Последовательности и их виды. Последовательность натуральных чисел

Рассмотрим ряд натуральных чисел: 1, 2, 3, , n – 1, n ,  .

Если заменить каждое натуральное число n в этом ряду некоторым числом a n , следуя некоторому закону, то получим новый ряд чисел:

a 1 , a 2 , a 3 , , a n –1 , a n , ,

кратко обозначаемый и называемыйчисловой последователь- ностью . Величина a n называется общим членом числовой последовательности. Обычно числовая последовательность задается некоторой формулой a n = f (n ) позволяющей найти любой член последовательности по его номеру n ; эта формула называется формулой общего члена. Заметим, что задать числовую последовательность формулой общего члена не всегда возможно; иногда последовательность задается путем описания ее членов.

По определению, последовательность всегда содержит бесконечное множество элементов: любые два разных ее элемента отличаются, по крайней мере, своими номерами, которых бесконечно много.

Числовая последовательность является частным случаем функции. Последовательность является функцией, определенной на множестве натуральных чисел и принимающей значения в множестве действительных чисел, т. е. функцией вида f : N R .

Последовательность
называетсявозрастающей (убывающей ), если для любого n N
Такие последовательности называютсястрого монотонными .

Иногда в качестве номеров удобно использовать не все натуральные числа, а лишь некоторые из них (например, натуральные числа, начиная с некоторого натурального числа n 0). Для нумерации также возможно использование не только натуральных, но и других чисел, например, n = 0, 1, 2,  (здесь в качестве еще одного номера к множеству натуральных чисел добавлен ноль). В таких случаях, задавая последовательность, указывают, какие значения принимают номера n .

Если в некоторой последовательности для любого n N
то последовательность называетсянеубывающей (невозрастающей ). Такие последовательности называются монотонными .

Пример 1 . Числовая последовательность 1, 2, 3, 4, 5, … является рядом натуральных чисел и имеет общий член a n = n .

Пример 2 . Числовая последовательность 2, 4, 6, 8, 10, … является рядом четных чисел и имеет общий член a n = 2n .

Пример 3 . 1.4, 1.41, 1.414, 1.4142, … − числовая последовательность приближенных значений с увеличивающейся точностью.

В последнем примере невозможно дать формулу общего члена последовательности.

Пример 4 . Записать первых 5 членов числовой последовательности по ее общему члену
. Для вычисленияa 1 нужно в формулу для общего члена a n вместо n подставить 1, для вычисления a 2 − 2 и т. д. Тогда имеем:

Тест 6 . Общим членом последовательности 1, 2, 6, 24, 120,  является:

1)

2)

3)

4)

Тест 7 .
является:

1)

2)

3)

4)

Тест 8 . Общим членом последовательности
является:

1)

2)

3)

4)

Предел числовой последовательности

Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу А при увеличении порядкового номера n . В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

Число А называется пределом числовой последовательности
:

(1)

если для любого  > 0 найдется такое число n 0 = n 0 (), зависящее от , что
приn > n 0 .

Это определение означает, что А есть предел числовой последовательности, если ее общий член неограниченно приближается к А при возрастании n . Геометрически это значит, что для любого  > 0 можно найти такое число n 0 , что, начиная с n > n 0 , все члены последовательности расположены внутри интервала (А – , А + ). Последовательность, имеющая предел, называется сходящейся ; в противном случае – расходящейся .

Числовая последовательность может иметь только один предел (конечный или бесконечный) определенного знака.

Пример 5 . Гармоническая последовательность имеет пределом число 0. Действительно, для любого интервала (–; +) в качестве номера N 0 можно взять какое-либо целое число, больше . Тогда для всехn > n 0 >имеем

Пример 6 . Последовательность 2, 5, 2, 5,  является расходящейся. Действительно, никакой интервал длины, меньшей, например, единицы, не может содержать всех членов последовательности, начиная с некоторого номера.

Последовательность называется ограниченной , если существует такое число М , что
для всехn . Всякая сходящаяся последовательность ограничена. Всякая монотонная и ограниченная последовательность имеет предел. Всякая сходящаяся последовательность имеет единственный предел.

Пример 7 . Последовательность
является возрастающей и ограниченной. Она имеет предел
=е .

Число e называется числом Эйлера и приблизительно равно 2,718 28.

Тест 9 . Последовательность 1, 4, 9, 16,  является:

1) сходящейся;

2) расходящейся;

3) ограниченной;

Тест 10 . Последовательность
является:

1) сходящейся;

2) расходящейся;

3) ограниченной;

4) арифметической прогрессией;

5) геометрической прогрессией.

Тест 11 . Последовательность не является:

1) сходящейся;

2) расходящейся;

3) ограниченной;

4) гармонической.

Тест 12 . Предел последовательности, заданной общим членом
равен.

Если каждому натуральному числу n поставлено в соответствие некоторое действительное число x n , то говорят, что задана числовая последовательность

x 1 , x 2 , … x n , …

Число x 1 называют членом последовательности с номером 1 или первым членом последовательности , число x 2 - членом последовательности с номером 2 или вторым членом последовательности, и т.д. Число x n называют членом последовательности с номером n .

Существуют два способа задания числовых последовательностей – с помощью и с помощью рекуррентной формулы .

Задание последовательности с помощью формулы общего члена последовательности – это задание последовательности

x 1 , x 2 , … x n , …

с помощью формулы, выражающей зависимость члена x n от его номера n .

Пример 1 . Числовая последовательность

1, 4, 9, … n 2 , …

задана с помощью формулы общего члена

x n = n 2 , n = 1, 2, 3, …

Задание последовательности с помощью формулы, выражающей член последовательности x n через члены последовательности с предшествующими номерами, называют заданием последовательности с помощью рекуррентной формулы .

x 1 , x 2 , … x n , …

называют возрастающей последовательностью, больше предшествующего члена.

Другими словами, для всех n

x n + 1 > x n

Пример 3 . Последовательность натуральных чисел

1, 2, 3, … n , …

является возрастающей последовательностью .

Определение 2. Числовую последовательность

x 1 , x 2 , … x n , …

называют убывающей последовательностью, если каждый член этой последовательности меньше предшествующего члена.

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

x n + 1 < x n

Пример 4 . Последовательность

заданная формулой

является убывающей последовательностью .

Пример 5 . Числовая последовательность

1, - 1, 1, - 1, …

заданная формулой

x n = (- 1) n , n = 1, 2, 3, …

не является ни возрастающей, ни убывающей последовательностью.

Определение 3. Возрастающие и убывающие числовые последовательности называют монотонными последовательностями .

Ограниченные и неограниченные последовательности

Определение 4. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной сверху, если существует такое число M, что каждый член этой последовательности меньше числа M .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 5. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной снизу, если существует такое число m, что каждый член этой последовательности больше числа m .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 6. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной, если она ограничена и сверху, и снизу.

Другими словами, существуют такие числа M и m, что для всех n = 1, 2, 3, … выполнено неравенство

m < x n < M

Определение 7. Числовые последовательности, которые не являются ограниченными , называют неограниченными последовательностями .

Пример 6 . Числовая последовательность

1, 4, 9, … n 2 , …

заданная формулой

x n = n 2 , n = 1, 2, 3, … ,

ограничена снизу , например, числом 0. Однако эта последовательность неограничена сверху .

Пример 7 . Последовательность

заданная формулой

является ограниченной последовательностью , поскольку для всех n = 1, 2, 3, … выполнено неравенство

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

подготовительные курсы для школьников 10 и 11 классов

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Последовательность - это набор элементов некоторого множества. Бесконечная последовательность - последовательность, которая задается функцией с областью определения N . В том случае, когда эта функция числовая, то бесконечной числовой последовательностью . Далее будем рассматривать числовые последовательности. Значение f (n ), которое соответствует натуральному числу n , называется n -м членом последовательности. Иногда вместо f (n ) используются обозначения a n , x n .

Примеры числовой последовательности:

f (n ) = 3n + 2, откуда f (1) = 5, f (2) = 8,..., f (100) = 302,... ;

f (n ) = 1 + (-1) n , откуда f (1) = 0, f (2) = 2,... или, в общем случае, f (2k - 1) = 0, f (2k ) = 2 (k N ).

Как функцию числовую последовательность можно задавать различными способами. Формула, которая задает числовую последовательность, называется формулой n -го (или общего) члена. С ее помощью можно получить значение любого элемента последовательности, подставив в формулу ее номер. Например: a n = 2 n .

Существует еще один способ задания числовой последовательности - рекуррентный. Он выражает любой член последовательности через предыдущие. Например: a n = 2(a n -1 + 3), a 1 = 2. Тогда a 2 = 10, a 3 = 26,...

Если последовательность имеет конечное количество членов, она называется конечной. Например, конечной является последовательность трехзначных чисел: 100, 101, ... , 999. Она состоит из 900 элементов.

Последовательность называется возрастающей , если для любого n N выполняется неравенство a n a n +1 .

Последовательность называется спадающей , если для любого n N выполняется неравенство a n > a n +1 .

Возрастающие и спадающие последовательности называются монотонными .

Например, последовательность заданная формулой a n = n /(n + 1), является монотонной, возрастающей, т.к. разница a n +1 - a n = (n + 1)/(n + 2) - n /(n + 1) = 1/(n + 1)(n + 2) > 0. То есть a n a n +1 . Последовательность с общим членом a n = 1 + (-1) n не является монотонной, т.к. a 1 a 2 , а a 2 > a 3 .

Последовательность называется ограниченной сверху M R , что a n M .

Последовательность называется ограниченной снизу , если существует такое число m R , что a n m .

Например, последовательность a n = n ограничена снизу, но не ограничена сверху. Последовательность a n = (-1) n n не ограничена ни сверху, ни снизу.

Последовательность называется ограниченной , если она одновременно ограничена и сверху, и снизу.

Число a называется границей последовательности (a n ), если для любого ε > 0 существует натуральное число N , такое, что для всех n > N выполняется неравенство |a n - a | limn →∞ a n = a или a n a .

Последовательность, которая имеет границу, называется сходящейся . Последовательность, которая не имеет границу, называется расходящейся .

Если lim n →∞ a n = 0, то последовательность (a n ) называется бесконечно малой.


Свойства пределов числовой последовательности:

1. Если lim n →∞ a n = a и lim n →∞ b n = b , то lim n →∞ (a n + b n ) = a + b ;

2. Если lim n →∞ a n = a и lim n →∞ b n = b , то lim n →∞ (a n b n ) = a b ;

3. Если lim n →∞ a n = a и lim n →∞ b n = b ≠ 0, то lim n →∞ (a n /b n ) = a /b ;

4. lim n →∞ c a n = c lim n →∞ a n , где c R ;

5. Если lim n →∞ a n = lim n →∞ b n = a и a n c n b n , то lim n →∞ c n = a .

6. Если lim n →∞ a n = a , lim n →∞ b n = b и a n b n при n N , то a b .

Введение………………………………………………………………………………3

1.Теоретическая часть……………………………………………………………….4

Основные понятия и термины…………………………………………………....4

1.1 Виды последовательностей…………………………………………………...6

1.1.1.Ограниченные и неограниченные числовые последовательности…..6

1.1.2.Монотонность последовательностей…………………………………6

1.1.3.Бесконечно большие и бесконечно малые последовательности…….7

1.1.4.Свойства бесконечно малых последовательностей…………………8

1.1.5.Сходящиеся и расходящиеся последовательности и их свойства..…9

1.2Предел последовательности………………………………………………….11

1.2.1.Теоремы о пределах последовательностей……………………………15

1.3.Арифметическая прогрессия…………………………………………………17

1.3.1. Свойства арифметической прогрессии…………………………………..17

1.4Геометрическая прогрессия…………………………………………………..19

1.4.1. Свойства геометрической прогрессии…………………………………….19

1.5. Числа Фибоначчи……………………………………………………………..21

1.5.1 Связь чисел Фибоначчи с другими областями знаний…………………….22

1.5.2. Использование ряда чисел Фибоначчи для описания живой и неживой природы…………………………………………………………………………….23

2. Собственные исследования…………………………………………………….28

Заключение……………………………………………………………………….30

Список использованной литературы…………………………………………....31

Введение.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ. Мне интересно узнать связь математических последовательностей с другими областями знаний.

Цель исследовательской работы: Расширить знания о числовой последовательности.

1. Рассмотреть последовательность;

2. Рассмотреть ее свойства;

3. Рассмотреть аналитическое задание последовательности;

4. Продемонстрировать ее роль в развитии других областей знаний.

5. Продемонстрировать использование ряда чисел Фибоначчи для описания живой и неживой природы.

1. Теоретическая часть.

Основные понятия и термины.

Определение. Числовая последовательность– функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.

Число a называется пределом последовательности x = {x n }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |x n - a| < ε.

Если число a есть предел последовательности x = {x n }, то говорят, что x n стремится к a, и пишут

.

Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y1 < y2 < y3 < … < yn < yn+1 < ….

Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y1 > y2 > y3 > … > yn > yn+1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

Арифметическая прогрессия- это последовательность {an}, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность {an}, заданная рекуррентно соотношениями

a1 = a, an = an–1 + d (n = 2, 3, 4, …)

Геометрическая прогрессия- это последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q.

Таким образом, геометрическая прогрессия – это числовая последовательность {bn}, заданная рекуррентно соотношениями

b1 = b, bn = bn–1 q (n = 2, 3, 4…).

1.1 Виды последовательностей.

1.1.1 Ограниченные и неограниченные последовательности.

Последовательность {bn} называют ограниченной сверху, если существует такое число М, что для любого номера n выполняется неравенство bn≤ M;

Последовательность {bn} называют ограниченной снизу, если существует такое число М, что для любого номера n выполняется неравенство bn≥ М;

Например:

1.1.2 Монотонность последовательностей.

Последовательность {bn} называют невозрастающие (неубывающей), если для любого номера n справедливо неравенство bn≥ bn+1 (bn ≤bn+1);

Последовательность {bn} называют убывающей (возрастающей), если для любого номера n справедливо неравенство bn> bn+1 (bn

Убывающие и возрастающие последовательности называют строго монотонными, невозрастающие- монотонными в широком смысле.

Последовательности, ограниченные одновременно сверху и снизу, называются ограниченными.

Последовательность всех этих типов носят общее название- монотонные.

1.1.3 Бесконечно большие и малые последовательности.

Бесконечно малая последовательность- это числовая функция или последовательность, которая стремится к нулю.

Последовательность an называется бесконечно малой, если

Функция называется бесконечно малой в окрестности точки x0, если ℓimx→x0 f(x)=0.

Функция называется бесконечно малой на бесконечности, если ℓimx→.+∞ f(x)=0 либо ℓimx→-∞ f(x)=0

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если ℓimx→.+∞ f(x)=а, то f(x) − a = α(x), ℓimx→.+∞ f((x)-a)=0.

Бесконечно большая последовательность- числовая функция или последовательность, которая стремится к бесконечности.

Последовательность an называется бесконечно большой, если

ℓimn→0 an=∞.

Функция называется бесконечно большой в окрестности точки x0, если ℓimx→x0 f(x)= ∞.

Функция называется бесконечно большой на бесконечности, если

ℓimx→.+∞ f(x)= ∞ либо ℓimx→-∞ f(x)= ∞ .

1.1.4 Свойства бесконечно малых последовательностей.

Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Любая бесконечно малая последовательность ограничена.

Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы - нули.

Если {xn} - бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность {1/xn} , которая является бесконечно малой. Если же всё же {xn} содержит нулевые элементы, то последовательность {1/xn} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Если {an} - бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность {1/an}, которая является бесконечно большой. Если же всё же {an}содержит нулевые элементы, то последовательность {1/an} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

1.1.5 Сходящиеся и расходящиеся последовательности и их свойства.

Сходящаяся последовательность- это последовательность элементов множества Х, имеющая предел в этом множестве.

Расходящаяся последовательность- это последовательность, не являющаяся сходящейся.

Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

Если последовательность {xn} сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность {1/xn}, которая является ограниченной.

Сумма сходящихся последовательностей также является сходящейся последовательностью.

Разность сходящихся последовательностей также является сходящейся последовательностью.

Произведение сходящихся последовательностей также является сходящейся последовательностью.

Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.



Последние материалы раздела:

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...