Относительная магнитная проницаемость материала таблица. Магнитная проницаемость и магнитная восприимчивость вещества

Абсолютная магнитная проницаемость – это коэффициент пропорциональности, учитывающий влияние среды, в которой находятся провода.

Для получения представления о магнитных свойствах среды сравнивали магнитное поле вокруг провода с током в данной среде с магнитным полем вокруг того же провода, но находящегося в вакууме. Было установлено, что в одних случаях поле получается более интенсивным, чем в вакууме, в других – менее.

Различают:

v Парамагнитные материалы и среды, в которых получается более сильное МП (натрий, калий, алюминий, платина, марганец, воздух);

v Диамагнитные материалы и среды, в которых МП слабее (серебро, ртуть, вода, стекло, медь);

v Ферромагнитные материалы, в которых создается самое сильное магнитное поле (железо, никель, кобальт, чугун и их сплавы).

Абсолютная магнитная проницаемость для разных веществ имеет различную величину.

Магнитная постоянная – это абсолютная магнитная проницаемость вакуума.

Относительная магнитная проницаемость среды - безразмерная величина, показывающая во сколько раз абсолютная магнитная проницаемость какого-либо вещества больше или меньше магнитной постоянной:

Для диамагнитных веществ - , для парамагнитных - (для технических расчетовдиамагнитных и парамагнитных тел принимается равной единице),у ферромагнитных материалов - .

Напряженность МП Н характеризует условия возбуждения МП. Напряженность в однородной среде не зависит от магнитных свойств вещества, в котором создается поле, но учитывает влияние величины тока и формы проводников на интенсивность МП в данной точке.

Напряженность МП – векторная величина. Направление вектора Н для изотропных сред (сред с одинаковыми магнитными свойствами во всех направлениях), совпадает с направлением магнитного поля или вектором в данной точке.

Напряженность магнитного поля, создаваемого различными источниками, приведена на рис. 13.

Магнитный поток – это общее число магнитных линий, проходящих через всю рассматриваемую поверхность. Магнитный поток Ф или поток МИ через площадь S , перпендикулярную магнитным линиям ра­вен произведению величины магнитной индукции В на величину площади, которая пронизывается этим магнитным потоком.


42)
При внесении железного сердечника в катушку, магнитное поле возрастает, а сердечник намагничивается. Этот эффект был обнаружен Ампером. Им было так же обнаружено, что индукция магнитного поля в веществе может быть больше или меньше индукции самого поля. Такие вещества стали называть магнетиками.

Магнетики – это вещества, способные менять свойства внешнего магнитного поля.

Магнитная проницаемость веществаопределяется соотношением:


В 0 - индукция внешнего магнитного поля, В - индукция внутри вещества.

В зависимости от соотношения В и В 0 вещества делятся на три типа:

1) Диамагнетики (m<1), к ним относятся химические элементы: Cu, Ag, Au, Hg. Магнитная проницаемость m=1-(10 -5 - 10 -6) очень незначительно отличается от единицы.

Этот класс веществ был открыт Фарадеем. Эти вещества «выталкиваются» из магнитного поля. Если подвесить диамагнитный стержень возле полюса сильного электромагнита, то он будет отталкиваться от него. Линии индукции поля и магнита, следовательно, направлены в разные стороны.

2) Парамагнетики имеют магнитную проницаемость m>1, причем в данном случае она также незначительно превышает единицу: m=1+(10 -5 - 10 -6). К этому виду магнетиков относятся химические элементы Na, Mg, K, Al.

Магнитная проницаемость парамагнетиков зависит от температуры и уменьшается при ее увеличении. Без намагничивающего поля парамагнетики не создают собственного магнитного поля. Постоянных парамагнетиков в природе нет.

3) Ферромагнетики (m>>1): Fe, Co, Ni, Cd.

Эти вещества могут находиться в намагниченном состоянии и без внешнего поля. Существование остаточного магнетизма одно из важных свойств ферромагнетиков. При нагревании до высокой температуры ферромагнитные свойства вещества исчезают. Температура, при которой пропадают эти свойства, называют температурой Кюри (например, для железа T Кюри =1043 К).

При температуре ниже точки Кюри ферромагнетик состоит из доменов. Домены – это области самопроизвольного спонтанного намагничивания (рис.9.21). Размер домена составляет примерно 10 -4 -10 -7 м. Возникновением в веществе областей спонтанного намагничивания обусловлено существование магнетиков. Магнит из железа может долго сохранять свои магнитные свойства, так как в нем домены выстраиваются упорядоченно (преобладает одно направление). Магнитные свойства пропадут, если по магниту сильно ударить или сильно нагреть. В результате этих воздействий домены «разупорядочиваются».

Рис.9.21. Форма доменов: а) в отсутствии магнитного поля, б) при наличии внешнего магнитного поля.

Домены можно представить как замкнутые токи в микрообъемах магнетиков. Домен хорошо иллюстрирует рис.9.21, откуда видно, что ток в домене движется по ломаному замкнутому контуру. Замкнутые токи электронов приводят к возникновению магнитного поля перпендикулярно плоскости орбиты электронов. При отсутствии внешнего магнитного поля магнитное поле доменов направлено хаотично. Это магнитное поле под действием внешнего магнитного поля меняет направление. Магнетики, как уже отмечалось, делятся на группы в зависимости от того, как реагирует магнитное поле домена на действие внешнего магнитного поля. В диамагнетиках магнитное поле большего числа доменов направлено в сторону, противоположную действию внешнего магнитного поля, а в парамагнетиках, наоборот, в сторону действия внешнего магнитного поля. Однако число доменов, магнитные поля которых направлены в противоположные стороны, отличается на очень маленькую величину. Поэтому магнитная проницаемость m в диа- и парамагнетиках отличается от единицы на величину порядка 10 -5 - 10 -6 . В ферромагнетиках число доменов с магнитным полем по направлению внешнего поля во много раз превышает число доменов с противоположным направлением магнитного поля.

Кривая намагниченности. Петля гистерезиса. Явление намагниченности обусловлено существованием остаточного магнетизма при действии внешнего магнитного поля на вещество.

Магнитным гистерезисом называется явление запаздывания изменения магнитной индукции в ферромагнетике относительно изменения напряженности внешнего магнитного поля.

На рис.9.22, представлена зависимость магнитного поля в веществе от внешнего магнитного поля B=B(B 0). Причем по оси Оx откладывают внешнее поле , по оси Оy – намагниченность вещества. Увеличение внешнего магнитного поля приводит к возрастанию магнитного поля в веществе вдоль линии до значения . Уменьшение внешнего магнитного поля до нуля приводит к уменьшению магнитного поля в веществе (в точке с ) до величины В ост (остаточной намагниченности, значение которой больше нуля). Этот эффект является следствием запаздывания в намагниченности образца.

Значение индукции внешнего магнитного поля, необходимое для полного размагничивания вещества (точка d на рис.9.21) называют коэрцетивной силой . Нулевое значение намагниченности образца получают, изменяя направление внешнего магнитного поля до значения . Продолжая увеличивать внешнего магнитного поля в противоположном направлении до максимального значения, доводим его до величины . Затем, меняем направление магнитного поля, увеличивая его обратно, до значения . В этом случае у нас вещество остается намагниченным. Только величина индукции магнитного поля имеет противоположное направление по сравнению со значением в точке . Продолжая увеличивать значение магнитной индукции в том же направлении, достигаем полной размагниченности вещества в точке , и далее, оказываемся вновь в точке . Таким образом, получаем замкнутую функцию, которая описывает цикл полного перемагничивания. Такая зависимость за цикл полного перемагничивания индукции магнитного поля образца от величины внешнего магнитного поля называется петлей гистерезиса . Форма петли гистерезиса является одной из основных характеристик любого ферромагнитного вещества. Однако в точку , таким способом попасть невозможно.

В настоящее время достаточно просто получают сильные магнитные поля. Большое количество установок и устройств работают на постоянных магнитах. В них достигаются поя 1 – 2 Тл при комнатной температуре. В небольших объемах физики научились получать постоянные магнитные поля до 4 Тл, используя для этой цели специальные сплавы. При низких температурах, порядка температуры жидкого гелия получают магнитные поля выше 10 Тл.


43) Закон электромагнитной индукции (з.Фарадея-Максвелла). Правила Ленца

Обобщая результат опытов, Фарадей сформулировал закон электромагнитной индукции. Он показал, что при всяком изменении магнитного потока в замкнутом проводящем контуре возбуждается индукционный ток. Следовательно, в контуре возникает ЭДС индукции.

ЭДС индукции прямо пропорциональна скорости изменения магнитного потока во времени . Математическую запись этого закона оформил Максвелл и поэтому он называется законом Фарадея-Максвелла (законом электромагнитной индукции).

Есть микроскопические круговые токи (молекулярные токи ). Эта идея в дальнейшем, после открытия электрона и строения атома, подтвердилась: эти токи создаются движением электронов вокруг ядра и, так как ориентированы одинаково, в сумме образуют поле внутри и вокруг магнита.

На рисунке а плоскости, в которых размещены элементарные электрические токи , ориентированы беспорядочно из-за хаотичного теплового движения атомов, и вещество не проявляет магнитных свойств. В намагниченном состоянии (под действием, например, внешнего магнитного поля) (рисунок б ) эти плоскости ориентированы одинаково, и их действия суммируются.

Магнитная проницаемость.

Реакция среды на воздействие внешнего магнитного поля с индукцией В0 (поле в вакууме) определяется магнитной восприимчивостью μ :

где В — индукция магнитного поля в веществе. Магнитная проницаемость аналогична диэлектрической проницаемости ɛ .

По своим магнитным свойствам вещества разделяются на диамагнетики , парамагнетики и фер ромагнетики . У диамагнетиков коэффициент μ , который характеризует магнитные свойства среды, меньше единицы (к примеру, у висмута μ = 0,999824); у парамагнетиков μ > 1 (у платины μ - 1,00036); у ферромагнетиков μ ≫ 1 (железо , никель , кобальт).

Диамагнетики отталкиваются от магнита, парамагнетики — притягиваются к нему. По этим призна-кам их можно отличить друг от друга. У многих веществ магнитная проницаемость почти не отличается от единицы, но у ферромагнетиков сильно превосходит ее, достигая нескольких десятков тысяч единиц.

Ферромагнетики.

Самые сильные магнитные свойства проявляют ферромагнетики. Магнитные поля, которые создаваются ферромагнетиками, гораздо сильнее внешнего намагничивающего по-ля. Правда, магнитные поля ферромагнетиков создаются не вследствие обращения электронов вокруг ядер — орбитального магнитного момента , а вследствие собственного вращения электрона — собственного магнитного момента, называемого спином .

Температура Кюри (Т с ) — это температура, выше которой ферромагнитные материалы те-ряют свои магнитные свойства. Для каждого ферромагнетика она своя. Например, для железа Т с = 753 °С, для никеля Т с = 365 °С, для кобальта Т с = 1000 °С. Существуют ферромагнитные спла-вы, у которых Т с < 100 °С.

Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А. Г. Столетовым (1839-1896).

Ферромагнетики применяются довольно широко: в качестве постоянных магнитов (в электроизмерительных приборах, громкоговорителях, телефонах и так далее), стальных сердечников в транс-форматорах, генераторах, электродвигателях (для усиления магнитного поля и экономии элек-троэнергии). На магнитных лентах, которые изготовлены из ферромагнетиков, осуществляется запись звука и изображения для магнитофонов и видеомагнитофонов. На тонкие магнитные пленки про-изводится запись информации для запоминающих устройств в электронно-вычислительных ма-шинах.

Магнитный момент- это основная векторная величина, характеризующая магнитные свойства вещества. Поскольку источником магнетизма является замкнутый ток, то значение магнитного момента М определяется как произведение силы тока I на площадь, охватываемую контуром токаS:

М = I×S А×м 2 .

Магнитными моментами обладают электронные оболочки атомов и молекул. Электроны и другие элементарные частицы имеют спиновый магнитный момент, определяемый существованием собственного механического момента – спина. Спиновый магнитный момент электрона может ориентироваться во внешнем магнитном поле так, что возможны только две равные и противоположно направленные проекции момента на направление вектора напряженности магнитного поля, равные магнетону Бора – 9,274×10 -24 А×м 2 .

  1. Определите понятие «намагниченность» вещества.

Намагниченность – J – это суммарный магнитный момент единицы объема вещества:

  1. Определите понятие «магнитная восприимчивость».

Магнитная восприимчивость вещества, א v – отношение намагниченности вещества к напряженности магнитного поля, относящаяся к единице объема:

א v = , безразмерная величина.

Удельная магнитная восприимчивость, אотношение магнитной восприимчивости к плотности вещества,т.е. магнитная восприимчивость единицы массы, измеряемая в м 3 /кг.

  1. Определите понятие «магнитная проницаемость».

Магнитная проницаемость, μ – это физическая величина, характеризующая изменение магнитной индукции при воздействии магнитного поля. Для изотропных сред магнитная проницаемость равна отношению индукции в среде В к напряженности внешнего магнитного поля Н и к магнитной постоянной μ 0 :

Магнитная проницаемость – величина безразмерная. Её значение для конкретной среды на 1 больше магнитной восприимчивости той же среды:

μ = א v + 1, так какВ = μ 0 (Н+J).

  1. Дайте классификацию материалов по магнитным свойствам.

По магнитному строению и значению магнитной проницаемости (восприимчивости) материалы подразделяются на:

Диамагнетики μ< 1 (материал «сопротивляется» магнитному полю);

Парамагнетики μ > 1 (материал слабо воспринимает магнитное поле);

Ферромагнетики μ >> 1 (магнитное поле в материале усиливается);

Ферримагнетики μ >> 1 (магнитное поле в материале усиливается, но магнитная структура материала отличается от структуры ферромагнетиков);

Антиферромагнетики μ ≈ 1 (материал слабо реагирует на магнитное поле, хотя по магнитной структуре схож с ферримагнетиками).

  1. Опишите природу диамагнетизма.

Диамагнетизм – это свойство вещества намагничиваться навстречу направлению действующего на него внешнего магнитного поля (в соответствии с законом электромагнитной индукции и правилом Ленца). Диамагнетизм свойственен всем веществам, но в «чистом виде» он проявляется у диамагнетиков. Диамагнетики – вещества, молекулы которых не имеют собственных магнитных моментов (их суммарный магнитный момент равен нулю), поэтому других свойств, кроме диамагнетизма у них нет. Примеры диамагнетиков:


Водород, א= - 2×10 -9 м 3 /кг.

Вода, א= - 0,7×10 -9 м 3 /кг.

Алмаз, א= - 0,5×10 -9 м 3 /кг.

Графит, א= - 3×10 -9 м 3 /кг.

Медь, א= - 0,09×10 -9 м 3 /кг.

Цинк, א= - 0,17×10 -9 м 3 /кг.

Серебро, א= - 0,18×10 -9 м 3 /кг.

Золото, א= - 0,14×10 -9 м 3 /кг.

43. Опишите природу парамагнетизма.

Парамагнетизм – это свойство веществ, называемых парамагнетиками, которые, будучи помещены во внешнее магнитное поле, приобретают магнитный момент, совпадающий с направлением этого поля. Атомы и молекулы парамагнетиков в отличие от диамагнетиков имеют собственные магнитные моменты. При отсутствии поля ориентация этих моментов хаотична (из-за теплового движения) и суммарный магнитный момент вещества равен нулю. При наложении внешнего поля происходит частичная ориентация магнитных моментов частиц в направлении поля, и к напряженности внешнего поля Н добавляется намагниченность J: В = μ 0 (Н+J). Индукция в веществе усиливается. Примеры парамагнетиков:

Кислород, א= 108×10 -9 м 3 /кг.

Титан, א= 3×10 -9 м 3 /кг.

Алюминий, א= 0,6×10 -9 м 3 /кг.

Платина, א= 0,97×10 -9 м 3 /кг.

44.Опишите природу ферромагнетизма.

Ферромагнетизм – это магнитоупорядоченное состояние вещества, при котором все магнитные моменты атомов в определенном объеме вещества (домене) параллельны, что обусловливает самопроизвольную намагниченность домена. Появление магнитного порядка связано с обменным взаимодействием электронов, имеющим электростатическую природу (закон Кулона). В отсутствии внешнего магнитного поля ориентация магнитных моментов различных доменов может быть произвольной, и рассматриваемый объем вещества может иметь в целом слабую или нулевую намагниченность. При приложении магнитного поля магнитные моменты доменов ориентируются по полю тем больше, чем выше напряженность поля. При этом изменяется значение магнитной проницаемости ферромагнетика и усиливается индукция в веществе. Примеры ферромагнетиков:

Железо, никель, кобальт, гадолиний

и сплавы этих металлов между собой и другими металлами (Al, Au, Cr, Si и др.). μ ≈ 100…100000.

45. Опишите природу ферримагнетизма.

Ферримагнетизм – это магнитоупорядоченное состояние вещества, в котором магнитные моменты атомов или ионов образуют в определенном объеме вещества (домене) магнитные подрешетки атомов или ионов с суммарными магнитными моментами не равными друг другу и направленными антипараллельно. Ферримагнетизм можно рассматривать как наиболее общий случай магнитоупорядоченного состояния, а ферромагнетизм как случай с одной подрешеткой. В состав ферримагнетиков обязательно входят атомы ферромагнетиков. Примеры ферримагнетиков:

Fe 3 O 4 ; MgFe 2 O 4 ; CuFe 2 O 4 ; MnFe 2 O 4 ; NiFe 2 O 4 ; CoFe 2 O 4 …

Магнитная проницаемость ферримагнетиков имеет тот же порядок, что и у ферромагнетиков: μ ≈ 100…100000.

46.Опишите природу антиферромагнетизма.

Антиферромагнетизм – это магнитоупорядоченное состояние вещества, характеризующееся тем, что магнитные моменты соседних частиц вещества ориентированы антипараллельно, и в отсутствии внешнего магнитного поля суммарная намагниченность вещества равна нулю. Антиферромагнетик в отношении магнитного строения можно рассматривать как частный случай ферримагнетика, в котором магнитные моменты подрешеток равны по модулю и антипараллельны. Магнитная проницаемость антиферромагнетиков близка к 1. Примеры антиферромагнетиков:

Cr 2 O 3 ; марганец; FeSi; Fe 2 O 3 ; NiO……… μ ≈ 1.

47.Какое значение магнитной проницаемости у материалов в сверхпроводящем состоянии?

Сверхпроводники ниже температуры сверхперехода являются идеальными диамагнетиками:

א= - 1; μ = 0.

Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

$$\boldsymbol{\vec{B}={\vec{B}}_{0}+{\vec{B}}_{1}}$$

где $\boldsymbol{\vec{B}}$ - магнитная индукция поля в веществе; $\boldsymbol{{\vec{B}}_{0}}$ - магнитная индукция поля в вакууме, $\boldsymbol{{\vec{B}}_{1}}$ - магнитная индукция поля, возникшего благодаря намагничиванию вещества. При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной μ , которая называется магнитной проницаемостью вещества

$$ \boldsymbol{\mu =\frac{B}{{B}_{0}}}$$

  • Магнитная проницаемость - это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Все вещества состоят из молекул, молекулы - из атомов. Электронные оболочки атомов можно условно рассматривать состоящими из круговых электрических токов, образованных движущимися электронами. Круговые электрические токи в атомах должны создавать собственные магнитные поля. На электрические токи должно оказывать действие внешнее магнитное поле, в результате чего можно ожидать либо усиления магнитного поля при сонаправленности атомных магнитных полей с внешним магнитным полем, либо их ослабления при их противоположной направленности.
Гипотеза о существовании магнитных полей в атомах и возможности изменения магнитного поля в веществе полностью соответствует действительности. Все вещества по действию на них внешнего магнитного поля можно разделить на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ < 1). Изменение магнитного поля даже в самых сильных диамагнетиках составляет лишь сотые доли процента. Например, висмут обладает магнитной проницаемостью µ = 0,999826.

Для понимания природы диамагнетизма рассмотрим движение электрона, который влетает со скоростью v в однородное магнитное поле перпендикулярно вектору В магнитного поля.

Под действием силы Лоренца электрон станет двигаться по окружности, направление его вращения определяется направлением вектора силы Лоренца. Возникший круговой ток создаёт своё магнитное поле В" . Это магнитное поле В" направлено противоположно магнитному полю В . Следовательно, любое вещество, содержащее свободно движущиеся заряженные частицы, должно обладать диамагнитными свойствами.
Хотя в атомах вещества электроны не свободны, изменение их движения внутри атомов под действием внешнего магнитного поля оказывается эквивалентным круговому движению свободных электронов. Поэтому любое вещество в магнитном поле обязательно обладает диамагнитными свойствами.
Однако диамагнитные эффекты очень слабы и обнаруживаются только у веществ, атомы или молекулы которых не обладают собственным магнитным полем. Примерами диамагнетиков являются свинец, цинк, висмут (μ = 0,9998).

Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Анри Ампер (1820 г.). Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.

Рассмотрим причины магнетизма атомов более подробно:

Возьмем некоторое твердое вещество. Его намагниченность связана с магнитными свойствами частиц (молекул и атомов), из которых оно состоит. Рассмотрим, какие контуры с током возможны на микроуровне. Магнетизм атомов обусловлен двумя основными причинами:

1) движением электронов вокруг ядра по замкнутым орбитам (орбитальный магнитный момент ) (рис. 1);

Рис. 2

2) собственным вращением (спином) электронов (спиновой магнитный момент ) (рис. 2).

Для любознательных . Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.

Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей , созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.

Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности (наблюдается явление электромагнитной индукции). Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля $\boldsymbol{{\vec{B}}_{0}}$ и поля $\boldsymbol{\vec{B"}}$ токов намагничивания i" , которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 3, а) – в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 3, б) – именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.

Рис. 3

В диамагнетиках молекулы не обладают собственным магнитным полем. Под действием внешнего магнитного поля в атомах и молекулах поле токов намагниченности направлено противоположно внешнему полю, поэтому модуль вектора магнитной индукции $ \boldsymbol{\vec{B}}$ результирующего поля будет меньше модуль вектора магнитной индукции $ \boldsymbol{{\vec{B}}_{0}} $ внешнего поля.

Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называются парамагнетиками (µ > 1).

Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1,00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля. Примерами парамагнетиков являются натрий, кислород, алюминий (μ = 1,00023).

В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).

Рис. 4

Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.

Ферромагнетики

Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.). Примерами ферромагнетиков являются кобальт, никель, железо (μ достигает значения 8·10 3).

Само название этого класса магнитных материалов происходит от латинского имени железа - Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева - кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.

Все приведенные примеры ферромагнетиков относятся к металлам переходной группы, электронная оболочка которых содержит несколько не спаренных электронов, что и приводит к тому, что эти атомы обладают значительным собственным магнитным полем. В кристаллическом состоянии благодаря взаимодействию между атомами в кристаллах возникают области самопроизвольной (спонтанной) намагниченности - домены. Размеры этих доменов составляют десятые и сотые доли миллиметра (10 -4 − 10 -5 м), что значительно превышает размеры отдельного атома (10 -9 м). В пределах одного домена магнитные поля атомов ориентированы строго параллельно, ориентация магнитных полей других доменов при отсутствии внешнего магнитного поля меняется произвольно (рис. 5).

Рис. 5

Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.

Если поместить ферромагнетик во внешнее магнитное поле B 0 , то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.

Свойства ферромагнетиков

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии ;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри . Так для чистого железа значение температуры Кюри приблизительно равно 900°C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B 0 :

Рис. 6

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).

Рис. 7

Это объясняется тем, что вначале с увеличением B 0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B" 0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B 0 магнитная индукция B 1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

$$\boldsymbol{\mu = \frac B{B_0} = \frac {B_0 + B_1}{B_0} = 1 + \frac {B_1}{B_0};} $$

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А ) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B 0 , то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B 0 = 0 (ток в соленоиде выключен), индукция будет равна B r (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до B oc , размагничивают стержень (B = 0).

  • Модуль B oc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой .

Рис. 8

При дальнейшем увеличении B 0 можно намагнитить стержень до насыщения (точка А" ).

Уменьшая теперь B 0 до нуля, получают опять постоянный магнит, но с индукцией B r (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B 0 станет равной B oc . Продолжая увеличивать я B 0 , снова намагничивают стержень до насыщения (точка А ).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B 0. Это отставание называется явлением гистерезиса . Изображенная на рисунке 8 кривая называется петлей гистерезиса .

Гистерезис (греч. ὑστέρησις - «отстающий») - свойство систем, которые не сразу следуют за приложенными силам.

Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах - реле, трансформаторах, магнитопроводах и др.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.330- 335.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. - Мн.: Нар. асвета, 2002. - С. 291-297.
  3. Слободянюк А.И. Физика 10. §13 Взаимодействие магнитного поля с веществом

Примечания

  1. Рассматриваем направление вектора индукции магнитного поля только в середине контура.

Магнитная проницаемость. Магнитные свойства веществ

Магнитные свойства веществ

Подобно тому, как электрические свойства вещества характеризуются диэлектрической проницаемостью, магнитные свойства вещества характеризуются магнитной проницаемостью.

Благодаря тому, что все вещества, находящиеся в магнитном поле, создают собственное магнитное поле, вектор магнитной индукции в однородной среде отличается от вектора в той же точке пространства в отсутствие среды, т. е. в вакууме.

Отношение называется магнитной проницаемостью среды.

Итак, в однородной среде магнитная индукция равна:

Величина m у железа очень велика. В этом можно убедиться на опыте. Если вставить в длинную катушку железный сердечник, то магнитная ин­дукция, согласно формуле (12.1), увеличится в m раз. Сле­довательно, во столько же раз увеличится поток магнитной индукции. При размыкании цепи, питающей намагничи­вающую катушку постоянным током, во второй, небольшой катушке, намотанной поверх основной, возникает индукцион­ный ток, регистрируемый гальванометром (рис. 12.1).

Если в катушку вставлен железный сердечник, то отклоне­ние стрелки гальванометра при размыкании цепи будет в m раз больше. Измерения показывают, что магнитный поток при внесении в катушку железного сердечника может увеличиться в тысячи раз. Следовательно, магнитная проницаемость железа огромна.

Существует три основных класса веществ с резко разли­чающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

Ферромагнетики

Вещества, у которых, подобно железу, m >> 1, называются ферромагнетиками. Кроме железа, ферромагнетиками явля­ются кобальт и никель, а также ряд редкоземельных элемен­тов и многие сплавы. Важнейшее свойство ферромагнетиков – существование у них остаточного магнетизма. Ферромагнитное вещество может находиться в намагничен­ном состоянии и без внешнего намагничивающего поля.

Железный предмет (например, стержень), как известно, втя­гивается в магнитное поле, т. е. перемещается в область, где магнитная индукция больше. Соответственно, он притягивает­ся к магниту или электромагниту. Это происходит потому, что элементарные токи в железе ориентируются так, что направ­ление магнитной индукции их поля совпадает с направлением индукции намагничивающего поля. В результате железный стержень превращается в магнит, ближайший полюс которого противоположен полюсу электромагнита. Противоположные же полюса магнитов притягиваются (рис. 12.2).

Рис. 12.2

СТОП! Решите самостоятельно: А1–А3, В1, В3.

Парамагнетики

Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле. Эти вещества называются парамагнитными . К их числу относятся некоторые ме­таллы (алюминий, натрий, калий, марганец, платина и др.), кислород и многие другие элементы, а также различные рас­творы электролитов.

Так как парамагнетики втягиваются в поле, то линии ин­дукции создаваемого ими собственного магнитного поля и намагничивающего поля направлены одинаково, поэтому поле усиливается. Таким образом, у них m > 1. Но от единицы m от­личается крайне незначительно, всего на величину порядка 10 –5 ...10 –6 . Поэтому для наблюдения парамагнитных явлений требуются мощные магнитные поля.

Диамагнетики

Особый класс веществ представляют собой диамагне­тики , открытые Фарадеем. Они выталкиваются из магнит­ного поля. Если подвесить диамагнитный стерженек возле по­люса сильного электромагнита, то он будет отталкиваться от него. Следовательно, линии индукции созданного им поля на­правлены противоположно линиям индукции намагничиваю­щего поля, т. е. поле ослабляется (рис. 12.3). Соответственно у диамагнетиков m < 1, причем отличается от единицы на вели­чину порядка 10 –6 . Магнитные свойства у диамагнетиков вы­ражены слабее, чем у парамагнетиков.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...