Коэффициент пропускания определяется. Коэффициент пропускания атмосферы т рассчитывают по формуле

ЛАБОРАТОРНАЯ РАБОТА №21

ИССЛЕДОВАНИЕ ПОГЛОЩЕНИЯ СВЕТА
В РАСТВОРАХ

Цель работы : определение концентрации вещества в окрашенных растворах и проверка закона Бугера-Ламберта.

Приборы и принадлежности : фотометр электрический КФК-3, набор кювет, набор прозрачных окрашенных растворов (раствор медного купороса, раствор двухромовокислого калия.)

ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ

При прохождении света через прозрачные растворы, газы он частично поглощается. Пусть на прозрачную среду падает свет интенсивности І 0 . Интенсивность света І , прошедшего через раствор, согласно закону Бугера-Ламберта, определяется по формуле:

где α – коэффициент поглощения света; d – толщина слоя.

Поглощение света веществом обусловлено взаимодействием световой волны с атомами и молекулами вещества. Под воздействием электрического поля световой волны электроны в атомах смещаются относительно ядер, совершая гармонические колебания. Возникают вторичные волны. Падающая волна интерферирует со вторичными волнами, испускаемыми электронами атомов и порождает волну с амплитудой, не равной амплитуде воздействующего электрического поля. С энергетической точки зрения это означает, что часть энергии электромагнитной волны идет на увеличение внутренней энергии вещества, через которое проходит свет. Электромагнитная волна переносит энергию, пропорциональную квадрату амплитуды напряженности электрического поля. Среднюю энергию, переносимую через единицу площади за 1 сек, называют интенсивностью световой волны І .



Интенсивность света, прошедшего через вещество, определяется законом Бугера-Ламберта и зависит как от толщины слоя, так и от природы исвойств поглощающего вещества.

Коэффициент поглощения света α пропорционален молекулярной концентрации С

α=α 0 С , (21.2)

где α 0 – коэффициент поглощения одной молекулы растворенного вещества, не зависящий от концентрации. Подставляя (21.2) в соотношение (21.1) получим:

Формула (21.3) носит название закона Бугера-Беера и оказывается справедливой для растворов и газов малой концентрации (при этом предполагается, что растворитель практически не поглощает свет).

При прохождении монохроматической световой волны через вещество происходит затухание амплитуды волны в поглощающей среде. Затухание амплитуды характеризуется показателем затухания χ , который связан с коэффициентом поглощения α соотношением:

(21.4)

где λ 0 – длина волны в вакууме, n – показатель преломления среды.

Учитывая, что λ 0 =nλ, где λ – длина волны в среде, можно эту формулу переписать в виде:

Формулы (21.4) и (21.4 а) показывают, что коэффициент α зависит от длины волны. Эта зависимость обуславливает окрашенность растворов.

Поглощение света прозрачными растворами исследуется при помощи фотометров различной конструкции. Измеряя интенсивности падающего и прошедшего света, можно определить концентрацию поглощающего вещества.

Для экспериментального исследования поглощения света в средах вводятся следующие характеристики:

1. Светопропускание определяется коэффициентом пропускания

где τ – коэффициент светопропускания, І 0 – интенсивность падающего светового потока, І – интенсивность светового потока, прошедшего через раствор.

2. Оптическая плотность вещества определяется формулой

где D – оптическая плотность.

Связь между светопропусканием и оптической плотностью устанавливается с помощью формул (21.5) и (21.б)

(21.7)

Светопропускание раствора τ можно выразить из закона Бугера:

Отсюда определяется коэффициент поглощения α :

После соответствующих преобразований с учетом формул (21.5) и (21.6) зависимость между коэффициентом поглощения a и оптической плотностью раствора D определяется следующим образом

Поглощение света имеет резонансный характер с максимальным значением в области частот, близких к собственной частоте колебаний осциллятора ω 0 (рис. 21.1).

Резонансный вид кривой поглощения определяется структурой атомов и диапазоном частот электромагнитной волны, проходящей через вещество.

На рис. 21.1 показана кривая поглощения α=f(ω) для вещества, в котором диполи имеют одну собственную частоту колебания (АВ – ширина полосы поглощения, определяемая на уровне половины максимального поглощения).

ОПИСАНИЕ УСТАНОВКИ

Фотометр фотоэлектрический КФК-3 предназначен для измерения коэффициентов пропускания и оптической плотности прозрачных жидкостных растворов и твердых образцов. Он также используется для измерения скорости изменения оптической плотности вещества и определения концентрации вещества в растворе.

Принцип действия фотометра основан на сравнении светового потока Ф 0 , прошедшего через растворитель, по отношению к которому проводится измерение, и светового потока Ф , прошедшего через исследуемый раствор. Световые потоки Ф 0 и Ф фотоприемником преобразуются в электрические сигналы U 0 , U и U т (U т – сигнал при неосвещенном приемнике), которые обрабатываются микро-ЭВМ фотометра и представляются на цифровом табло в виде коэффициентов пропускания, оптической плотности, скорости изменения оптической плотности, концентрации.

Коэффициент пропускания τ исследуемого раствора определяется как отношение электрических сигналов U U т прошедшего к U 0 – U т падающего света

Оптическая плотность определяется следующим образом:

(21.12)

Скорость изменения оптической плотности равна

где D 2 – D 1 – разность значений оптических плотностей за временной интервал t в минутах. Например, t принимает значения 1, 2, 3, 4, 5, 6, 7, 8, 9 мин.

Концентрация C=DF, где F – коэффициент факторизации, который определяется экспериментально из графика и вводится цифровой клавиатурой в пределах от 0,001 до 9999.

Фотометр КФК-3 (рис. 21.2) состоитиз корпуса 1, фотометрического блока 2, блока питания 3, кюветного отделения 4, микропроцессорной системы 5, монохроматора 6. Кюветное отделение закрывается съемной крышкой.

На боковой станине фотометра расположена ось резистора "УСТ.0" и тумблер "сеть" 8.

В фотометрический блок входят: осветитель, монохроматор, кюветное отделение, кюветодержатель, фотометрическое устройство.

Монохроматор 6 служит для получения излучения заданного спектрального состава и состоит из корпуса, узла входной щели, сферического зеркала, дифракционной решетки, узла выходной щели и синусного механизма, находящегося внутри корпуса.

Ручка 7 служит для поворота дифракционной решетки через синусный механизм и установки длины волныв нм.

В фотометрическое устройство входят фотодиод и усилитель постоянного тока.

В кюветодержатель устанавливают кюветы с растворителем и исследуемым раствором и помещают их в кюветное отделение, при этом две маленькие пружины кюветодержателя должны находиться с передней стороны. Ввод в световой поток кювет осуществляется поворотом рукоятки 8 до упора влево или вправо. При установке рукоятки до упора влево в световой пучок вводится кювета с растворителем.

Микропроцессорная система 5 состоит из двух печатных плат, соединенных между собой разъемом. К фотометру система присоединяется через разъем. На переднюю панель фотометра выведена клавиатура и цифровое табло системы.

Микропроцессорная система обеспечивает выполнение семи задач:

НУЛЬ – измерение и учет сигнала при неосвещенном фотоприемнике, Г – градуировка фотометра, Е – измерение оптической плотности, П – измерение коэффициента пропускания, С – измерение концентрации, А – измерение скорости изменения оптической плотности, F – ввод коэффициента факторизации.

ВЫПОЛНЕНИЕ РАБОТЫ

Подсоединить фотометр к сети 220В и включить тумблер 7 "сеть". Дать прогреться 30 мин. при открытой крышке кюветного отделения. Нажать клавишу "ПУСК" – на цифровом табло появится символ "Г", соответствующее ему значение и значение длины волны. Затем нажать клавишу "Нуль". На цифровом табло справа от мигающей запятой высвечивается значение n 0 , слева – символ "0". Значение n 0 должно быть не менее 0,005 и не более 0,200. Если n 0 не укладывается в указанные пределы, то с помощью резистора «УСТ.0» добиваются нужного значения.

УПРАЖНЕНИЕ I

Измерение коэффициентов пропускания

1. В кюветное отделение установить кюветы с растворителем и исследуемым раствором медного купороса. Кювету с растворителем установить в дальнее гнездо кюветодержателя, а с исследуемым раствором – в ближнее гнездо кюветодержателя. Закрыть крышку кюветного отделения.

2. Путем поворота рукоятки 8 (рис. 21.2) влево до упора ввести в световой поток кювету с растворителем.

3. Нажать клавишу "Г" и маховичком 7 (рис. 21.2) установить длину волны 400 нм. Длина волны высвечивается на верхнем цифровом табло.

4. Нажать клавишу "П". Слева от мигающей запятой высвечивается символ "П", а справа – соответствующее значение "100±0,2", означающее, что начальный отсчет пропускания равен 100%.

Если отсчет "100±0,2" установился с большим отклонением, то нажать клавиши «Г» и «П» повторно через 3-5 с. Затем необходимо открыть крышку кюветного отделения и нажать клавишу "НУЛЬ", закрыть крышку, нажать клавишу "П".

5. Рукояткой 8 ввести в световой пучок кювету с исследуемым раствором. По световому табло определить коэффициент пропускания раствора.

6. Путем нажатия клавиши "Г" установить маховичком 7 длины волн 450 нм, 500 нм, 550 нм, 600 нм, 650 нм, 700нм, 750 нм и снять для них коэффициент пропускания τ .

Построить график зависимости коэффициента пропускания от длины волны т.е. τ=f(λ)

7. При длине волны 550 нм определить коэффициенты пропускания других растворов медного купороса.

8. Аналогичные измерения провести для раствора двухромовокислого калия и построить график зависимости τ=f(λ) .

УПРАЖНЕНИЕ II

    Пусть - интенсивность входящего света,- интенсивность прошедшего света через вещество.

    Проинтегрируем данное выражение, предварительно разделив переменные:

  1. пропотенцируем это выражение:

  2. по свойству логарифмов:

  3. и получим:

  4. Эта формула выражает закон поглощения света Бугера. Из закона видно, что натуральный показатель поглощения является величиной, обратной расстоянию, на котором интенсивность света ослабляется в результате поглощения в среде враз.

    Натуральный показатель поглощения зависит от длины волны света , поэтому целесообразно закон Бугера записать для монохроматического света:

  5. где -монохроматический натуральный показатель поглощения .

    Так как поглощение света обусловлено взаимодействием с молекулами, то можно закон поглощения связать с некоторыми характеристиками молекул.

    Пусть - концентрация молекул, поглощающих кванты света;

    Эффективное сечение поглощения молекулы;

    Площадь сечения прямоугольного параллелепипеда (рис.1);

    Тогда объём выделенного слоя , количество молекул в нём. Общая площадь эффективного сечения молекул этого слоя равна. На этот слой падает поток фотонов. Доля площади эффективного сечения молекул в общей площади сечения

    Это часть попавших на слой фотонов, которые поглощаются молекулами.

    Изменение интенсивности света зависит от интенсивности падающего светаи количества фотонов, поглощённых молекулами слоя вещества:,

    откуда после интегрирования и потенцирования имеем

  6. В это уравнение входит параметр молекулы .

    Предположим, что молекулы вещества, поглощающие фотоны света, находятся в растворителе, который не поглощает свет.

    Монохроматический натуральный показатель поглощения раствора поглощающего вещества в не поглощающем растворителе пропорционален концентрации раствора:

  7. Эта зависимость выражает закон Бера . Закон выполняется только для разбавленных растворов. В концентрированных растворах он нарушается из-за влияния взаимодействия между близко расположенными молекулами поглощающего вещества.

    Коэффициент -натуральный молярный показатель поглощения .

    Тогда, с учётом этого выражения, закон поглощения можно записать в следующем виде:

  8. - закон Бугера-Ламберта-Бера .

  9. Выясним физический смысл .

    Молярная концентрация , откуда.

    Преобразуем произведение :, где.

    Таким образом, натуральный молярный показатель поглощения – это есть суммарное эффективное сечение поглощения всех молекул одного моля растворённого вещества.

    В лабораторной практике закон Бугера-Ламберта-Бера обычно выражают через показательную функцию с основанием 10:

  10. где -молярный показатель поглощения ;

    Так как .

    Обычно относят к какой-либо длине волны и называютмонохроматическим молярным показателем поглощения ().

  11. Коэффициент пропускания, оптическая плотность.

  12. Отношение интенсивности света, прошедшего сквозь данное тело или раствор к интенсивности света, падающего на тело, называется коэффициентом пропускания :

  13. Коэффициент пропускания обычно выражают в процентах:

    .

    Десятичный логарифм величины, обратной коэффициенту пропускания, называют оптической плотностью раствора:

  14. Метод концентрационной колориметрии.

  15. Закон Бугера-Ламберта-Бера лежит в основе метода «концентрационной колориметрии». Это фотометрический метод определения концентрации вещества в окрашенных растворах. В данном методе непосредственно измеряют интенсивности светового потока, прошедшего через раствор (I l ) и падающего на раствор (I 0 ). Для этой цели используют две группы приборов: объективные (фотоэлектроколориметры) и субъективные, или визуальные (фотометры).

  16. Устройство и принцип работы фотоэлектроколориметра.

  17. Фотоэлектроколориметр ФЭК служит для определения концентраций окрашенных растворов по поглощению света этими растворами.

    Принципиальная схема однолучевого фотоэлектроколориметра (рис. 2):

    Cветофильтр

    Кювета для растворов

    Фотоприёмник

    Преобразователь сигнала (усилитель)

    Измерительный элемент (гальванометр)

Сегодня мы расскажем о коэффициенте пропускания и связанных с ним понятиях. Все эти величины относятся к разделу линейной оптики.

Свет в древнем мире

Раньше люди считали, что мир наполнен загадками. Даже человеческое тело несло в себе немало непознанного. Например, древним грекам было непонятно, как видит глаз, почему существует цвет, почему наступает ночь. Но в то же время их мир был проще: свет, падая на препятствие, создавал тень. Это все, что нужно было знать даже самому образованному ученому. О коэффициенте пропускания света и нагревании никто не задумывался. А сегодня это изучают в школе.

Свет встречает препятствие

Когда поток света падает на объект, он может вести себя четырьмя различными способами:

  • поглотиться;
  • рассеяться;
  • отразиться;
  • пройти дальше.

Соответственно, любое вещество имеет коэффициенты поглощения отражения пропускания и рассеяния.

Поглощенный свет разными способами изменяет свойства самого материала: нагревает его, изменяет его электронную структуру. Рассеянный и отраженный свет похожи, но все же отличаются. При меняет направление распространения, а при рассеянии изменяется еще и его длина волны.

Прозрачный объект, который пропускает свет, и его свойства

Коэффициенты отражения и пропускания зависят от двух факторов - от характеристик света и свойств самого объекта. При этом имеет значение:

  1. Агрегатное состояние вещества. Лед преломляет иначе, чем пар.
  2. Строение кристаллической решетки. Этот пункт относится к твердым телам. Например, коэффициент пропускания угля видимой части спектра стремится к нулю, а вот бриллиант - другое дело. Именно плоскости его отражения и преломления создают волшебную игру света и тени, за которую люди готовы платить баснословные деньги. А ведь оба эти вещества - углероды. И алмаз сгорит в огне ничуть не хуже угля.
  3. Температура вещества. Как ни странно, но при высокой температуре некоторые тела становятся сами источником света, поэтому с электромагнитным излучением они взаимодействуют несколько иначе.
  4. пучка света на объект.

К тому же надо помнить, что свет, который вышел из объекта, может быть поляризованным.

Длина волны и спектр пропускания

Как мы уже упоминали выше, коэффициент пропускания зависит от длины волны падающего света. Вещество, непрозрачное для желтых и зеленых лучей, кажется прозрачным для инфракрасного спектра. Для маленьких частиц под названием «нейтрино» прозрачна и Земля. Поэтому несмотря на то что их генерирует Солнце в очень больших количествах, ученым так сложно их засечь. Вероятность столкновения нейтрино с веществом исчезающе мала.

Но чаще всего речь идет о видимой части спектра электромагнитного излучения. Если же в книге или задаче присутствует несколько отрезков шкалы, то коэффициент оптического пропускания будет относиться к тому ее участку, который доступен человеческому глазу.

Формула коэффициента

Теперь читатель уже достаточно подготовлен, чтобы увидеть и понять формулу, которая определяет пропускание вещества. Она выглядит так: Т=Ф/Ф 0 .

Итак, коэффициент пропускания Т - это соотношение потока излучения определенной длины волны, который прошел сквозь тело (Ф) к первоначальному потоку излучения (Ф 0).

Величина Т не имеет размерности, так как обозначается как деление друг на друга одинаковых понятий. Тем не менее, этот коэффициент не лишен физического смысла. Он показывает, какую долю электромагнитного излучения данное вещество пропускает.

«Поток излучения»

Это не просто словосочетание, а конкретный термин. Поток излучения - это мощность, которую электромагнитное излучение проносит сквозь единицу поверхности. Более подробно данная величина вычисляется как энергия, которую перемещает излучение сквозь единичную площадь за единичное время. Под площадью чаще всего подразумевается квадратный метр, а под временем - секунды. Но в зависимости от конкретной задачи эти условия можно и поменять. Например, для красного гиганта, который в тысячу раз больше нашего Солнца, можно смело применять квадратные километры. А для крошечного светлячка - квадратные миллиметры.

Конечно, для того чтобы иметь возможность сравнивать, и были введены единые системы измерения. Но любую величину можно к ним привести, если, конечно, не напутать с количеством нулей.

Связанной с этими понятиями также является величина коэффициента направленного пропускания. Она определяет, сколько и какого света проходит сквозь стекло. Это понятие не найти в учебниках по физике. Оно скрыто в технических условиях и правилах производителей окон.

Закон сохранения энергии

Этот закон - причина, по которой невозможно существование вечного двигателя и философского камня. Зато существуют водяная и ветряная мельницы. Закон гласит, что энергия не берется ниоткуда и не растворяется без следа. Свет, падающий на препятствие, не является исключением. Из физического смысла коэффициента пропускания не следует, что раз часть света не прошла сквозь материал, то она испарилась. На самом деле падающий пучок равен сумме поглощенного, рассеянного, отраженного и прошедшего света. Таким образом, сумма этих коэффициентов для данного вещества должна равняться единице.

Вообще, закон сохранения энергии можно применять ко всем сферам физики. В школьных задачах часто бывает, что веревка не растягивается, штырь не нагревается, а трение в системе отсутствует. Но в реальности такое невозможно. Кроме того, всегда стоит помнить, что люди знают не все. Например, при бета-распаде была потеряна какая-то часть энергии. Ученые не понимали, куда она девается. Сам Нильс Бор высказывал предположения, что на этом уровне закон сохранения может не соблюдаться.

Но потом была открыта очень маленькая и хитрая элементарная частица - лептон нейтрино. И все встало на свои места. Так что если читателю при решении какой-то задачи непонятно, куда девается энергия, то надо помнить: иногда ответ просто неизвестен.

Применение законов пропускания и преломления света

Чуть выше мы говорили, что все эти коэффициенты зависят от того, какое вещество встает на пути пучка электромагнитного излучения. Но этот факт можно использовать и в обратную сторону. Снятие спектра пропускания - один из наиболее простых и действенных способов узнать свойства вещества. Чем же этот метод так хорош?

Он отличается меньшей точностью, чем другие оптические способы. Гораздо больше можно узнать, если заставить вещество испускать свет. Но в этом-то и состоит главное преимущество метода оптического пропускания - никого не надо ни к чему принуждать. Вещество не требуется нагревать, сжигать или облучать лазером. Сложные системы оптических линз и призм не потребуются, так как пучок света проходит прямо сквозь изучаемый образец.

Кроме того, этот метод относится к неинвазивным и неразрушающим. Образец остается в прежнем виде и состоянии. Это бывает важным, когда вещества мало, или когда оно уникально. Мы уверены, что кольцо Тутанхамона не стоит сжигать, чтобы узнать точнее состав эмали на нем.

ОПРЕДЕЛЕНИЕ

Коэффициентом пропускания называют скалярную физическую величину, равную отношению потока излучения, который прошел сквозь вещество (Ф), к потоку излучения, который падает на поверхность данного вещества (). Коэффициент пропускания часто обозначают буквами T или . Математическое определение коэффициента пропускания имеет вид:

Величина коэффициента пропускания зависит от свойств вещества тела, угла падения света его спектрального состава (длины волны) и поляризации излучения.

Коэффициент пропускания поверхности раздела сред можно определить как:

T — интенсивность преломленной волны, I — интенсивность падающей волны. Если свет преломляется и отражается на границе двух прозрачных веществ, которые не поглощают свет, то выполняется равенство:

где — коэффициент отражения света. В случае полного внутреннего отражения

Связь коэффициента пропускания с оптической плотностью (D) определена формулой:

Некоторые виды коэффициента пропускания

Спектральным коэффициентом пропускания называют коэффициент пропускания монохроматического излучения, имеющего длину волны , определенный отношением потока излучения , который прошел через слой вещества толщиной , к падающему на него потоку В таком случае:

где — натуральный показатель поглощения, рассматриваемого вещества, для излучения с длиной волны — толщина слоя вещества; — десятичный показатель поглощения.

Коэффициент внутреннего пропускания () показывает изменение интенсивности излучения, происходящие внутри вещества. Он не учитывает потери, связанные с отражением на поверхностях входа и выхода вещества. Его определение можно записать как:

где — поток, вошедший в среду, — поток излучения, который выходит из вещества.

Спектральный коэффициент внутреннего пропускания (коэффициент внутреннего пропускания для монохроматического света) оптического стекла зависит от поглощения стекла, рассеяния и поглощения примесями, находящимися в стекле. Коэффициент внутреннего пропускания применяют для характеристики оптических свойств материалов.

Интегральный коэффициент внутреннего пропускания () для стандартного белого источника с температурой T=2856 К можно найти как:

где — относительная спектральная эффективность монохроматического излучения адаптированная к дневному свету (относительная чувствительность глаза). нм, нм.

Прошедшее излучение (без учета рассеяния) оценивают при помощи закона Бугера — Ламберта:

где — коэффициент внутреннего пропускания; — коэффициент поглощения для стекла толщиной 1 см; — коэффициент поглощения для стекла 1 см; — толщина стекла (см).

Коэффициент пропускания n последовательно расположенных сред равен произведению коэффициентов пропускания каждой из них.

Единицы измерения

Коэффициент пропускания безразмерная величина. Иногда он выражается в процентах.

Примеры решения задач

ПРИМЕР 1

Задание Естественный свет падает на поляризатор, при этом проходит ) светового потока. Через два таких поляризатора проходит text">Решение Сделаем рисунок.

Так как после прохождения сквозь поляризатор на выходе интенсивность света меньше 50% как следовало бы ожидать при прохождении через поляризатор естественного света, следовательно, происходит поглощение света. Значит, при определении интенсивности света, выходящего из поляризатора () необходимо учесть данное поглощение света:

где — интенсивность света, падающего на поляризатор. После прохождения через второй поляризатор интенсивность света определяется при помощи закона Малюса и учитывая (1.1) она равна:

Выразим из уравнения (1.1) коэффициент пропускания:

Подставим в выражение (1.2), выразим искомый угол:

Ответ


Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...