Многогранные углы бывают. Многогранные углы многогранный угол является пространственным аналогом многоугольника

МАОУ «Лицей инновационных технологий»

Многогранные углы. Выпуклые многогранники

Подготовил ученик 10Б класса: Бурыкин Алексей

Проверил: Дубинская И.А.

Хабаровск


Многогранный угол

Многогранным углом называется фигура, образованная плоскими углами так, что выполняются условия:

1)никакие два угла не имеют общих точек, кроме их общей вершины или целой стороны;

2) у каждого из этих углов каждая его сторона является общей с одним и только одним другим таким углом;

3) от каждого угла к каждому можно перейти по углам, имеющим общую сторону;

4) никакие два угла с общей стороной не лежат в одной плоскости.


  • Углы ASB, BSC,... называются плоскими углами или гранями , стороны их SA, SB, ... называются рeбрами , а общая вершина S- вершиной многогранного угла.

Теорема1.

В трёхгранном угле каждый плоский угол меньше суммы двух других плоских углов.


Следствие

  • / ASC - / ASB / CSB; / ASC - / CSB / ASB.

В трёхгранном угле каждый плоский угол больше разности двух других углов .


Теорема2.

  • Сумма величин всех трех плоских углов трехгранного угла меньше 360° .

180°, откуда и следует, что α + β + γ " width="640"

Доказательство

Обозначим,

тогда из треугольников ASC, ASB, BSC имеем

Теперь неравенство принимает вид

180° - α + 180° - β + 180° - γ 180°,

откуда и следует, что

α + β + γ

Простейшие случаи равенства трёхгранных углов

  • 1) по равному двугранному углу, заключённому между двумя соответственно равными и одинаково расположенными плоскими углами , или 2) по равному плоскому углу, заключённому между двумя соответственно равными и одинаково расположенными двугранными углами .

Выпуклый многогранный угол

  • Многогранный угол называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней, неограниченно продолженной.

Многогранник.

Многогранник , в трехмерном пространстве- совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого, называемого смежным с первым.


Выпуклые многогранники

Многогранник называется выпуклым , если он весь лежит по одну сторону от плоскости любой его грани; тогда грани его тоже выпуклы.

Выпуклый многогранник разрезает пространство на две части – внешнюю и внутреннюю. Внутренняя его часть есть выпуклое тело. Обратно, если поверхность выпуклого тела многогранна, то соответствующий многогранник –выпуклый.


Теорема. Сумма всех плоских углов выпуклого многогранного угла меньше 360 градусов.


Свойство 1. В выпуклом многограннике все грани являются выпуклыми многоугольниками.

Свойство2. Всякий выпуклый многогранник может быть составлен из пирамид с общей вершиной, основание которых образует поверхность многогранника.


№1 Дата05.09.14

Предмет Геометрия

Класс 11

Тема урока: Понятие о многогранном угле. Трехгранный угол.

Цели урока:

    ввести понятия: “трехгранные углы”, “многогранные углы”, “многогранник”;

    ознакомить учащихся с элементами трехгранного и многогранного углов, многогранника, а также определениями выпуклого многогранного угла и свойствами плоских углов многогранного угла;

    продолжить работу по развитию пространственных представлений и пространственного воображения, а также логического мышления учащихся.

Тип урока: изучения нового материала

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Формирование новых понятий и способов действия.

Задачи: Обеспечить восприятие, осмысление и запоминание учащимися изучаемого материала. Обеспечить усвоение учащимися методики воспроизведения изученного материала, содействовать философскому осмыслению усваиваемых понятий, законов, правил, формул. Установить правильность и осознанность учащимися изученного материала, выявить пробелы первичного осмысления, провести коррекцию. Обеспечить соотнесение учащимися своего субъективного опыта с признаками научного знания.

Пусть даны три луча а, b и с с общим началом точкой О (рис. 1.1). Эти три луча не обязательно лежат в одной плоскости. На рисунке 1.2 лучи b и с лежат в плоскости р, а луч а не лежит в этой плоскости.

Лучи а, b и с попарно задают три выделенных дугами плоских угла (рис. 1.3).

Рассмотрим фигуру, состоящую из трех указанных выше углов и части пространства, ограниченной этими плоскими углами. Эту пространственную фигуру называют трехгранным углом (рис. 2).

Лучи а, b и с называются ребрами трехгранного угла, а углы: = AOC, = AOB,

= BOC , ограничивающие трехгранный угол, - его гранями. Эти углы-грани образуют поверхность трехгранного угла. Точка О называется вершиной трехгранного угла. Трехгранный угол можно обозначать так: OABC

Рассмотрев внимательно все многогранные углы, изображенные на рисунке 3, мы можем заключить, что у каждого из многогранных углов одинаковое число ребер и граней:

4 грани и одна вершина;

    у пятигранного угла - 5 ребер, 5 граней и одна вершина;


  • у шестигранного угла - 6 ребер, 6 граней и одна вершина и т. д.

Многогранные углы бывают выпуклыми и невыпуклыми.

Представьте себе, что мы взяли четыре луча с общим началом, как на рисунке 4. В этом случае мы получили невыпуклый многогранный угол.

Определение 1. Многогранный угол называется выпуклым, если он лежит по одну сторону от плоскости каждой его грани.

Другими словами, выпуклый многогранный угол всегда можно положить любой его гранью на некоторую плоскость. Вы видите, что в случае, изображенном на рисунке 4, так поступить не всегда удается. Четырехгранный угол, изображенный на рисунке 4, является невыпуклым.

Отметим, что в нашем учебнике, если мы говорим “многогранный угол”, то имеем в виду, что он выпуклый. Если рассматриваемый многогранный угол невыпуклый, об этом будет сказано отдельно.

    Свойства плоских углов многогранного угла

Теорема 1. Каждый плоский угол трехгранного угла меньше суммы двух других плоских углов.

Теорема 2. Сумма величин всех плоских углов выпуклого многогранного угла меньше 360°.

3. Применение. Формирование умений и навыков.

Задачи: Обеспечить применение учащимися знаний и способов действий, которые им необходимы для СР, создать условия для выявления школьниками индивидуальных способов применения изученного.

6.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.

§1(1.1, 1.2) стр. 4, № 9.

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

8.Этап рефлексии.

Задачи: Инициировать рефлексию учащихся на самооценку своей деятельности. Обеспечить усвоение учащимися принципов само регуляции и сотрудничества.

Беседа по вопросам:

Что тебе на уроке было интересно?

Что не понятно?

На что обратить внимание учителю на следующем уроке?

Как ты оценишь свою работу на уроке?

Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла.

На рисунке 142 изображен двугранный угол с ребром а и гранями а и (3.

Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным углом двугранного угла. За меру двугранного угла принимается мера соответствующего ему линейного угла. Если через точку А ребра а двугранного угла провести плоскость у, перпендикулярную этому ребру, то она пересечет плоскости а и (3 по полупрямым (рис. 142); линейный угол данного двугранного угла. Градусная мера этого линейного угла является градусной мерой двугранного угла. Мера двугранного угла не зависит от выбора линейного угла.

Трехгранным углом называется фигура, составленная из трех плоских углов (рис. 143). Эти углы называются гранями трехгранного угла, а их стороны - ребрами. Общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образуемые гранями и их продолжениями, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла как фигуры, составленной из плоских углов (рис. 144). Для многогранного угла определяются понятия граней, ребер и двугранных углов так же, как и для трехгранного угла.

Многогранником называют тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 145).

Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого многоугольника на его поверхности (рис. 145, а, б). Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника - выпуклые многоугольники. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника.

    Слайд 1

    Фигура, образованная указанной поверхностью и одной из двух частей пространства, ею ограниченных, называется многогранным углом. Общая вершина S называется вершиной многогранного угла. Лучи SA1, …, SAn называются ребрами многогранного угла, а сами плоские углы A1SA2, A2SA3, …, An-1SAn, AnSA1 – гранями многогранного угла. Многогранный угол обозначается буквами SA1…An, указывающими вершину и точки на его ребрах. Поверхность, образованную конечным набором плоских углов A1SA2, A2SA3, …, An-1SAn, AnSA1 с общей вершиной S, в которых соседние углы не имеют общий точек, кроме точек общего луча, а несоседние углы не имеют общих точек, кроме общей вершины, будем называтьмногогранной поверхностью.

    Слайд 2

    В зависимости от числа граней многогранные углы бывают трехгранными, четырехгранными, пятигранными и т. д.

    Слайд 3

    ТРЕХГРАННЫЕ УГЛЫ

    Теорема. Всякий плоский угол трехгранного угла меньше суммы двух других его плоских углов. Доказательство.Рассмотрим трехгранный угол SABC. Пусть наибольший из его плоских углов есть угол ASC. Тогда выполняются неравенства ASB ASC

    Слайд 4

    Свойство. Сумма плоских углов трехгранного угла меньше 360°. Аналогично, для трехгранных углов с вершинами B и С имеют место неравенства: ABС

    Слайд 5

    ВЫПУКЛЫЕ МНОГОГРАННЫЕ УГЛЫ

    Многогранный угол называетсявыпуклым, если он является выпуклой фигурой, т. е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок.На рисунке приведены примеры выпуклого и невыпуклого многогранных углов. Свойство.Сумма всех плоских углов выпуклого многогранного угла меньше 360°. Доказательство аналогично доказательству соответствующего свойства для трехгранного угла.

    Слайд 6

    Вертикальные многогранные углы

    На рисунках приведены примеры трехгранных, четырехгранных и пятигранных вертикальных углов Теорема. Вертикальные углы равны.

    Слайд 7

    Измерение многогранных углов

    Поскольку градусная величина развернутого двугранного угла измеряется градусной величиной соответствующего линейного угла и равна 180о, то будем считать, что градусная величина всего пространства, которое состоит из двух развернутых двугранных углов, равна 360о. Величина многогранного угла, выраженная в градусах, показывает какую часть пространства занимает данный многогранный угол. Например, трехгранный угол куба занимает одну восьмую часть пространства и, значит, его градусная величина равна 360о:8 = 45о. Трехгранный угол в правильной n-угольной призме равен половине двугранного угла при боковом ребре. Учитывая, что этот двугранный угол равен, получаем, что трехгранный угол призмы равен.

    Слайд 8

    Измерение трехгранных углов*

    Выведем формулу, выражающую величину трехгранного угла через его двугранные углы. Опишем около вершины Sтрехгранного угла единичную сферу и обозначим точки пересечения ребер трехгранного угла с этой сферой A, B, C. Плоскости граней трехгранного угла разбивают эту сферу на шесть попарно равных сферических двуугольников, соответствующих двугранным углам данного трехгранного угла. Сферический треугольник ABC и симметричный ему сферический треугольник A"B"C" являются пересечением трех двуугольников.Поэтому удвоенная сумма двугранных углов равна 360о плюс учетверенная величина трехгранного угла, или  SA +SB + SC = 180о + 2SABC.

    Слайд 9

    Измерение многогранных углов*

    Пусть SA1…An – выпуклый n-гранный угол. Разбивая его на трехгранные углы, проведением диагоналей A1A3, …, A1An-1 и применяя к ним полученную формулу, будем иметь:  SA1 + … + SAn = 180о(n – 2) + 2SA1…An. Многогранные углы можно измерять и числами. Действительно, тремстам шестидесяти градусам всего пространства соответствует число 2π. Переходя от градусов к числам в полученной формуле, будем иметь: SA1+ …+SAn = π(n – 2) + 2SA1…An.

    Слайд 10

    Упражнение 1

    Может ли быть трехгранный угол с плоскими углами: а) 30°, 60°, 20°; б) 45°, 45°, 90°; в) 30°, 45°, 60°? Ответ: а) Нет; б) нет; в) да.

    Слайд 11

    Упражнение 2

    Приведите примеры многогранников, у которых грани, пересекаясь в вершинах, образуют только: а) трехгранные углы; б) четырехгранные углы; в) пятигранные углы. Ответ: а) Тетраэдр, куб, додекаэдр; б) октаэдр; в) икосаэдр.

    Слайд 12

    Упражнение 3

    Два плоских угла трехгранного угла равны 70° и 80°. В каких границах находится третий плоский угол? Ответ: 10о

    Слайд 13

    Упражнение 4

    Плоские углы трехгранного угла равны 45°, 45° и 60°. Найдите величину угла между плоскостями плоских углов в 45°. Ответ: 90о.

    Слайд 14

    Упражнение 5

    В трехгранном угле два плоских угла равны по 45°; двугранный угол между ними прямой. Найдите третий плоский угол. Ответ: 60о.

    Слайд 15

    Упражнение 6

    Плоские углы трехгранного угла равны 60°, 60° и 90°. На его ребрах от вершины отложены равные отрезки OA, OB, OC. Найдите двугранный угол между плоскостью угла в 90° и плоскостью ABC. Ответ: 90о.

    Слайд 16

    Упражнение 7

    Каждый плоский угол трехгранного угла равен 60°. На одном из его ребер отложен от вершины отрезок, равный 3 см, и из его конца опущен перпендикуляр на противоположную грань. Найдите длину этого перпендикуляра. Ответ: см.

    Слайд 17

    Упражнение 8

    Найдите геометрическое место внутренних точек трехгранного угла, равноудаленных от его граней. Ответ: Луч, вершиной которого является вершина трехгранного угла, лежащий на линии пересечения плоскостей, делящих двугранные углы пополам.

    Слайд 18

    Упражнение 9

    Найдите геометрическое место внутренних точек трехгранного угла, равноудаленных от его ребер. Ответ: Луч, вершиной которого является вершина трехгранного угла, лежащий на линии пересечения плоскостей, проходящих через биссектрисы плоских углов и перпендикулярных плоскостям этих углов.

    Слайд 19

    Упражнение 10

    Для двугранных углов тетраэдра имеем: , откуда 70о30". Для трехгранных углов тетраэдра имеем: 15о45". Ответ: 15о45". Найдите приближенные значения трехгранных углов тетраэдра.

    Слайд 20

    Упражнение 11

    Найдите приближенные значения четырехгранных углов октаэдра. Для двугранных углов октаэдра имеем: , откуда 109о30". Для четырехгранных углов октаэдра имеем: 38о56". Ответ: 38о56".

    Слайд 21

    Упражнение 12

    Найдите приближенные значения пятигранных углов икосаэдра. Для двугранных углов икосаэдра имеем: , откуда 138о11". Для пятигранных углов икосаэдра имеем: 75о28". Ответ: 75о28".

    Слайд 22

    Упражнение 13

    Для двугранных углов додекаэдра имеем: , откуда 116о34". Для трехгранных углов додекаэдра имеем: 84о51". Ответ: 84о51". Найдите приближенные значения трехгранных углов додекаэдра.

    Слайд 23

    Упражнение 14

    В правильной четырехугольной пирамидеSABCD сторона основания равна 2 см, высота 1 см. Найдитечетырехгранный угол при вершине этой пирамиды. Решение:Указанные пирамиды разбивают куб на шесть равных пирамид с вершинами в центре куба. Следовательно, 4-х гранный угол при вершине пирамиды составляет одну шестую часть угла в 360о, т.е. равен 60о. Ответ: 60о.

    Слайд 24

    Упражнение 15

    В правильной треугольной пирамиде боковые ребра равны 1, углы при вершине 90о. Найдитетрехгранный угол при вершине этой пирамиды. Решение:Указанные пирамиды разбивают октаэдр на восемь равных пирамид с вершинами в центре O октаэдра. Следовательно, 3-х гранный угол при вершине пирамиды составляет одну восьмую часть угла в 360о, т.е. равен 45о. Ответ: 45о.

    Слайд 25

    Упражнение 16

    В правильной треугольной пирамиде боковые ребра равны 1, а высота Найдитетрехгранный угол при вершине этой пирамиды. Решение:Указанные пирамиды разбивают правильный тетраэдр на четыре равные пирамиды с вершинами в центре Oтетраэдра. Следовательно, 3-гранный угол при вершине пирамиды составляет одну четвертую часть угла в 360о, т.е. равен 90о. Ответ: 90о.

Посмотреть все слайды

МНОГОГРАННЫЕ УГЛЫ

Многогранный угол является пространственным аналогом многоугольника. Напомним, что многоугольником на плоскости называется фигура, образованная простой замкнутой ломаной и ограниченной ею внутренней областью. Будем считать аналогом точки на плоскости луч в пространстве и аналогом отрезка на плоскости плоский угол в пространстве. Тогда аналогом простой замкнутой ломаной на плоскости является поверхность, образованная конечным набором плоских углов A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 с общей вершиной S (рис. 1), в которых соседние углы не имеют общий точек, кроме точек общего луча, а несоседние углы не имеют общих точек, кроме общей вершины. Фигура, образованная указанной поверхностью и одной из двух частей пространства, ею ограниченных, называется многогранным углом . Общая вершина S называется вершиной многогранного угла. Лучи SA 1 , …, SA n называются ребрами многогранного угла, а сами плоские углы A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 гранями многогранного угла. Многогранный угол обозначается буквами SA 1 … A n , указывающими вершину и точки на его ребрах. В зависимости от числа граней многогранные углы называются трехгранными, четырехгранными, пятигранными (рис. 2) и т. д.

Многогранный угол называется выпуклым , если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками содержит и соединяющий их отрезок. На рисунке 2 трехгранный и четырехгранный углы выпуклые, а пятигранный угол – нет.
Рассмотрим некоторые свойства треугольников и аналогичные им свойства трехгранных углов.
Свойство 1 (Неравенство треугольника). Каждая сторона треугольника меньше суммы двух других его сторон.
Аналогичным свойством для трехгранных углов является следующее свойство.
Свойство 1 ". Каждый плоский угол трехгранного угла меньше суммы двух других его плоских углов.
Доказательство. Рассмотрим трехгранный угол SABC . Пусть наибольший из его плоских углов есть угол ASC . Тогда выполняются неравенства

ASB ASC < ASC + BSC ;BSC ASC < ASC + ASB .

Таким образом, остается доказать неравенство ASС < ASB + BSC .
Отложим на грани ASC угол ASD , равный ASB , и точку B выберем так, чтобы SB = SD (рис. 3). Тогда треугольники ASB и ASD равны (по двум сторонам и углу между ними) и, следовательно, AB = AD . Воспользуемся неравенством треугольника AC < AB + BC . Вычитая из обеих его частей AD = AB , получим неравенство DC < BC. В треугольниках DSC и BSC одна сторона общая (SC ), SD = SB и DC < BC. В этом случае против большей стороны лежит больший угол и, следовательно, DSC < BSC . Прибавляя к обеим частям этого неравенства угол ASD , равный ASB , получим требуемое неравенство ASС < ASB + BSC .

Следствие 1. Сумма плоских углов трехгранного угла меньше 360 ° .
Доказательство. Пусть SABC – данный трехгранный угол. Рассмотрим трехгранный угол с вершиной A , образованный гранями ABS, ACS и углом BAC . В силу доказанного свойства, имеет место неравенство BAС < BAS + CAS . Аналогично, для трехгранных углов с вершинами B и С имеют место неравенства: ABС < ABS + CBS , ACB < ACS + BCS . Складывая эти неравенства и учитывая, что сумма углов треугольника ABC равна 180 ° , получаем 180 ° < BAS +CAS + ABS + CBS +BCS + ACS = 180 ° - ASB + 180 ° - BSC + 180 ° - ASC . Следовательно, ASB + BSC + ASC < 360 ° .
Следствие 2. Сумма плоских углов выпуклого многогранного угла меньше 360.
Доказательство аналогично предыдущему.
Следствие 3. Сумма двугранных углов трехгранного угла больше 180 ° .
Доказательство. Пусть SABC – трехгранный угол. Выберем какую-нибудь точку P внутри него и опустим из нее перпендикуляры PA 1 , PB 1 , PC 1 на грани (рис. 4).

Плоские углы B 1 PC 1 , A 1 PC 1 , A 1 PB 1 дополняют соответствующие двугранные углы с ребрами SA, SB, SC до 180 ° . Следовательно, сумма этих двугранных углов равна 540 ° - (B 1 PC 1 +A 1 PC 1 + A 1 PB 1 ). Учитывая, что сумма плоских углов трехгранного с вершиной P угла меньше 360 ° , получаем, что сумма двугранных углов исходного трехгранного угла больше 180 ° .
Свойство 2. Биссектрисы треугольника пересекаются в одной точке.
Свойство 2". Биссектральные плоскости двугранных углов трехгранного угла пересекаются по одной прямой.
Доказательство аналогично плоскому случаю. А именно, пусть SABC – трехгранный угол. Биссектральная плоскость двугранного угла SA является ГМТ угла, равноудаленных от его граней ASC и ASB . Аналогично, биссектральная плоскость двугранного угла SB является ГМТ угла, равноудаленных от его граней BSA и BSC . Линия их пересечения SO будет равноудалена от всех граней трехгранного угла и, следовательно, через нее будет проходить биссектральная плоскость двугранного угла SC .
Свойство 3. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Свойство 3". Плоскости, проходящие через биссектрисы граней трехгранного угла и перпендикулярные этим граням, пересекаются по одной прямой.
Доказательство аналогично доказательству предыдущего свойства.
Свойство 4. Медианы треугольника пересекаются в одной точке.
Свойство 4". Плоскости, проходящие через ребра трехгранного угла и биссектрисы противоположных граней пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол SABC, SA = SB = SC (рис. 5). Тогда биссектрисы SA 1 , SB 1 , SC 1 углов BSC, ASC, ASB являются медианами соответствующих треугольников. Поэтому AA 1 , BB 1 , CC 1 – медианы треугольника ABC . Пусть O – точка их пересечения. Прямая SO содержится во всех трех рассматриваемых плоскостях и, следовательно, является линией их пересечения.

Свойство 5. Высоты треугольника пересекаются в одной точке.
Свойство 5 ". Плоскости, проходящие через ребра трехгранного угла и перпендикулярные противоположным граням, пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол с вершиной S и ребрами a, b, c. Обозначим a 1 , b 1 , c 1 – линии пересечения граней с плоскостями, проходящими через соответствующие ребра и перпендикулярные этим граням (рис. 6). Зафиксируем точку C на ребре c и опустим из нее перпендикуляры CA 1 и CB 1 на прямые a 1 и b 1 . Обозначим A и B пересечения прямых CA 1 и CB 1 с прямыми a и b . Тогда SA 1 является проекцией AA 1 на грань BSC . Так как BC перпендикулярна SA 1 , то она перпендикулярна и AA 1 . Аналогично, AC перпендикулярна BB 1 . Таким образом, AA 1 и BB 1 являются высотами треугольника ABC . Пусть O – точка их пересечения. Плоскости, проходящие через прямые a и a 1 , b и b 1 перпендикулярны плоскости ABC и, следовательно, линия их пересечения SO перпендикулярна ABC . Значит, SO перпендикулярна AB . С другой стороны, CO перпендикулярна AB . Поэтому плоскость, проходящая через ребро c и SO будет перпендикулярна противоположной грани.
Свойство 6 (теорема синусов). В треугольнике ABC со сторонами a, b, c соответственно, имеют место равенства a : sin A = b : sin B = c : sin C.
Свойство 6". Пусть a , b , g - плоские углы трехгранного угла, a, b, c – противолежащие им двугранные углы. Тогда sin a : sin a = sin b : sin b = sin g : sin c .
Доказательство. Пусть SABC – трехгранный угол. Опустим из точки C перпендикуляр CC 1 на плоскость ASB и перпендикуляр CA 1 на ребро SA (рис. 7). Тогда угол CA 1 C 1 будет линейным углом двугранного угла a . Поэтому CC 1 = CA 1 sin a = SC sin b sin a. Аналогично показывается, что CC 1 = CB 1 sin b = SC sin a sin b. Следовательно, имеет место равенство sin b sin a = sin a sin b и, значит, равенство sin a : sin a = sin b : sin b . Аналогичным образом доказывается, что имеет место равенство sin b : sin b = sin g : sin c .

Свойство 7. Если в выпуклый четырехугольник можно вписать окружность, то суммы противоположных сторон равны.
Свойство 7". Если в выпуклый четырехгранный угол можно вписать сферу, то суммы противоположных плоских углов равны.

Литература
1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938.
2. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949.
3. Энциклопедия элементарной математики. Книга IV. Геометрия. - М.; 1963.
4. Смирнова И.М. В мире многогранников. – М.: Просвещение, 1995.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...