание принимают среднее значение этой случайной величины.

Пример 8 . Стрелок выбивает 4, 8, 9 и 10 очков с вероятностями 0.1, 0.45, 0.3 и 0.15. Найти математическое ожидание числа очков при одном выстреле.

Решение . Обозначим случайную величину X ={число выбитых очков}. Тогда . Таким образом, ожидаемое среднее значение числа выбитых очков при одном выстреле равно 8.2, а при 10 выстрелах – 82.

Основными свойствами математического ожидания являются:


.


.


, где
,
.

.

, где Х и Y – независимые случайные величины.

Разность
называетсяотклонением случайной величины Х от её математического ожидания. Эта разность является случайной величиной и её математическое ожидание равно нулю, т.е.
.

    Дисперсия дискретной случайной величины

Для характеристики случайной величины, кроме математического ожидания, используется и дисперсия , которая даёт возможность оценить рассеяние (разброс) значений случайной величины около её математического ожидания. При сравнении двух однородных случайных величин с равными математическими ожиданиями «лучшей» считается та величина, которая имеет меньший разброс, т.е. меньшую дисперсию.

Дисперсией случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания: .

В практических задачах для вычисления дисперсии используют равносильную формулу .

Основными свойствами дисперсии являются:


.

Расширением понятия случайных событий, состоящих в появлении некоторых числовых значений в результате эксперимента, является случайная величина Х.

Определение. Случайной называют величину, принимающую в результате эксперимента одно только значение из некоторой их совокупности и неизвестное заранее, какое именно.

Случайная величина , к примеру, представляет собой обоснованную модель описания геологических данных, учитывающую влияние различных факторов на физическое поле .

Как и результат отдельного эксперимента, точное значение случайной величины предсказать нельзя, можно лишь установить ее статистические закономерности, т.е. определить вероятности значений случайной величины. Например, измерения физических свойств горных пород являются наблюдениями соответствующих случайных величин.

Среди случайных величин, с которыми приходится встречаться геологу, можно выделить два основных типа: величины дискретные и величины непрерывные .

Определение. Дискретной случайной величиной называется такая, которая может принимать конечное или бесконечное счетное множество значений.

В качестве типичных примеров дискретной случайной величины могут выступать все результаты полевых работ , все результаты экспериментов, привезенные c поля образцы и пр.

Всевозможные значений случайной величины образуют полную группу событий, т.е. , где - конечное или бесконечное. Поэтому можно говорить, что случайная величина обобщает понятие случайного события.

Пусть в результате исследований был получен следующий ряд данных по количественному составу некоторой породы: 4; 3; 1; 2; 5; 4; 2; 2; 3; 1; 5; 4; 3; 5; 5; 2; 5; 5; 6; 1. Всего было проведено 20 испытаний. Для того, чтобы с данными было удобно работать, их преобразовали: расположили полученные значения по возрастанию и подсчитали количество появления каждого из значений. В результате получили (Таблица 7.1):

Определение . Распределение данных по возрастанию называется ранжированием .

Определение . Наблюдаемое значение некоторого признака случайной величины называется вариантом.

Определение . Ряд, составленный из вариант, называется вариационным рядом .

Определение . Изменение некоторого признака случайной величины называется варьированным .

Определение . Число, показывающее сколько раз варьируется данная варианта, называется частотой и обозначается .

Определение. Вероятность появления данной варианты равно отношению частоты к общей сумме вариационного ряда

(1)

С учетом введенных определений перепишем таблицу 7.1 .

Таблица 7.2. Ранжированный ряд
Вариант 1 2 3 4 5 6
Частота 3 4 3 3 6 1
Вероятность 3/20 4/20 3/20 3/20 6/20 1/20

При статистическом анализе экспериментальных данных главным образом используется дискретные величины. В таблице 7.3 приведены основные числовые характеристики этих величин, имеющих важное практическое значение при обработке экспериментальных данных.

Таблица 7.3. Числовые характеристики случайных величин
N п/п Характеристика (параметр) случайной величины и ее обозначение Формула для нахождения характеристики случайной величины Примечание
1 Математическое ожидание
(2)
Характеризует положение случайной величины на числовой оси
2 Среднее значение
(3)
Если случайная величина независимая, то
3 Мода Это такое значение , для которого наиболь-шее Равна наиболее часто встречающемуся значению . Если таких значений в вариационном ряду несколько, то не определяется.
4 Медиана Если четное, то Если нечетное, то Это такое значение, которое находится в центре ранжированного ряда.
5 Дисперсия Характеризует действительное рассеяние случайной величины вокруг среднего значения.
7 Коэффициент вариации
(6)
Наряду с дисперсией характеризует изменчивость случайной величины
8 Центрированное нормированное уклонение

Если классическая теория вероятностей изучала, в основном, события и вероятность их появления (наступления), то современная теория вероятностей изучает случайные явления и их закономерности с помощью случайных величин. Понятие случайной величины, таким образом, является основополагающим в теории вероятностей. Ещё ранее проводились события, состоящие в появлении того или иного числа. Например, при бросании игральной кости могли появиться числа 1, 2, 3, 4, 5, 6. Наперёд определить число появившихся очков невозможно, поскольку оно зависит от многих случайных причин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная, а числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины.

Случайной величиной называется величина, которая в результате опыта принимает то или иное (причём, одно и только одно) возможное числовое значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Случайны величины принято, обычно, обозначать прописными буквами , а их возможное значения - соответствующими строчными буквамиНапример, если случайная величинаимеет три возможных значения, то они, соответственно, обозначаются так:. Для удобства будем писать:.

ПРИМЕР 1 . Число родившихся мальчиков среди ста новорожденных есть величина случайная, которая имеет следующие возможные значения: 0, 1, 2, ..., 100.

ПРИМЕР 2 . Расстояние, которое пролетит снаряд при выстреле из орудия, есть также величина случайная. Действительно, расстояние зависит не только от установки прицела, но и от многих других причин (силы и направления ветра, температуры и т. п.), которые не могут быть полностью учтены. Возможные значения этой величины, очевидно, принадлежат некоторому промежутку (интервалу) .

Заметим, что с каждым случайным событием можно связать какую-либо случайную величину, принимающую значения из R. Например, опыт - выстрел по мишени; событие - попадание в мишень; случайная величина - число попаданий в мишень.

Вернёмся к примерам, приведённым выше. В первом из них случайная величина могла принять одно из следующих возможных значений: 0, 1, 2,..., 100. Эти значения отделены одно от другого промежутками, в которых нет возможных значений. Таким образом, в этом примере случайная величина принимает отдельные, изолированные, возможные значения.

Во втором примере случайная величина могла принять любое из значений промежутка . Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины.

Уже из сказанного можно заключить о целесообразности различать случайные величины, принимающие лишь отдельные, изолированные значения и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.

Дискретной ( прерывной ) случайной величиной называется такая случайная величина, которая принимает конечное или счётное множество 1 различных значений. Другими словами - это такая случайная величина, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка действительной числовой оси.

Очевидно, во-первых, число возможных значений непрерывной случайной величины – бесконечно. Во-вторых, дискретная случайная величина является частным случаем непрерывной случайной величины.

    Закон распределения вероятностей

I . Закон распределения вероятностей дискретной случайной величины

На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все её возможные значения. В действительности это не так: различные случайные величины иногда могут иметь одинаковые перечни возможных значений, а соответствующие вероятности этих значений – различные. Поэтому для полной характеристики мало знать значения случайной величины, нужно ещё знать, как часто эти значения встречаются в опыте при его повторении, т.е. нужно ещё указать вероятности их появления.

Рассмотрим случайную величину . Появление каждого их возможных значенийсвидетельствует о том, что произошло соответственно одно из событий, которые образуют полную группу 2 . Допустим, что вероятности этих событий известны:

, . . . , ,

Тогда: соответствие, устанавливающее связь между возможными значениями случайной величины и их вероятностями, называется законом распределения вероятностей случайной величины , или просто – законом распределения случайной величины.

Закон распределения вероятностей данной случайной величины можно задать таблично (ряд распределения), аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая - их вероятности, т.е.


В целях наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки , а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения. При этом, сумма ординатпостроенного многоугольника равна единице.

Аналитически закон распределения дискретной случайной величины можно записать, например, используя формулу Бернулли для схемы повторения независимых опытов. Так, если обозначить случайную величину, которой является число бракованных деталей в выборке, через , то возможные её значениябудут 0, 1, 2, . . . ,. Тогда, очевидно, формула Бернулли будет устанавливать зависимость между значениямии вероятностью() их появления, где

,

что о определяет закон распределения данной случайной величины.

II . Закон распределения вероятностей непрерывной случайной величины

Вспомним, что дискретная случайная величина задаётся перечнем всех её возможных значений и их вероятностей. Такой способ задания не является общим: он не применим, например, для непрерывных случайных величин.

Действительно, рассмотрим случайную величину , возможные значения которой сплошь заполняют интервал. Можно ли составить перечень всех возможных значений? Очевидно, что этого сделать нельзя. Этот пример указывает на целесообразность дать общий способ задания любых типов случайных величин (как уже отмечалось, дискретная случайная величина является частным случаем непрерывной случайной величины). С этой целью вводятинтегральную функцию распределения.

Пусть – переменная, принимающая произвольные действительные значения (на оси:) . Рассмотрим событие, состоящее в том, что случайная величинапримет значение меньшее. Тогда, вероятностьсобытиязависит от, т.е. является функцией от. Эту функцию принято обозначать черези называть функцией распределения случайной величины или, ещё – интегральной функцией распределения. Другими словами:

интегральной функцией распределения называют функцию , определяющую для каждого значенияR вероятность того, что случайная величина примет значение, меньшее, т.е.

.

Геометрически это равенство можно истолковывать так: есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки.

Свойства интегральной функции :


Доказательство этого свойства вытекает из определения интегральной функции как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

Действительно, пусть – событие, состоящее в том, что случайная величинапримет значение меньшее; аналогично,
– событие, состоящее в том, что случайная величинапримет значение меньшее. Другими словами:

Следовательно, если , то . Значит (объяснить - почему?)или, что то же самое:

Что и требовалось показать.

Это свойство вполне очевидно. Так, если - достоверное событие, а– невозможное событие, то

Рассмотрим следующие события: . Видим, что– т.е. событияинесовместны. Тогда

Но ,В результате, можем записать:, что и требовалось показать.

Мы будем в основном изучать такие непрерывные случайные величины, функции распределения которых непрерывны.

График функция распределения дискретной случайной величины представляет собой ступенчатую ломаную линию (см. рис.). Величина скачка в точках разрыва равна вероятности значения случайной величины в этой точке. Зная ряд распределения случайной величины, можно построить график её функции распределения:

.

Для непрерывной случайной величины более наглядной является не интегральная, а дифференциальная функция распределения или, так называемая, плотность распределения случайной величины.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Южно-Уральский государственный университет

(национальный исследовательский университет)»

Факультет «Приборостроительный (КТУР)»

Кафедра «Информационно-измерительная техника»

Реферат на тему

«Что такое случайная величина?»

по дисциплине «Теория вероятностей и математическая статистика»

Проверил:

______________/ А.П. Лапин

Выполнил:

студент группы ПС-236

_______________/Загоскин Я.С./

Челябинск 2015

ВВЕДЕНИЕ

1. СЛУЧАЙНАЯ ВЕЛИЧИНА

ЗАКЛЮЧЕНИЕ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

ВВЕДЕНИЕ

Теория вероятностей - относительно молодая, но уже ставшая классической, ветвь математики. Развитие ее как отдельной науки пришлось на середину XVII века, и началось с переписки двух известных во всем мире французских математиков: Блеза Паскаля и Пьера де Ферма. Однако задачами, относящимися к просчету вероятностей в азартных играх, ученые начали интересоваться значительно раньше. Так, например, итальянский математик Лука Пачоли еще в 1494 в своем труде «Сумма арифметики, геометрии, отношений и пропорций» («Summa de arithmetica, geometria, proportioni et proportionalitа»), рассмотрел одну из задач о вероятностях, но, к сожалению, привел ошибочное решение.

Сегодня методы теории вероятностей и математической статистики являются неотъемлемой частью практически любой дисциплины, как технической, так и гуманитарной направленности. Законы распределения случайных величин оказались применимыми не только к математике, физике, химии, и так далее, но и к дисциплинам, носящим отчасти прогностический характер, таким как социология, экономика, политология, etc.

В данной работе, познакомимся с основными понятиями, терминами и законами теории вероятностей и математической статистики, а так же с применением последних на практике.

1. СЛУЧАЙНАЯ ВЕЛИЧИНА

1.1 Определение случайной величины

Случайная величина - это фундаментальное понятие теории вероятностей и математической статистики.

Каждый автор по-своему формулирует понятие случайной величины. Е.С. Вентцель, например, определяет случайную величину, как величину, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно .

Иначе говоря, случайная величина это величина, имеющая целый набор допустимых значений, но принимающая лишь одно, и какое именно, заранее точно сказать нельзя.

Формальное математическое определение случайной величины звучит следующим образом:

Пусть (Щ, F, P) - вероятностное пространство, тогда случайной величиной называют функцию X: Щ > R .

Случайную величину на практике обычно обозначают заглавными буквами, например: X, Y, Z, тогда, как возможные значения самой величины определяются строчными знаками: x, y, z.

1.2 Виды и примеры случайных величин

Различают два вида случайных величин: дискретные и непрерывные.

К дискретным относятся те случайные величины, множество значений которых конечно или фиксировано. Примером дискретной случайной величины, можно считать количество попаданий в цель при заранее определенном числе выстрелов.

Непрерывная случайная величина это такая величина, множество значений которой несчётно или бесконечно. В качестве примера для непрерывной случайной величины, можно взять количество кругов на воде, после попадания в нее камня, или расстояние, которое пролетит стрела, прежде чем упасть на землю.

Все случайные величины, ко всему прочему, имеют еще одну важную характеристику - ряд допустимых значений, который, в свою очередь, может как ограниченным, так и неограниченным. Отсюда, имеем, в зависимости от числа допустимых значений, ограниченные случайные величины, ряд допустимых значений конечен или фиксирован, и неограниченные, количество допустимых значений которых бесконечно.

Дискретные случайные величины могут иметь ограниченный и неограниченный ряд возможных значений, когда как непрерывные - только неограниченный.

На практике в теории вероятностей и математической статистике, как правило, имеют дело только с непрерывными случайными величинами.

2. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

2.1 Закон распределения дискретной случайной величины

Любое соотношение между допустимыми значениями случайной величины и вероятностями их наступления называют законом распределения дискретной случайной величины.

Существует два способа задания закона распределения:

· Аналитически, когда закон распределения задается в виде таблицы соответствия значений случайной величины и их вероятностью, именуемой рядом распределения:

Таблица 1 - ряд распределения случайной величины

Здесь, в первой строке располагаются возможные значения случайной величины, а во второй - их вероятности, при этом сумма всех вероятностей равна единице:

· Графически, когда таблица распределения случайно величины принимает многоугольника распределения:

Рисунок 1 - многоугольник распределения случайной величины

Где сумма всех ординат многоугольника является вероятностью всех допустимых значений случайной величины, следовательно, также равна единице.

Существует также биномиальный закон распределения дискретной случайной величины или, второе название - закон распределения Бернулли.

Определение: дискретная случайная величина о распределена по биномиальному закону, если вероятность того, что событие A наступит ровно m раз в серии из n испытаний по схеме Бернулли, равна:

Или в виде таблицы:

Таблица 2 - ряд биномиального распределения

Примером является выборочный контроль качества производственных изделий, при котором отбор изделий для пробы производится по схеме случайной повторной выборки, т.е. когда проверенные изделия возвращаются в исходную партию. Тогда количество нестандартных изделий среди отобранных есть случайная величина с биномиальным законом распределения вероятностей.

Дискретная случайная величина называется распределенной по закону Пуассона, если она имеет неограниченное счетное множество допустимых значений 0, 1, 2, …, m, … Тогда соответствующие вероятности определяются формулой (3):

M = 0, 1, 2,…; (3)

Примером явления, распределенного по закону Пуассона, является последовательность радиоактивного распада частиц.

2.2 Законы распределения непрерывной случайной величины

случайный величина теория вероятность

Рассмотренные выше правила распределения случайной величины являются справедливыми лишь по отношению к дискретным величинам, в силу того, что все перечисленные законы строятся исключительно из соображения, что количество возможных значений случайной величины конечно и строго фиксировано. Именно поэтому, например, распределить непрерывную случайную величину по закону Пуассона или Бернулли не получится, так как невозможно перечислить количество допустимых значений данной величины - оно бесконечно.

Для описания распределения непрерывных случайных величин существуют следующие законы:

Рассмотрим значения случайной величины Х такие, что Х<х. Вероятность события X<х зависит от x, т.е. является функцией x. Эта функция и называется интегральной функцией распределения и обозначается через F(x):

Равенство (4) читается:

Вероятность того, что случайное значение X находится левее значения х, определяется функцией распределения F(x).

Рисунок 2 - Графическое представление функции распределения с.в.

Стоит отметить, что в виде функции распределения, можно описывать как непрерывную, так и дискретную случайные величины - это универсальная характеристика.

Для непрерывных случайных величин на практике, наравне с функцией распределения F(x), также принято использовать другой закон распределения - плотность распределения вероятностей случайной величины:

Равенство (5) - дифференциальный закон распределения случайной величины, который выражает крутизну функции распределения F(x).

Рисунок 3 - Графическое представление дифференциального закона распределения с.в.

Заметим, что дифференциальный закон распределения случайной величины не является универсальным - он применим исключительно к непрерывным случайным величинам.

Одним из часто используемых на практике законов, является нормальный закон распределения - закон распределения Гаусса. Закон характеризует плотность вероятности нормально распределенной случайной величины X и имеет вид:

Где a и у параметры распределения имеют значения:

Кривая распределения (рисунок 4а), или кривая Гаусса, получается симметричной относительной точки x = a - точки максимума. При уменьшении значения у ордината точки максимума безгранично возрастает, кривая же при этом пропорционально расходится вдоль оси абсцисс, сохраняя площадь графика постоянной величиной, равной единице (рисунок 4б).

Рисунок 4 - Кривые распределения:

4а - кривая Гаусса,

4б - поведение кривой Гаусса при изменении параметра у;

На практике, нормальное распределение играет значимую роль во многих областях знаний, но особенное внимание ей уделяют в физике. Физическая величина подчиняется закону Гаусса, когда она подвергается влиянию большого числа случайных помех, что является крайне распространенной ситуацией, вследствие чего нормальное распределение чаще всего встречается в природе, и именно отсюда пошло ее название.

Непрерывная случайная величина называется равномерно распределенной на промежутке (a, b), если все ее возможные значения принадлежат этому промежутку и плотность распределения вероятностей постоянна - закон равномерного распределения непрерывной случайной величины, имеющий вид:

Для случайной величины Х, равномерно распределенной в интервале (a, b) (рисунок 5), вероятность попадания в любой интервал (x1, x2), лежащий внутри интервала (a, b), равна:

Рисунок 5 - График плотности равномерного распределения

В качестве примера равномерно распределенных величин, можно взять ошибки округления. Так, если все табличные значения некоторой функции округлены до одного и того же разряда, то выбирая наугад табличное значение, мы считаем, что ошибка округления выбранного числа - случайная величина, равномерно распределенная в интервале, где.

Непрерывная случайная величина X называется показательно распределенной, если плотность распределения ее вероятностей имеет вид:

В качестве примера, возьмем время Т безотказной работы компьютерной системы, где Т - случайная величина, имеющая показательное распределение с параметром л, физический смысл которого - среднее число отказов в единицу времени, не считая простоев системы для ремонта.

Рисунок 6 - График плотности показательного распределения

ЗАКЛЮЧЕНИЕ

Методы, средства и законы теории вероятностей и математической статистики на протяжении всех этапов формирования дисциплины, являлись актуальным, какими и остаются вплоть до наших дней. Главный принцип методов, позволивший затронуть столь огромное количество отраслей и сфер знания - универсальность. Их с легкостью можно применять в любой дисциплине, и при этом они не теряют своей силы, остаются справедливыми.

Но никогда еще теория вероятностей не была столь востребована, как сегодня. Связано это в первую очередь с невероятными темпами развития и роста вычислительной техники. С каждым годом она становится все сложнее, повышается быстродействие, количество производимых в секунду операций, и все это происходит не без участия математической статистики, которая, в свою помогает оптимизировать работу вычислительных систем и комплексов, повышает точность расчетов, осуществляет прогностическую функцию.

Данная работа частично помогает разобраться в азах дисциплины. Знакомит с фундаментальными понятиями, такими как дискретные и непрерывные случайные величины, поясняет разницу между последними. Знакомит с законами их распределения, с дальнейшим применением всех полученных знаний на практике.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Вентцель, Е.С. Теория вероятностей/ Е.С. Вентцель - М.:Наука, 1969г.

2. Смирнов, Н.В. Курс теории вероятностей и математической статистики для технических приложений./ Н.В. Смирнов, И.В. Дунин-Барковский - М.: «Наука», 1969г.

3. Пустыльник, Е.И. Статистические методы анализа и обработка наблюдений: учебное пособие/ Е.И. Пустыльник. - М.:«Наука», 1968г.

4. Джонсон, Н. Статистика и планирование в науке и технике./ Н. Джонсон, Ф. Лион - М.: «Мир», 1969г.

5.http://www.wikipedia.org/

Аннотация

Загоскин Я.С. «Что такое случайная величина?»

Челябинск: Юургу

Библиогр. Список - 5 наим.

Цель реферата: Познакомиться с базовыми терминами теории вероятностей и математической статистики.

Задачи реферата: Разобраться с понятием случайной величины.

Рассмотрено понятие случайной величины, определена классификация случайных величин, рассмотрены законы их распределения, примеры применения законов и методов на практике, а также проанализирована перспективность дисциплины.

Размещено на Allbest.ru

Подобные документы

    Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.

    контрольная работа , добавлен 24.01.2013

    Непрерывная случайная величина и функция распределения. Математическое ожидание непрерывной случайной величины. Среднее квадратичное отклонение. Кривая распределения для непрерывной случайной величины. Понятие однофакторного дисперсионного анализа.

    контрольная работа , добавлен 03.01.2012

    Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат , добавлен 19.08.2015

    Случайные величины. Функция и плотность распределения вероятностей дискретной случайной величины. Сингулярные случайные величины. Математическое ожидание случайной величины. Неравенство Чебышева. Моменты, кумулянты и характеристическая функция.

    реферат , добавлен 03.12.2007

    Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.

    курсовая работа , добавлен 13.10.2009

    Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.

    лекция , добавлен 17.12.2010

    Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.

    контрольная работа , добавлен 22.11.2013

    Плотность распределения непрерывной случайной величины. Характеристика особенностей равномерного и нормального распределения. Вероятность попадания случайной величины в интервал. Свойства функции распределения. Общее понятие о регрессионном анализе.

    контрольная работа , добавлен 26.04.2013

    Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа , добавлен 25.03.2015

    Функция распределения непрерывной случайной величины. Математическое ожидание непрерывной случайной величины, плотность распределения вероятностей системы. Ковариация. Коэффициент корреляции.



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...