Коллоидные растворы строение коллоидных частиц. Коллоидная частица имеет отрицательный заряд, значит будет перемещаться к положительно заряженному электроду - катоду

Коллоидные системы по степени дисперсности занимают промежуточное положение между грубодисперсными системами и истинными растворами. Поэтому их можно получать двумя путями:

а) методами диспергирования – дроблением более крупных частиц до коллоидной степени дисперсности – механическим, электрическим, ультразвуком, пептизацией (превращение осадков в коллоидный раствор под влиянием химических веществ – пептизаторов);

б) методами конденсации – укрупнением частиц в агрегаты коллоидной степени дисперсности (получение нерастворимых веществ в результате реакций различных типов);

в) ультрафильтрацией через полупроницаемые мембраны.

Строение коллоидных частиц

Образование нерастворимого вещества в результате химической реакции – это лишь одно из условий получения коллоидного раствора. Другим не менее важным условием является неравенство исходных веществ, взятых в реакцию. Следствием этого неравенства является ограничение роста величины частиц коллоидах растворов, которое при­вело бы к образованию грубодисперсной системы.

Механизм образования коллоидной частицы рассмотрим на приме­ре образования золя иодистого серебра, который получается при взаи­модействии разбавленных растворов азотнокислого серебра и йодисто­го калия.

AgNO 3 +KI = AgI + KNO 3

Ag + + NO 3 ¯ +K + + I ¯ = AgI ↓ + NO 3 ¯ + K +

Нерастворимые нейтральные молекулы йодистого серебра образуют ядро коллоидной частицы.

Сначала эти молекулы соединяются в беспорядке, образуя аморфную, рыхлую структуру, которая постепенно превращается в высокоупо­рядоченную кристаллическую структуру ядра. В рассматриваемом нами примере ядро это кристаллик йодистого серебра, состоящий из боль­шого числа (m) молекул AgI:

m - ядро коллоидной частицы

На поверхности ядра происходит адсорбционный процесс. По правилу Пескова-Фаянса, на поверхности ядер коллоидных частиц адсорбируются ионы, входящие в состав ядра частицы, т.е. адсорбируются ионы серебра (Аg +) или ионы иода (I –). Из этих двух видов ионов адсорбируютcя те, которые находятся в избытке.

Так, если получать коллоидный раствор в избытке йодистого калия, то адсорбироваться на частицах (ядрах) будут ионы иода, которые достраивают кристаллическую ре­шетку ядра, естественно и прочно входя в его структуру. При этом образуется адсорбционный слой, который придает ядру отрицательный заряд:

Ионы, адсорбирующиеся на поверхности яд­ра, придавая ему соответствующий заряд, называются потенциалобразующими ионами.

При этом в растворе находятся и противоположно заряженные ионы, их называют противоионами. В нашем случае это ионы калия (K +), которые электростатически притягиваются к заряженному ядру (величи­на заряда может достигать I в). Часть противоионов К + прочно связы­вается электрическими и адсорбционными силам и и входит в адсорбционный слой. Ядро с образовавшимся на нем двойным адсорбционным слоем ионов называется гранулой.

{m . nI – . (n-x) K + } x – (структура гранулы)

Оставшаяся часть противоионов (обозначим их числом "х К + ") образует диффузный слой ионов.

Ядро с адсорбционным и диффузным слоями называется мицеллой:

{m . nI –. (n-x) K + } x – . х К + (структура мицеллы)

При пропускании постоянного электрического тока через коллоидный раствор гранулы и противоионы двинутся к противоположно заря­женным электродам соответственно.

Наличие одноименного заряда на поверхности частиц золей являет­ся важным фактором его устойчивости. Заряд препятствует слипанию и укрупнению частиц. В устойчивой дисперсной системе частицы удерживаются во взвешенном состоянии, т.е. не происходит выпадения в осадок коллоидного вещества. Это свойство золей называется кинети­ческой устойчивостью.

Строение мицелл золя иодистого серебра, полученного в избытке AgNO 3 , представлено на рис. 1а, в избытке KCI - .

Рис.1.5. Строение мицелл золя иодистоого серебра, полученного в избытке:

а) азотнокислого серебра; б) хлорида калия.

Коллоидные растворы - это высокодисперсные двухфазные системы, состоящие из дисперсионной среды и дисперсной фазы, причем линейные размеры частиц последней лежат в пределах от 10 -9 м до 10 -7 м. Как видно, коллоидные растворы по размерам частиц являются промежуточными между истинными растворами и суспензиями и эмульсиями. Коллоидные частицы обычно состоят из большого числа молекул или ионов.

Коллоидные растворы иначе называют золями. Их получают дисперсионными и конденсационными методами. Диспергирование чаще всего производят при помощи особых “коллоидных мельниц”. При конденсационном методе коллоидные частицы образуются за счет объединения атомов или молекул в агрегаты. Так, если возбудить в воде дуговой электрический разряд между двумя проволоками из серебра, то пары металла конденсируются в коллоидные частицы. При протекании многих химических реакций также происходит конденсация и образуются высокодисперсные системы (выпадение осадков, протекание гидролиза, окислительно-восстановительные реакции и т.д.).

Золи обладают рядом специфических свойств, которые подробно изучает коллоидная химия. Золи в зависимости от размеров частиц могут иметь различную окраску, а у истинных растворов она одинаковая. Например, золи золота могут быть синими, фиолетовыми, вишневыми, рубиново-красными.

В отличие от истинных растворов для золей характерен эффект Тиндаля, т. е. рассеяние света коллоидными частицами. При пропускании через золь пучка света появляется светлый конус, видимый в затемненном помещении. Так можно распознать, является данный раствор коллоидным или истинным. Строение структурной единицы лиофобных коллоидов – мицеллы – может быть показано лишь схематически, поскольку мицелла не имеет определенного состава. Рассмотрим строение коллоидной мицеллы на примере гидрозоля иодида серебра, получаемого взаимодействием разбавленных растворов нитрата серебра и иодида калия:

AgNO 3 + KI ––> AgI + KNO 3

Коллоидная мицелла золя иодида серебра (см. рис. 4.9) образована микрокристаллом иодида серебра, который способен к избирательной адсорбции из окружающей среды катионов Ag+ или иодид-ионов. Если реакция проводится в избытке иодида калия, то ядро будет адсорбировать иодид-ионы; при избытке нитрата серебра микрокристалл адсорбирует ионы Ag+. В результате этого микрокристалл приобретает отрицательный либо положительный заряд; ионы, сообщающие ему этот заряд, называются потенциалопределяющими , а сам заряженный кристалл – ядром мицеллы . Заряженное ядро притягивает из раствора ионы с противоположным зарядом – противоионы ; на поверхности раздела фаз образуется двойной электрический слой. Некоторая часть противоионов адсорбируется на поверхности ядра, образуя т.н. адсорбционный слой противоионов ; ядро вместе с адсорбированными на нем противоионами называют коллоидной частицей или гранулой. Остальные противоионы, число которых определяется, исходя из правила электронейтральности мицеллы, составляют диффузный слой противоионов ; противоионы адсорбционного и диффузного слоев находятся в состоянии динамического равновесия адсорбции – десорбции.

Схематически мицелла золя иодида серебра, полученного в избытке иодида калия (потенциалопределяющие ионы – анионы I – , противоионы – ионы К +) может быть изображена следующим образом:

{ m · nI – · (n-x)K + } x– · x K +

При получении золя иодида серебра в избытке нитрата серебра коллоидные частицы будут иметь положительный заряд:

{ m · nAg + · (n-x)NO 3 – } x+ · x NO 3 –

Рис.1 Строение коллоидной мицеллы

Агрегативная устойчивость золей обусловлена, таким образом, рядом факторов: во-первых, снижением поверхностной энергии дисперсной фазы (т.е. уменьшения движущей силы коагуляции) в результате образования двойного электрического слоя и, во-вторых, наличием кинетических препятствий для коагуляции в виде электростатического отталкивания имеющих одноименный заряд коллоидных частиц и противоионов. Еще одна причина устойчивости коллоидов связана с процессом гидратации (сольватации) ионов. Противоионы диффузного слоя сольватированы; эта оболочка из сольватированных противоионов также препятствует слипанию частиц.

Одним из важных свойств золей является то, что их частицы имеют электрические заряды одного знака. Благодаря этому они не соединяются в более крупные частицы и не осаждаются. При этом частицы одних золей, например металлов, сульфидов, кремниевой и оловянной кислот, имеют отрицательный заряд, других, например гидроксидов, оксидов металлов, - положительный заряд. Возникновение заряда объясняется адсорбцией коллоидными частицами ионов из раствора.

Для осаждения золя необходимо, чтобы его частицы соединились в более крупные агрегаты. Соединение частиц в более крупные агрегаты называется коагуляцией, а осаждение их под влиянием силы тяжести - седиментацией.

Обычно коагуляция происходит при прибавлении к золю: 1) электролита, 2) другого золя, частицы которого имеют противоположный заряд, и 3) при нагревании.

При определенных условиях коагуляция золей приводит к образованию студенистой массы, называемой гелем. В этом случае вся масса коллоидных частиц, связывая растворитель, переходит в своеобразное полужидкое-полутвердое состояние. От гелей следует отличать студни - растворы высокомолекулярных веществ в низкомолекулярных жидкостях (системы гомогенные). Их можно получить при набухании твердых полимеров в определенных жидкостях.

Значение золей исключительно велико, так как они более распространены, чем истинные растворы. Протоплазма живых клеток, кровь, соки растений - все это сложные золи. С золями связано получение искусственных волокон, дубление кож, крашение, изготовление клеев, лаков, пленок, чернил. Много золей в почве, и они имеют первостепенное значение для ее плодородия.

Строение коллоидных растворов.

Коллоидные растворы – микрогетерогенные системы, частицы которых проходят через бумажные фильтры, но не проходят через животные мембраны и просматриваются через ультрамикроскоп.

Коллоидные частицы имеют сложное строение: они состоят из ядер, зарядообразующих ионов и противоионов.

Коллоидные частицы образуются исходя, из правило Пескова-Фаянса: на всякой твердой поверхности ядра адсорбируются преимущественно те ионы, которые имеют с ядром одинаковую атомную группировку, и находятся в избытке.

Например, при добавлении к раствору

KJ + AgNO 3 → AgJ↓ + KNO 3

а) в избытке KJ – образуется мицелла с отрицательным зарядом гранулы

{ m(AgJ) nJ - (n-x)K + } x - x K +

m(AgJ) - ядро

nJ - (n-x)K + - адсорбционный слой противоионов

X K + - диффузионный слой противоионов

nJ - потенциалопределяющие ионы

{ m(AgJ) nJ - (n-x)K + } x - - гранула

{ m(AgJ) nJ - (n-x)K + } x - x K + - мицелла

б) в избытке AgNO 3 – образуется мицелла с положительным зарядом гранулы

{m(AgJ) nAg + (n-x) NO 3 - } x+ x NO 3 -

Ионы, определяющие заряд коллоидной частицы называются потенциалопределяющими. Ядро с потенциалопределяющими ионами притягивают из окружающей среды ионы противоположного заряда, имеющегося в растворе в избытке. Часть противоионов образует адсорбционный слой, а другая часть – диффузионный слой. Ядро с потенциалопределяющими ионами и адсорбционным слоем противоионов называется гранулой , а гранула с противоионами диффузионного слоя называется мицеллой.

Электрический заряд на кол. частицах возникает в результате электролитической диссоциации вещества дисперсной фазы или вследствие избирательной адсорбции ионов. Наличие заряда можно обнаружить, пропуская через кол. Систему постоянный электрический ток, под действием которого частицы будут перемещаться к электродам. Перемещение частиц дисперсной фазы под действием электрического тока называется электрофорезом.

При определенных условиях кол. Частица может быть нейтральна -

{ m(AgJ) nJ - (n-x)K + } 0 – изоэлектрическое состояние, неустойчивое, мицелла легко разрушается.

2. Свойства коллоидных растворов. Коллоидные растворы называют золями. По характеру взаимодействия дисперсионной среды с дисперсной фазой различают:

Золи лиофильные - хорошо взаимодействующие с водой (растворы клея, желатина, белка, крахмала, мыло)

Золи лиофобные – слабо взаимодействующие или не взаимодействующие с растворителем (растворы некоторых сульфидов, гидроксидов металлов в воде).

Если растворителем является вода, то золи называются гидрофильными и гидрофобными.

Свойства:

1. Молекулярно-кинетические – связанные с хаотическим движением частиц (диффузией).

2. Электрические свойства при пропускании электрического тока «+» заряженные гранулы движутся к катоду, « - » движутся к аноду.

3. Оптические – при пропускании видимого света частицы дисперсной фазы коллоидной системы рассеивают падающий на них свет. Рассеянный свет образует вокруг кол. Частицы светящееся поле. Освещенная мицелла сама становится источником света и в растворе образуется светящийся конус, поэтому коллоидные растворы в большинстве синеватого света при наблюдении в боковом рассеянном свете, а в проходящем свете – красноватые.

4. Коагуляция, пептизация, седиментация.

Процесс коагуляции – это укрупнение (слипание) кол. Частиц под действием различных факторов или, проходящий самопроизвольно.

При этом лиофильные золи превращаются в гели, а гидрофобные – в порошок.

Факторы, вызывающие коагулящию:

- температура – нагревание снимает заряд в связи с усилением частиц и разрушением гидратированной оболочки у золя.

- добавление электролита, содержащего ион по заряду противоположный заряду коллоидной частицы.

Минимальное количество электролита, которое надо прибавить к 1 л золя, чтобы вызвать коагуляцию называется порогом коагуляции (γ)

Холодный утренний туман, оседающий на землю, столб дыма над костром, взвешенные частицы в воде рек и озер — все это мы видели множество раз.
Нас постоянно окружают дисперсные системы

Понимание коллоидных систем важно для общего понимания образования гидроокиси железа в водоочистке и принципов фильтрации. Этот старый советский обучающий фильм отлично рассказывает о том, что такое коллоиды, как они образуются и взаимодействуют с окружающей средой. СМОТРИМ! Если смотреть не получается — читаем.

Они состоят из вещества в мелкораздробленом состоянии — дисперсной фазы и среды в которой эта фаза распределеа и которую называют дисперсионной средой.

Величина частиц и степень их дисперсности может быть различной. Сравнительно большие размеры частиц имеют грубодисперсные системы — взвеси и эмульсии .

В истинных растворах вещество находится в виде молекул или оинов распределенных равномерно среди молекул растворителя.

Частицы грубодисперсных систем хорошо видны в микроскоп. Например, молоко, представляющее эмульсию капелек жира в сыворотке, дым — это множество твердых частиц, взвешенных в воздухе.

Грубодисперсные системы неустойчивы и со временем дисперсная фаза отделяется от дисперсионной среды (выпадает в осадок).

По размеру частиц промежуточной положение между истинными растворами и взвесями занимают коллоидные растворы — золи.

Коллоидные частицы очень малы. И все же они могут состоять из сотен и тысяч молекул.

Свойства коллоидных растворов

Коллоидные частицы настолько малы, что не видны в обычный микроскоп. По внешнему виду коллоидный раствор нельзя отличить от истинного. Однако, если на освещенный коллоидный раствор посмотреть сбоку, то свет луча будет виден, как светлая дорожка, образовавшаяся от рассеивания света частицами. Это явление используют для распознавания коллоидных растворов.

В истинном растворе свет луча не виден, так как молекулы и ионы истинного раствора слишком малы и не рассеивают его.

В коллоидном — свет хорошо заметен. Он образует так называемый конус Тиндаля . Частицы коллоидных растворов под уадарами молекул растворителя совершают непрерывные хаотические перемещения. Это явление носит название Броуновского движения .

Из-за очень малых размеров коллоидные частицы имеют огромную суммарную поверхность.

Поверхность кубика с длинной ребра в 1 см составляет всего 6 квадратных сантиметров.. Но если 1 кубический сантиметр вещества раздробить на части объемом в 1 кубический микрон, то общая их поверхность увеличится в 10 тысяч раз. Поэтому и поглотительные свойства у коллоидных частиц проявляются значительно сильнее, чем у нераздробленного вещества.

Дисперсные системы в природе и технике

Вещества в коллоидном состоянии являются основой органической жизни на земле. Протоплазма любой живой клетки — это сложная коллоидная система. Мышечные ткани, хрящи, клеточные ткани растений, оболочки эритроцитов — тоже разновидности студней.

Коллоиды почвы играют большую роль в корневом питании растений. Адсорбированные на поверхности частиц почвы ионы калия, кальция и других элементов, в результате ионного обмена переходят в почвенный раствор и всасываются корневой системой.

Вещества в коллоидном состоянии принимают участие в образовании многих минералов:

  • агата
  • малахита
  • мрамора

Некоторые драгоцнные камни, например жемчуг представляют собой колоидную систему, где дисперсионной средой является твердое тело — углекислый кальций, а дисперсной фазой — капельки воды. Окраска драгоценных камней: рубинов, изумрудов, сапфиров зависит от присуствия в них небольших количеств золей тяжелых металлов.

Еще в глубокой древности человек использовал коллоидные процессы. Египтяне забивали в щели скал деревянные клинья. Поливали их водой. Древесина набухала, создавалось огромное давление, которое разрушало самые твердые скальные породы.

Процессы коагуляции коллоидов применяют для очистки природной воды. В бассейн отстойник добавляют электролит и коллоиды осаждаются в виде хлопьев, которые задерживает песчаный фильтр.

Мели и наносы в устьях рек образуются под действием морской воды, приводящие к коагуляции коллоидных частиц, находящихся в реке.

Сегодня с коллоидными процессами связаны важнейшие отрасли химической промышленности:

  • производство искусственного волокна
  • раличных клеящих веществ
  • синтетического каучука
  • и многих других химических продуктов

Знакомые уже нам явления электрофареза используют в работе электрофильтров — дымоуловителей.

Адсорбционные свойства коллоидных частиц положены в основу процесса флотационного обогащения руд. Частицы пустой породы гидрофильны, то есть удерживают на своей поверхности молекулы воды, а частицы руды при добавлении некоторых химических веществ приобретают гидрофобные — водоотталкивающие свойства. При продувании через эту смесь воздуха несмачиваемые частички руды поднимаются на поверхность, а пустая порода опускается на дно.

Важные пищевые продукты:

  • простокваша
  • кефир
  • творог
  • джемы
  • и другие

Напишите формулу мицеллы золя сульфата бария, полученного при взаимодействии раствора хлорида бария с небольшим избытком раствора сульфата натрия?

Решение:

В основе получения золя лежит реакция:

BaCl 2 + Na 2 SО 4 изб. = 2 NaCl + Ba SО 4 ¯

Условием получения золя является избыток Na 2 SО 4 , который является стабилизатором золя.

В растворе будут присутствовать ионы натрия и сульфат-ионы, образующиеся при диссоциации сульфата натрия

Na 2 SO 4 = 2Na + + SO²⁻

На поверхности агрегатов будут адсорбироваться сульфат-ионы.

Образуетсяя ядро коллоидной частицы:

[(BaSO 4) m ∙nSO²⁻

Несущее отрицательный заряд ядро притягивает из раствора ионы противоположного знака, называемые противоионами. В нашем случае в роли противоионов выступают катионы натрия.

формула мицеллы полученного золя:

{[(BaSO 4) m ·nSO²⁻]2(n-x)Na + } 2x- 2xNa +

К какому электроду будут перемещаться частицы золя полученного при взаимодействии нитрата серебра с избытком хлорида натрия?

Решение . При смешивании растворов AgNO3 и NaCl изб. протекает реакция

AgNO3+ NaСl (изб.) = AgСl + NaNO3.

Ядро коллоидной частицы золя хлорида серебра состоит из агрегата молекул (mAgСl) и зарядообразующих ионов Cl ⁻, которые находятся в растворе в избытке и обеспечивают коллоидным частицам отрицательный заряд. Противоионами являются гидратированные ионы натрия.

Формула мицеллы хлорида серебра имеет вид:

[m (AgCl) n Cl – (n– x )Na + ] x x Na +

Коллоидная частица имеет отрицательный заряд, значит будет перемещаться к положительно заряженному электроду - катоду.

Напишите формулы мицелл коллоидных растворов для следующих веществ:

а) кремниевый кислоты: агрегат m [Н2SiO3], ионный стабилизатор K2SiO3 ® 2K+ + SiO32–

б) гидрозоля золота: агрегат m [Аu], ионный стабилизатор NaAuO2 ® Na + + AuO2–

в) двуокиси олова: агрегат m , ионный стабилизатор K2SnO3 ® 2K+ + SnO32–

Решение:

а) Образование золя кремневой кислоты происходит по реакции

K 2 SiO 3 изб.+ 2HCl = H 2 SiO 3 + 2KCl.

K 2 SiO 3 2K⁺+ SiO₃²⁻

На электронейтральном агрегате частиц (mH 2 SiO 3) адсорбируются ионы элемента, входящего в состав ядра. Таковыми являются ионы HSiO 3 ‾ , которые образуются в результате гидролиза соли K 2 SiO 3:

K 2 SiO 3 + H 2 O KHSiO 3 + KOH или в ионной форме

SiO 3 2− + H 2 O HSiO 3 ‾ + OH ‾ .

Ионы HSiO 3 ‾ , адсорбируясь на поверхности частиц золя кремниевой кислоты, сообщают им отрицательный заряд. Противоионами являются гидратированные ионы водорода H + . Формула мицеллы золя кремневой кислоты:

{[(m H 2 SiO 3) ·n HSiO 3 ‾ ·(n-x )H + ∙y H 2 O] x − + x H + ∙z H 2 O}.

б) Образование гидрозоля золота происходит при действии восстановителя на соль золотой кислоты в слабощелочной среде:

2NaAuО 2 + 3НСНО + Na 2 CO 3 = 2Аu + ЗНСООNa + NaНСО 3 + Н 2 О.

На агрегате частиц (mAu) адсорбируются ионы элемента, входящего в состав ядра. Таковыми являются ионы AuO 2 ‾ ,

Формула мицеллы золя:

{m·nAuO²⁻·(n-x) Na⁺} x ⁻ ·xNa⁺

в) Образование золя двуокиси олова происходит следующим образом:

K2SnO3 2K⁺ + SnO3²⁻

На электронейтральном агрегате частиц (mSnO 2) адсорбируются ионы элемента, входящего в состав ядра. Таковыми являются ионы SnO 3 2‾:

K 2 SnO 3 SnO 3 2⁻ + 2K⁺

Ионы SnO 3 2‾ , адсорбируясь на поверхности частиц золя, сообщают им отрицательный заряд. Противоионами являются ионы K + . Формула мицеллы золя двуокиси олова:

{[(m SnO 2) n SnO 3 2‾ ·(2n-x )K + ] 2 − + x K + }.



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...