Критерии согласия тесты бывают. Статистические гипотезы

ЦЕЛЬ РАБОТЫ

Целью данной лабораторной работы является:

· построение по результатам эксперимента законов распределения случайной величины разброса параметров непроволочных резисторов;

· проверка гипотезы о нормальном законе рас­преде­ления отклонений параметров элементов;

· экспериментальное исследование изменения па­ра­метров непроволочных резисторов при воз­действии темпе­ратуры.

ПРОДОЛЖИТЕЛЬНОСТЬ РАБОТЫ

Лабораторная работа выполняется в течение 4-ча­сового занятия, включая 1 час на коллоквиум для оценки знаний студентов по теоретической части.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Радиоэлектронные средства постоянно находятся под воздействием внешних и внутренних возмущающих слу­чайных факторов, под влиянием которых изменя­ются па­раметры элементов устройства. Изменение па­раметров элементов (резисторов, конденсаторов, полу­проводнико­вых приборов, интегральных схем и др.) связано с различ­ными физическими процессами, проис­ходящими в мате­риалах за счёт внешних воздействий и старения. Кроме того, параметры элементов РЭС имеют производственный разброс, который является результа­том воздействия случайных факторов при их изготовлении. Спроектированная из таких элементов аппаратура реаги­рует на все разбросы изменением своих выходных пара­метров. Для прогнозирования надежности РЭС возни­кает необходимость установления законов распределения случайной величины разброса параметров элементов, обус­ловленных их производством и возмущающими внеш­ними условиями (в частности, температурой окружаю­щей среды).

В лабораторной работе с помощью критериев согласия (Пирсона или Колмогорова) проверяется гипотеза о нормальном законе распределения случайной величины Х – разброса параметров элементов.

КРИТЕРИИ СОГЛАСИЯ, ПРИМЕНЯЕМЫЕ ДЛЯ ПРОВЕРКИ СТАТИСТИЧЕСКИХ ГИПОТЕЗ

Критерии согласия позволяют оценить вероятность предположения о том, что полученная из эксперимента выборка не противоречит априорно выбранному закону распределения рассматриваемой случайной величины. Решение этой задачи основано на использовании фундаментального положения математической статистики, согласно которому эмпирическая (статистическая) функция распределения сходится по вероятности к априорной (сравниваемой теоретической) функции распределения, когда размер выборки неограниченно возрастает, если только выборка принадлежит рассматриваемому априорному распределению . При конечном значении выборки эмпирическая и априорная функции распределения будут, вообще говоря, отличаться друг от друга. Поэтому для выборки х 1 , х 2 ,… х n случайной величины Х вводится некоторая числовая мера расхождения (критерий согласия) () эмпирической функции распределения

, l =1, 2, …, n , (1)

где

= х 1 , х 2 ,… х n – выборка экспериментальных данных

и априорной – функции распределения.

Правило проверки гипотезы о согласии априорного и эмпирического распределения формулируется следующим образом: если

то гипотеза о том, что априорное распределение, которому принадлежит выборка х 1 , х 2 ,…,х n равна F (х ) должна быть отвергнута. Для определения порогового значения величины С устанавливается некоторая допустимая вероятность a отклонения гипотезы о том, что выборка принадлежит распределению F . Вероятность a называют уровнем значимости критерия согласия. Тогда

т.е. С – пороговое значение критерия равно a-процентной точке функции распределения меры расхождения .

Событие , может произойти и при справедливости выдвинутой гипотезы о законе распределения. Однако если a достаточно мало, то возможностью появления таких ситуаций практически можно пренебречь. Часто задаваемыми значениями a являются a = 0.05 и a = 0.01.

Если закон распределения меры расхождения () не зависит от F , то правило отклонения гипотезы о согласии и F

(4)

не зависит от априорного распределения. Такие критерии называются непараметрическими (см. п. 3.1.2).

Проверку гипотезы о характере распределения с помощью критерия согласия можно вести и в другой последовательности: по полученному значению необходимо определить вероятность a n = Р { n }. Если полученное значение a n < a , то отклонения значимые; если a n ³ a, то отклонения не значимые. Значения a n , весьма близкие к 1 (очень хорошее согласие), могут указывать на недоброкачественность выборки (например, из первоначальной выборки без основания выброшены элементы, дающие большие отклонения от среднего).

Используемые в статистике критерии согласия отличаются друг от друга различными мерами расхождения статистического и теоретического законов распределения (). Некоторые из них рассмотрены ниже.

3.1.1. Критерий согласия c 2

При использовании критерия согласия c 2 (критерий Пирсона) меру расхождения между эмпирическим и априорным распределениями определяют следующим образом.

Область возможных значений, на которой определена F (x ) - априорная функция распределения разбивается на конечное число непересекающихся интервалов – , i = 1, 2,…, L .

Введем обозначение: – априорная вероятность попадания выборочного значения в интервал .

Очевидно, что . Пусть элементов наблюдаемой выборки х 1 , х 2 ,…, х n принадлежат интервалу .

Ясно, что .

Примем в качестве меры расхождения эмпирического и априорного распределений величину

, (5)

где - экспериментальное число попадания значений случайной величины x в интервал,

L – число интервалов, на которые разбиты все опытные значения величины x ,

n – объем выборки,

p i – вероятность попадания случайной величины x в -й интервал, вычисленная для теоретического закона распределения (произведение определяет число попаданий в - интервал для теоретического закона).

Как доказал Пирсон, при n ® ¥ закон распределения величины (5) стремится к - распределению с S = L - 1 степенями свободы, если только верна гипотеза о распределении .

Если проверяется сложная гипотеза о том, что выборка принадлежит распределению , где неизвестный параметр (скалярный или векторный) распределения , то из эксперимента (по полученной выборке) определяется оценка неизвестного параметра – . При этом S - число степеней свободы c 2 - распределения равно L – r – 1 , где r – количество оцениваемых параметров распределения. .

Правило проверки гипотезы о принадлежности выборки распределению может быть сформулировано следующим образом: при достаточно большом n ( n > 50)и для заданного уровня значимости a гипотеза отклоняется, если

где - a - процентная точка - распределения с степенями свободы.

Критерий Колмогорова

Примем в качестве меры расхождения априорного и эмпирического распределения статистику

().= , (7)

где – верхняя граница модуля разности для всех полученных значений х .

Распределение этой статистики (случайной величины) при любом n не зависит от

Если только выборка х 1 , х 2 ,… х n по которой построена принадлежит и эта последняя – непрерывная функция. Однако точное выражение для функции распределения при конечном значении n очень громоздко. А.Н. Колмогоров нашел достаточно простое асимптотическое выражение (при ) для функций :

, z > 0. (8) Таким образом, для больших размеров выборки (при n > 50), используя (8) , получаем

Опр Критерий проверки гипотезы о предполагаемом законе неизвестного распределения называется критерием согласия.

Имеется несколько критериев согласия: $\chi ^2$ { хи-квадрат } К. Пирсона, Колмогорова, Смирнова и др.

Обычно теоретические и эмпирические частоты различаются. Случай расхождения может быть не случайным, значит и объясняется тем, что не верно выбрана гипотеза. Критерий Пирсона отвечает на поставленный вопрос, но как любой критерий он ничего не доказывает, а лишь устанавливает на принятом уровне значимости её согласие или несогласие с данными наблюдений.

Опр Достаточно малую вероятность, при которой событие можно считать практически невозможным называют уровнем значимости.

На практике обычно принимают уровни значимости, заключённые между 0,01 и 0,05, $\alpha =0,05$ - это $5 { \% } $ уровень значимости.

В качестве критерия проверки гипотезы примем величину \begin{equation} \label { eq1 } \chi ^2=\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } \qquad (1) \end{equation}

здесь $n_i -$ эмпирические частоты, полученные из выборки, $n_i" -$ теоретические частоты, найденные теоретическим путём.

Доказано, что при $n\to \infty $ закон распределения случайной величины { 1 } независимо от того, по какому закону распределена генеральная совокупность, стремится к закону $\chi ^2$ { хи-квадрат } с $k$ степенями свободы.

Опр Число степеней свободы находят по равенству $k=S-1-r$ где $S-$ число групп интервалов, $r-$ число параметров.

1) равномерное распределение: $r=2, k=S-3 $

2) нормальное распределение: $r=2, k=S-3 $

3) показательное распределение: $r=1, k=S-2$.

Правило . Проверка гипотезы по критерию Пирсона.

  1. Для проверки гипотезы вычисляют теоретические частоты и находят $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $
  2. По таблице критических точек распределения $\chi ^2$ по заданному уровню значимости $\alpha $ и числу степеней свободы $k$ находят $\chi _ { кр } ^2 ({ \alpha ,k })$.
  3. Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 $ то нет оснований отвергать гипотезу, если не выполняется данное условие - то отвергают.

Замечание Для контроля вычислений применяют формулу для $\chi ^2$ в виде $\chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } $

Проверка гипотезы о равномерном распределении

Функция плотности равномерного распределения величины $X$ имеет вид $f(x)=\frac { 1 } { b-a } x\in \left[ { a,b }\right]$.

Для того, чтобы при уровне значимости $\alpha $ проверить гипотезу о том, что непрерывная случайная величина распределена по равномерному закону, требуется:

1) Найти по заданному эмпирическому распределению выборочное среднее $\overline { x_b } $ и $\sigma _b =\sqrt { D_b } $. Принять в качестве оценки параметров $a$ и $b$ величины

$a = \overline x _b -\sqrt 3 \sigma _b $, $b = \overline x _b +\sqrt 3 \sigma _b $

2) Найти вероятность попадания случайной величины $X$ в частичные интервалы $({ x_i ,x_ { i+1 } })$ по формуле $ P_i =P({ x_i

3) Найти теоретические { выравнивающие } частоты по формуле $n_i" =np_i $.

4) Приняв число степеней свободы $k=S-3$ и уровень значимости $\alpha =0,05$ по таблицам $\chi ^2$ найдём $\chi _ { кр } ^2 $ по заданным $\alpha $ и $k$, $\chi _ { кр } ^2 ({ \alpha ,k })$.

5) По формуле $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ где $n_i -$ эмпирические частоты, находим наблюдаемое значение $\chi _ { набл } ^2 $.

6) Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 -$ нет оснований, отвергать гипотезу.

Проверим гипотезу на нашем примере.

1) $\overline x _b =13,00\,\,\sigma _b =\sqrt { D_b } = 6,51$

2) $a=13,00-\sqrt 3 \cdot 6,51=13,00-1,732\cdot 6,51=1,72468$

$b=13,00+1,732\cdot 6,51=24,27532$

$b-a=24,27532-1,72468=22,55064$

3) $P_i =P({ x_i

$ P_2 =({ 3

$ P_3 =({ 7

$ P_4 =({ 11

$ P_5 =({ 15

$ P_6 =({ 19

В равномерном распределении если одинакова длина интервала, то $P_i -$ одинаковы.

4) Найдём $n_i" =np_i $.

5) Найдём $\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ и найдём $\chi _ { набл } ^2 $.

Занесём все полученные значения в таблицу

\begin{array} { |l|l|l|l|l|l|l| } \hline i& n_i & n_i" =np_i & n_i -n_i" & ({ n_i -n_i" })^2& \frac { ({ n_i -n_i" })^2 } { n_i" } & Контроль~ \frac { n_i^2 } { n_i" } \\ \hline 1& 1& 4,43438& -3.43438& 11,7950& 2,659898& 0,22551 \\ \hline 2& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 3& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 4& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 5& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 6& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline & & & & & \sum = \chi _ { набл } ^2 =3,261119& \chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } =3,63985 \\ \hline \end{array}

$\chi _ { кр } ^2 ({ 0,05,3 })=7,8$

$\chi _ { набл } ^2 <\chi _ { кр } ^2 =3,26<7,8$

Вывод отвергать гипотезу нет оснований.

Критерием согласия называется критерий значимости, применяемый для проверки гипотезы о законе распределения генеральной совокупности, из которой взята выборка.

Чаще всего исследователя интересует, соответствует ли распределение экспериментальных данных нормальному закону. Поэтому примеры будут связаны с проверкой экспериментального распределения на нормальность.

  • Критерий Шапиро-Уилки
  • Критерий хи-квадрат
  • Критерий лямбда Колмогорова-Смирнова

КРИТЕРИЙ ШАПИРО-УИЛКИ

Условия применения: выборка небольшого объема

Н 0 – распределение генеральной совокупности из которой получена выборка совокупности соответствует нормальному закону.

Н 1 - распределение генеральной совокупности из которой получена выборка совокупности не соответствует нормальному закону.

Таблица 1 – Алгоритм расчета критерия Шапиро-Уилки.

x x Δk k ank ankΔk
1 2 3 4 5 6 7
1 11,8 13,8 2 1 0,5739 1,1478
2 12 13,2 1,2 2 0,3291 0,39492
3 12,1 13 0,9 3 0,2141 0,19269
4 12,3 12,8 0,5 4 0,1224 0,0612
5 12,6 12,6 0 5 0,0399 0
6 12,6 12,6
7 12,8 12,3 Сумма=b = 17966
8 13 12,1
9 13,2 12
10 13,8 11,8

Порядок расчета критерия Шапиро-Уилки

  1. Формулируем гипотезу Н 0 о соответствии распределения генеральной совокупности, из которой получены данные нормальному закону. Назначаем уровень значимости α=0,05.
  2. Получаем выборку экспериментальных данных (столбец 1 табл.1). В нашем случае n=10.
  3. Рассчитываем значение выборочной дисперсии. Для примера S 2 =0, 37.
  4. Ранжируем выборку в возрастающем и убывающем порядке (столбцы 2 и 3)
  5. Считаем разности Δk (столбец 5)
  6. Из таблицы 6 Приложения(см. В.С.Иванов, 1990) находим значения коэффициентов ank (столбец 6)
  7. Находим произведение ankΔk
  8. Вычисляем b=сумма ankΔk= 1,7966
  9. Рассчитываем значение критерия Wф по формуле:
  1. Из табл. 7 Приложения (см. В.С.Иванов, 1990) находим критическое значение критерия Шапиро-Уилки для α=0,05 Wкрит= 0,842.
  2. Вывод. Так как Wф>Wкрит, можно говорить, что экспериментальные данные соответствуют нормальному закону на уровне значимости 0,05.

КРИТЕРИЙ ХИ-КВАДРАТ

Разработан Карлом Пирсоном . Основан на построении интервального вариационного ряда и сравнении эмпирических (n эм) и теоретических (n т) частот (Рис.1).

Рис.1. Гистограмма, характеризующая эмпирическое распределение и функция плотности вероятностей нормального распределения.

Статистическая гипотеза : плотность распределения генеральной совокупности, из которой взята выборка, соответствует теоретической модели нормального распределения.

Значение фактического критерия хи-квадрат вычисляется по формуле:

Если фактическое значение критерия хи-квадрат больше или равно чем критическое значение критерия хи-квадрат, можно сделать вывод, что эмпирическое распределение не соответствует нормальному закону на уровне значимости α.

КРИТЕРИЙ ЛЯМБДА КОЛМОГОРОВА-СМИРНОВА

Разработан Андреем Николаевичем Колмогоровым и Николаем Васильевичем Смирновым .

Статистическая гипотеза : функция распределения генеральной совокупности (рис. 2), из которой взята выборка, соответствует функции распределения нормального закона.

Рис.2. Красные точки - кумулята, построенная на основе экспериментальных данных, синяя кривая - теоретическая функция распределения (нормальное распределение).

Значение критерия λ ф вычисляется по формуле:

Вывод: если λ ф > λ крит – эмпирическое распределение не соответствует нормальному на уровне значимости α.

ЛИТЕРАТУРА

  1. Высшая математика и математическая статистика: учебное пособие для вузов / Под общ. ред. Г. И. Попова. – М. Физическая культура, 2007.– 368 с.
  2. Основы математической статистики: Учебное пособие для ин-тов физ. культ / Под ред. В.С. Иванова.– М.: Физкультура и спорт, 1990. 176 с.

Введение

Актуальность данной темы в том, что в течение изучения основ биостатистики мы предполагали, что закон распределения генеральной совокупности известен. Но что, если закон распределения неизвестен, но есть основания предполагать, что он имеет определенный вид (назовем его А), то проверяют нулевую гипотезу: генеральная совокупность распределена по закону А. Проверка этой гипотезы производится при помощи специально подобранной случайной величины - критерия согласия.

Критерии согласия - это критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Такие критерии подразделяются на два класса:

  • Ш Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей.
  • Ш Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.

Критерий согласия

Наиболее распространенные критерии согласия - омега-квадрат, хи-квадрат, Колмогорова и Колмогорова-Смирнова.

Непараметрические критерии согласия Колмогорова, Смирнова, омега квадрат широко используются. Однако с ними связаны и широко распространенные ошибки в применении статистических методов.

Дело в том, что перечисленные критерии были разработаны для проверки согласия с полностью известным теоретическим распределением. Расчетные формулы, таблицы распределений и критических значений широко распространены. Основная идея критериев Колмогорова, омега квадрат и аналогичных им состоит в измерении расстояния между функцией эмпирического распределения и функцией теоретического распределения. Различаются эти критерии видом расстояний в пространстве функций распределения.

Критерии согласия ч2 Пирсона для простой гипотезы

Теорема К. Пирсона относится к независимым испытаниям с конечным числом исходов, т.е. к испытаниям Бернулли (в несколько расширенном смысле). Она позволяет судить о том, согласуются ли наблюдения в большом числе испытаний частоты этих исходов с их предполагаемыми вероятностями.

Во многих практических задачах точный закон распределения неизвестен. Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому. Данная гипотеза требует статистической проверки по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X - исследуемая случайная величина. Требуется проверить гипотезу H0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F"(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия. Одним из популярных является критерий согласия хи-квадрат К. Пирсона. В нем вычисляется статистика хи-квадрат:

где N - число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i - номер интервала, pt i -вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, pe i - вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H0 отвергается. В противном случае она принимается на заданном уровне значимости. Здесь k - число наблюдений, p число оцениваемых параметров закона распределения.

Рассмотрим статистику:

Статистика ч2 называется статистикой хи-квадрат Пирсона для простой гипотезы.

Ясно, что ч2 представляем собой квадрат некоего расстояния между двумя r-мерными векторами: вектором относительных частот (mi /n, …, mr /n) и вектором вероятностей (pi , …, pr). От евклидового расстояния это расстояние отличается лишь тем, что разные координаты входят в него с разными весами.

Обсудим поведение статистики ч2 в случае, когда гипотеза Н верна, и в случае, когда Н неверна. Если верна Н, то асимптотическое поведение ч2 при n > ? указывает теорема К. Пирсона. Чтобы понять, что происходит с (2.2), когда Н неверна, заметим, что по закону больших чисел mi /n > pi при n > ?, для i = 1, …, r. Поэтому при n > ?:

Эта величина равна 0. Поэтому если Н неверна, то ч2 >? (при n > ?).

Из сказанного следует, что Н должна быть отвергнута, если полученное в опыте значение ч2 слишком велико. Здесь, как всегда, слова «слишком велико» означают, что наблюденное значение ч2 превосходит критическое значение, которое в данном случае можно взять из таблиц распределения хи-квадрат. Иначе говоря, вероятность Р(ч2 npi ч2) - малая величина и, следовательно, маловероятно случайно получить такое же, как в опыте, или еще большее расхождение между вектором частот и вектором вероятностей.

Асимптотический характер теоремы К. Пирсона, лежащий в основе этого правила, требует осторожности при его практическом использовании. На него можно полагаться только при больших n. Судить же о том, достаточно ли n велико, надо с учетом вероятностей pi , …, pr . Поэтому нельзя сказать, к примеру, что ста наблюдений будет достаточно, поскольку не только n должно быть велико, но и произведения npi , …, npr (ожидаемые частоты) тоже не должны быть малы. Поэтому проблема аппроксимации ч2 (непрерывное распределение) к статистике ч2 , распределение которой дискретно, оказалась сложной. Совокупность теоретических и экспериментальных доводов привела к убеждению, что эта аппроксимация применима, если все ожидаемые частоты npi>10. если число r (число различных исходов) возрастает, граница для снижена (до 5 или даже до 3, если r порядка нескольких десятков). Чтобы соблюсти эти требования, на практике порой приходится объединять несколько исходов, т.е. переходить к схеме Бернулли с меньшим r.

Описанный способ для проверки согласия можно прилагать не только к испытаниям Бернулли, но и к произвольным выборкам. Предварительно их наблюдения надо превратить в испытания Бернулли путем группировки. Делают это так: пространство наблюдений разбивают на конечное число непересекающихся областей, а затем для каждой области подсчитывают наблюденную частоту и гипотетическую вероятность.

В данном случае к перечисленным ранее трудностям аппроксимации прибавляется еще одна - выбор разумного разбиения исходного пространства. При этом надо заботится о том, чтобы в целом правило проверки гипотезы об исходном распределении выборки было достаточно чувствительным к возможным альтернативам. Наконец, отмечу, что статистические критерии, основные на редукции к схеме Бернулли, как правило, не являются состоятельными против всех альтернатив. Так что такой метод проверки согласия имеет ограниченную ценность.

Критерий согласия Колмогорова - Смирнова в своем классическом виде является более мощным, чем критерий ч2 и может быть использован для проверки гипотезы о соответствии эмпирического распределения любому теоретическому непрерывному распределению F(x) с заранее известными параметрами. Последнее обстоятельство накладывает ограничения на возможность широкого практического приложения этого критерия при анализе результатов механических испытаний, так как параметры функции распределения характеристик механических свойств, как правило, оценивают по данным самой выборки.

Критерий Колмогорова - Смирнова применяют для негруппированных данных или для группированных в случае малой ширины интервала (например, равной цене деления шкалы силоизмерителя, счетчика циклов нагружения и т. д.). Пусть результатом испытаний серии из n образцов является вариационный ряд характеристики механических свойств

x1 ? x2 ? ... ? xi ? ... ? xn. (3.93)

Требуется проверить нулевую гипотезу о принадлежности выборочного распределения (3.93) теоретическому закону F(x).

Критерий Колмогорова - Смирнова базируется на распределении максимального отклонения накопленной частности от значения функции распределения. При его использовании вычисляют статистики

являющуюся статистикой критерия Колмогорова. Если выполняется неравенство

Dnvn ? лб (3.97)

для больших объемов выборки (n > 35) или

Dn(vn + 0.12 + 0.11/vn) ? лб (3.98)

для n ? 35, то нулевую гипотезу не отвергают.

При невыполнении неравенств (3.97) и (3.98) принимают альтернативную гипотезу о принадлежности выборки (3.93) неизвестному распределению.

Критические значения лб составляют: л0.1 = 1.22; л0.05 = 1.36; л0.01 = 1.63.

Если параметры функции F(x) заранее не известны, а оцениваются по данным выборки, критерий Колмогорова - Смирнова теряет свою универсальность и может быть использован только для проверки соответствия опытных данных лишь некоторым конкретным функциям распределения.

При использовании в качестве нулевой гипотезы принадлежность опытных данных нормальному или логарифмически нормальному распределению вычисляют статистики:

где Ц(zi) - значение функции Лапласа для

Ц(zi) = (xi - xср)/s Критерий Колмогорова - Смирнова для любых объемов выборки n записывают в виде

Критические значения лб в этом случае составляют: л0.1 = 0.82; л0.05 = 0.89; л0.01 = 1.04.

Если проверяют гипотезу о соответствии выборки ***экспоненциальному распределению, параметр которого оценивают по опытным данным, вычисляют аналогичные статистики:

критерий эмпирический вероятность

и составляют критерий Колмогорова - Смирнова.

Критические значения лб для этого случая: л0.1 = 0.99; л0.05 = 1.09; л0.01 = 1.31.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...