Построение функции принадлежности нечеткого множества. Определение нечеткого множества

Определение

Для пространства рассуждения и данной функции принадлежности нечёткое множество определяется как

Функция принадлежности количественно градуирует принадлежность элементов фундаментального множества пространства рассуждения нечёткому множеству . Значение означает, что элемент не включен в нечёткое множество, описывает полностью включенный элемент. Значения между и характеризуют нечётко включенные элементы.


Нечёткое множество и классическое, четкое (crisp ) множество

Классификация функций принадлежности нормальных нечетких множеств

Нечеткое множество называется нормальным, если для его функции принадлежности справедливо утверждение, что существует такой , при котором .

s

Функция принадлежности класса s определяется как:

Функция принадлежности класса π

Функция принадлежности класса π определяется через функцию класса s :

Функция принадлежности класса γ

Функция принадлежности класса γ определяется как:

Функция принадлежности класса t

Функция принадлежности класса t определяется как:

Функция принадлежности класса L

Функция принадлежности класса L определяется как:

См. также

  • Грубое множество
  • Эвентология

Внешние ссылки

Литература


Wikimedia Foundation . 2010 .

  • Теория нечёткой меры
  • Капель

Смотреть что такое "Функция принадлежности" в других словарях:

    функция принадлежности - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN membership function … Справочник технического переводчика

    Функция и поле речи и языка в психоанализе - «ФУНКЦИЯ И ПОЛЕ РЕЧИ И ЯЗЫКА В ПСИХОАНАЛИЗЕ» («Fonction et champ de la parole et du langage en psychanalyse») программа переосмысления психоанализа, выдвинутая в 1953 франц. психиатром и психоаналитиком Жаком Лаканом. Этот текст был… … Энциклопедия эпистемологии и философии науки

    Характеристическая функция (нечёткая логика) - Функция принадлежности нечёткого множества это обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому… … Википедия

    Индикаторная функция

    Характеристическая функция множества - Индикатор, или характеристическая функция, или индикаторная функция подмножества это функция, определенная на множестве X, которая указывает на принадлежность элемента подмножеству A. Термин характеристическая функция уже занят в теории… … Википедия

    ВЫПУКЛАЯ ФУНКЦИЯ - комплексного переменногог регулярная однолистная функция в единичном круге, отображающая единичный круг на нек рую выпуклую область. Регулярная однолистная функция является В. ф. тогда и только тогда, когда при обходе любой окружности… … Математическая энциклопедия

    Нечёткое множество - Эту страницу предлагается объединить с Теория нечётких множеств … Википедия

    Нечеткие множества

    Нечеткое множество - Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control . Л. Заде расширил классическое канторовское понятие… … Википедия

    Нечёткие множества - Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control . Л. Заде расширил классическое канторовское понятие… … Википедия


Определение

Под нечётким множеством понимается совокупность , где X - универсальное множество, а - функция принадлежности (характеристическая функция), характеризующая степень принадлежности элемента X нечёткому множеству A.

Функция принимает значения в некотором линейно упорядоченном множестве М. Множество М называют множеством принадлежностей, часто в качестве выбирается отрезок {0,1}. Если, то нечёткое множество может рассматриваться как обычное, чёткое множество. M={0,1}.

Примеры записи нечеткого множества

Пусть E = {x1, x2, x3, x4, x5 }, M = ; A - нечеткое множество, для которого

Тогда A можно представить в виде:

A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или

A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5, или

А= x1x2x3x4x5
0,3 0 1 0,5 0,9

Замечание . Здесь знак "+" не является обозначением операции

сложения, а имеет смысл объединения.

Характеристическая функция обычного множества - это функция, устанавливающая принадлежность элемента к множеству. Особенность: носит бинарный характер.

f(x)={1, x принадлежит М; 0, x не принадлежит М.

Функция принадлежности - функция, которая позволяет вычислить степень принадлежности производного элемента универсального множества к нечеткому множеству.

Степень принадлежности - это любое число из диапазона Z (например, Z=).

Чем выше степень принадлежности, тем в большей мере элемент универсального множества соответствует свойствам нечеткого множества.

Множество Z называют множеством принадлежностей. Если Z={0,1}, то нечеткое множество F может рассматриваться как обычное (четкое) множество.

2. Какие нечеткие числа называют нормальными, унимодальными и выпуклыми?

Носителем (суппортом) нечёткого множества называется множество

Supp(F)={x|f(x)>0}, для любого x принадлежащего Е.

Нечеткое множество называется пустым, если его носитель тоже пустое множество.

F=пустое множество <=> supp (F)=пустое множество, то есть f(x)=0 для любого x от Е.

Нечеткое множество является унимодальным , если mA(x)=1 лишь для одного x из E.

Элементы x из Е для которых f(x)=0,5 называются точками перехода множества F.

Высотой нечеткого множества F называется верхняя граница его функции принадлежности hgt (F) = sup x из E f(x).

Нечеткое множество F называется нормальным , если его высота равна единицы. В противном случае оно называется субнормальным.

Нормализация - это преображение субнормального нечеткого множества F в нормальное F определяется так:


F=norm (F) <=> f(x)=f(x)/hgt(F), для любого x из Е.

3. Дайте определение Нечеткие числа (L-R)-типа.

Нечеткие числа (L-R)-типа - это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.

Нечеткие числа и интервалы, которые наиболее часто используются для представления нечетких множеств в нечетком моделировании, являются нормальными. Однако данные выше определения нечеткого числа и нечеткого интервала слишком общие, что затрудняет их практическое использование. С вычислительной точки зрения удобно использовать более конкретные определения нечетких чисел и интервалов в форме аналитической аппроксима-ции с помощью так называемых (L-R )-функций. Получаемые в результате нечеткие числа и интервалы в форме (L-R) -функций позволяют охватить достаточно широкий класс конкрет-ных функций принадлежности. Определение 6.14. Функция L-muna (а также и R-muna), в общем случае определяется как произвольная функция L: R → и R: /R →, заданная на множестве действительных чисел, невозрастающая на подмножестве неотрицательных чисел R+ и удовлетворяющая следующим дополнительным условиям: L(-x)= L(x), R(-x)=R(x) - условие четности; (6.7) L (0)=R (0) = 1 -условие нормирования. (6.8) Примечание: Иногда в литературе можно встретить еще одно условие, которому долж-ны, по мнению некоторых авторов, удовлетворять функции (L-R )-типа: L (1) = R (1) = 0. По-скольку с одной стороны это условие существенно ограничивает класс функций (L-R )-типа, а с другой стороны, рассматриваемые ниже треугольные нечеткие числа и трапециевидные не-четкие интервалы согласуются с выполнением этого свойства, мы не будем его включать в определение функций (L-R )-типа.

В обыденной жизни мы часто сталкиваемся со случаями, когда не существует элементарных измеримых свойств и признаков, которые определяют интересующие нас понятия, например, красоту, интеллектуальность. Бывает трудно проранжировать степень проявления свойства у рассматриваемых элементов. Так как степени принадлежности рассматриваются на данном реальном множестве, а не в абсолютном смысле, то интенсивность принадлежности можно определять, исходя из попарных сравнений рассматриваемых элементов.

Среди косвенных методов определения функции принадлежности наибольшее распространение получил метод парных сравнений Саати . Сложность использования этого метода заключается в необходимости нахождения собственного вектора матрицы парных сравнений, которая задается с помощью специально предложенной шкалы. Причем эти сложности увеличиваются с ростом размерности универсального множества , на которой задается лингвистический терм .

Мы рассмотрим метод, также использующий матрицу парных сравнений элементов универсального множества . Но, в отличие от метода Саати, он не требует нахождения собственного вектора матрицы, т.е. освобождает исследователя от трудоемких процедур решения характеристических уравнений .

Пусть - некоторое свойство, которое рассматривается как лингвистический терм . Нечеткое множество , с помощью которого формализуется терм , представляет собой совокупность пар:

Где - универсальное множество , на котором задается нечеткое множество . Задача состоит в том, чтобы определить значения для всех . Совокупность этих значений и будет составлять неизвестную функцию принадлежности.

Метод, который предлагается для решения поставленной проблемы, базируется на идее распределения степеней принадлежности элементов универсального множества согласно с их рангами. Эта идея раньше использовалась в теории структурного анализа систем, где рассмотрены различные способы определения рангов элементов.

В нашем случае под рангом элемента будем понимать число , которое характеризует значимость этого элемента в формировании свойства, описываемого нечетким термом. Допускаем, что выполняется правило: чем больший ранг элемента, тем больше степень принадлежности .

Для последующих построений введем такие обозначения: , . Тогда правило распределения степеней принадлежности можно задать в виде системы соотношений:

Используя данные соотношения, легко определить степени принадлежности всех элементов универсального множества через степень принадлежности опорного элемента.

Если опорным является элемент с принадлежностью , то

Учитывая условие нормирования, находим:

Полученные формулы дают возможность вычислять степени принадлежности элементов к нечеткому терму двумя независимыми путями:

Эта матрица обладает следующими свойствами:

а) она диагональная, т.е.

б) ее элементы, которые симметричны относительно главной диагонали, связаны зависимостью

в) она транзитивна, т.е. .

Наличие этих свойств приводит к тому, что при известных элементах одной строки матрицы легко определить элементы всех других строк. Если известна -я строка, т.е. элементы , , то произвольный элемент находится так:

Поскольку матрица может быть интерпретирована как матрица парных сравнений рангов, то для экспертных оценок элементов этой матрицы можно использовать 9 балльную шкалу Саати. В нашем случае шкала формируется так:

Числовая оценка Качественная оценка (сравнение и )
1 отсутствие преимущества над
3 слабое преимущество над
5 существенное преимущество над
7 явное преимущество над
9 абсолютное преимущество над
2, 4, 6, 8 промежуточные
Нечеткое множество (fuzzyset) представляет собой совокупность элементов произвольной природы, относительно которых нельзя точно утверждать – обладают ли эти элементы некоторым характеристическим свойством, которое используется для задания нечеткого множества.

Пусть X – универсальное (базовое) множество, x – элемент X , а R – некоторое свойство. Обычное (четкое) подмножество A универсального множества X , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар
A = μ A x / x , где μ A x – характеристическая функция, принимающая значение 1 , если x удовлетворяет свойству R , и 0 – в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из X нет однозначного ответа «да-нет» относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества X определяется как множество упорядоченных пар A = μ A x / x , где μ A x – характеристическая функция принадлежности (или просто функция принадлежности ), принимающая значения в некотором вполне упорядоченном множестве M = 0 ; 1 . Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей. Если M = 0 ; 1 , то нечеткое подмножество A может рассматриваться как обычное или четкое множество. Степень принадлежности μ A x является субъективной мерой того, насколько элемент x ∈ X , соответствует понятию, смысл которого формализуется нечетким множеством A .

Носителем нечеткого множества A является четкое подмножество S A универсального множества X со свойством μ A x > 0 , т.е. S A = x ∣ x ∈ X ∧ μ A x > 0 . Иными словами, носителем нечеткого множества A является подмножество S A универсального множества X , для элементов которого функция принадлежности μ A x > 0 больше нуля. Иногда носитель нечеткого множества обозначают support A .

Если носителем нечеткого множества A является дискретное подмножество S A , то нечеткое подмножество A универсального множества X , состоящего из n элементов, можно представить в виде объединения конечного числа одноточечных множеств μ A x / x при помощи символа ∑ : A = ∑ i = 1 n μ A x i / x i . При этом подразумевается, что элементы x i упорядочены по возрастанию в соответствии со своими индексами, т.е. x 1 < x 2 < x 3 < … < x n .

Если носителем нечеткого множества A является непрерывное подмножество S A , то нечеткое подмножество A универсального множества X , рассматривая символ ∫ как непрерывный аналог введенного выше символа объединения для дискретных нечетких множеств ∑ , можно представить в виде объединения бесконечного числа одноточечных множеств μ A x / x:

A = ∫ X μ A x / x .

Пример. Пусть универсальное множество X соответствует множеству возможных значений толщин изделия от 10 мм до 40 мм с дискретным шагом 1 мм. Нечеткое множество A , соответствующее нечеткому понятию «малая толщина изделия», может быть представлено в следующем виде:

A = 1 / 10 ; 0,9 / 11 ; 0,8 / 12 ; 0,7 / 13 ; 0,5 / 14 ; 0,3 / 15 ; 0,1 / 16 ; 0 / 17 ; … ; 0 / 40 ,

A = 1 / 10 + 0,9 / 11 + 0,8 / 12 + 0,7 / 13 + 0,5 / 14 + 0,3 / 15 + 0,1 / 16 + 0 / 17 + … + 0 / 40 ,

где знак суммирования обозначает не операцию арифметического сложения, а объединения элементов в одно множество. Носителем нечеткого множества A будет конечное подмножество (дискретный носитель):

S A = 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 .

Если же универсальное множество X является множеством действительных чисел от 10 до 40 , т.е. толщина изделия может принимать все возможные значения в этих пределах, то носителем нечеткого множества A является отрезок S A = 10 ; 16 .

Нечеткое множество с дискретным носителем может быть представлено в виде отдельных точек на плоскости, нечеткое множество с непрерывным носителем может быть представлено в виде кривой, что соответствует дискретной и непрерывной функциям принадлежности μ A x , заданным на универсальном множестве X (рис.2.1).

Рис.2.1. Функции принадлежности нечетких множеств с (а)-дискретным и (б)-непрерывным носителями

Пример. Пусть X = 0 ; 1 ; 2 ; … – множество целых неотрицательных чисел. Нечеткое множество ital малый можно определить как μ ital малый x = x 1 + 0,1 x 2 − 1 .

Рис.2.2. Графическое представление нечеткого множества малый

Нечеткое множество A называется конечным , если его носитель S A является конечным четким множеством. При этом, по аналогии с обычными множествами, можно говорить, что такое нечеткое множество имеет конечную мощность card A = card S A . Нечеткое множество A называется бесконечным , если его носитель S A не является конечным четким множеством. При этом счетным нечетким множеством будет называться нечеткое множество с счетным носителем, имеющим счетную мощность в обычном смысле в терминах теории четких множеств, т.е. если S A содержит бесконечное число элементов, которые однако можно пронумеровать натуральными числами 1,2 ,3 . . . , причем достичь последнего элемента при нумерации принципиально невозможно. Несчетным нечетким множеством будет называться нечеткое множество со несчетным носителем, имеющим несчетную мощность континуума , т.е. если S A содержит бесконечное число элементов, которые невозможно пронумеровать натуральными числами 1,2 ,3 . . .

Пример. Нечеткое понятие «очень маленькое количество деталей» может быть представлено в виде конечного нечеткого множества A = 1 / 0 + 0,9 / 1 + 0,8 / 2 + 0,7 / 3 + 0,5 / 4 + 0,1 / 5 + 0 / 6 + … с мощностью card (A) = 6 и носителем S A = 0 ; 1 ; 2 ; 3 ; 4 ; 5 , который является конечным четким множеством. Нечеткое понятие «очень большое количество деталей» может быть представлено в виде A = 0 / 0 + … + 0,1 / 1 0 + 0,4 / 11 + 0,7 / 12 + 0,9 / 13 + 1 / 14 + 1 / 15 + … + 1 / n + … , n ∈ N – нечеткого множества с бесконечным счетным носителем S A ≡ N (множество натуральных чисел), который имеет счетную мощность в обычном смысле.

Пример. Несчетное нечеткое множество A , соответствующее нечеткому понятию «очень горячо», задано на универсальном множестве значений температур (в Кельвинах) температурой x ∈ [ 0 ; ∞) и функцией принадлежности μ A = 1 − e − x , с носителем S A ≡ R + (множество неотрицательных действительных чисел), который имеет несчетную мощность континуума.

Величина sup x ∈ X μ A x называется высотой нечеткого множества.

Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности sup x ∈ X μ A x = 1 . При sup x ∈ X μ A x < 1 субнормальным.

Нечеткое множество называется пустым , если ∀ x ∈ X μ A x = 0 .

Непустое субнормальное множество всегда можно нормализовать, разделив все значения функции принадлежности на ее максимальное значение μ A x sup x ∈ X μ A x .

Нечеткое множество называется унимодальным , если μ A x = 1 только для одной точки x (моды ) универсального множества X .

Нечеткое множество называется точечным , если μ A x > 0 только для одной точки x универсального множества X .

Множеством α -уровня нечеткого множества A , определенного на универсальном множества X , называется четкое подмножество A α универсального множества X , определяемое в виде:

A α = x ∈ X ∣ μ A x ≥ α , где α ∈ 0 ; 1 .

Пример. A = 0,8 / 1 + 0,6 / 2 + 0,2 / 3 + 1 / 4 , A 0,5 = 1 ; 2 ; 4 , где A 0,5 – четкое множество, включающее те элементы x упорядоченных пар μ A x / x , составляющих нечеткое множество A , для которых значение функции принадлежности которых удовлетворяет условию μ A x ≥ α .

Для множеств α -уровня выполняется следующее свойство: если α 1 ≥ α 2 , то мощность подмножества A α 1 не больше мощности подмножества A α 2 .

Элементы x ∈ X , для которых μ A x = 0,5 называются точками перехода нечеткого множества A .

Ядром нечеткого множества A , определенного на универсальном множестве X , называется четкое множество core A , элементы которого удовлетворяют условию core A = x ∈ X ∣ μ A x = 1 .

Границей нечеткого множества A , определенного на универсальном множестве X , называется четкое множество front A , элементы которого удовлетворяют условию front A = x ∈ X ∣ 0 < μ A x < 1 .

Пример. Пусть X = 0 ; 1 ; 2 ; … ; 10 , M = 0 ; 1 . Нечеткое множество несколько можно определить на универсальном множестве натуральных чисел следующим образом: несколько = 0,5 / 3 + 0,8 / 4 + 1 / 5 + 1 / 6 + 0,8 / 7 + 0,5 / 8 ; его характеристики: высота = 1 , носитель = 3 ; 4 ; 5 ; 6 ; 7 ; 8 , точки перехода = 3 ; 8 , ядро = 5 ; 6 , граница = 3 ; 4 ; 7 ; 8 .

Нечеткое множество A , определенное на универсальном множестве X , называется выпуклым , если μ A x ≥ min μ A a ; μ A b ; a < x < b ; x , a , b ∈ X (рис.2.3).

Рис.2.3. Функции принадлежности выпуклого и невыпуклого нечетких множеств

Введенное определение нечеткого множества (2.1) не накладывает ограничений на выбор функции принадлежности. Однако, на практике целесообразно использовать аналитическое представление функции принадлежности μ A x нечеткого множества A с элементами x , нечетко обладающими определяющим множество свойством R. Типизация функций принадлежности в контексте решаемой технической задачи существенно упрощает соответствующие аналитические и численные расчеты при применении методов теории нечетких множеств. Выделяют следующие типовые функции принадлежности , .

Треугольные функции принадлежности, использующиеся для задания неопределенностей типа: «приблизительно равно», «среднее значение», «расположен в интервале», «подобен объекту», «похож на предмет» и т.п.:

  • треугольная и трапецеидальная функции
  • Trimf x,a,b,c = 0 , x ≤ a ; x - a b - a , a ≤ x ≤ b ; c - x c - b , b ≤ x ≤ c ; 0 , c ≤ x ; trapmf x,a,b,c,d = 0 , x ≤ a ; x - a b - a , a ≤ x ≤ b ; 1 , b ≤ x ≤ c ; d - x d - c , c ≤ x ≤ d ; 0 , d ≤ x ;

    Z-образные функции принадлежности, использующиеся для задания неопределенностей типа: «малое количество», «небольшое значение», «незначительная величина», «низкий уровень» и т.п.:

  • квадратичный и гармонический Z-сплайны
  • Zm f 1 x,a,b = 1 , x ≤ a ; 1 - 2 x - a b - a 2 , a < x ≤ a + b 2 ; 2 b - x b - a 2 , a + b 2 < x < b ; 0 , b ≤ x ; zm f 2 x,a,b = 1 , x < a ; 1 2 + 1 2 cos x - a b - a ; a ≤ x ≤ b ; 0 , x > b ;

  • Z-сигмоидальная и Z-линейная функции
  • Sigmf x,a,b = 1 1 + exp - a x - b , a < 0 ; zlinemf x,c,d = 1 , - ∞ < x ≤ c ; d - x b - c , c < x ≤ d ; 0 , x > d ;

    S-образные функции принадлежности, использующиеся для задания неопределенностей типа: «большое количество», «большое значение», «значительная величина», «высокий уровень» и т.п.:

  • квадратичный и гармонический S-сплайны
  • Sm f 1 x,a,b = 0 , x ≤ a ; 2 x - a b - a 2 , a < x ≤ a + b 2 ; 1 - 2 b - x b - a 2 , a + b 2 < x < b ; 1 , b ≤ x ; sm f 2 x,a,b = 0 , x < a; 1 2 + 1 2 cos x - b b - a ; a ≤ x ≤ b ; 1 , x > b ;

  • S-сигмоидальная и S-линейная функции
  • Sigmf x,a,b = 1 1 + exp - a x - b , a > 0 ; slinemf x,a,b = 0 , x ≤ a ; x - a b - a , a < x ≤ b ; 1 , x > b ;

    П-образные функции принадлежности, использующиеся для задания неопределенностей типа: «приблизительно в пределах от и до», «примерно равно», «около» и т.п.:

  • колоколообразная и гауссова функции
  • Gbellmf x,a,b,c = 1 1 + x - c a 2b ; gaussmf x,σ,c = exp - x - c 2 2σ 2

Существует множество других функций принадлежности нечетких множеств, заданных как композиции вышеупомянутых базовых функций (двойная гауссова, двойная сигмоидальная и т.п.), либо как комбинации по участкам возрастания и убывания (сигмоидально-гауссова, сплайн-треугольная и т.п.).

Функция принадлежности μ A x – это некоторая не вероятностная субъективная мера нечеткости, определяемая в результате опроса экспертов о степени соответствия элемента x понятию, формализуемому нечетким множеством A . В отличие от вероятностной меры, которая является оценкой стохастической неопределенности, имеющей дело с неоднозначностью наступления некоторого события в различные моменты времени, нечеткая мера является численной оценкой лингвистической неопределенности, связанной с неоднозначностью и расплывчатостью категорий человеческого мышления. При построении функции принадлежности μ A x с каждым нечетким множеством A ассоциируется некоторое свойство, признак или атрибут R , который характеризует некоторую совокупность объектов X . Чем в большей степени конкретный объект x ∈ X обладает этим свойством R , тем более близко к соответствующее значение μ A x . Если элемент x ∈ X определенно обладает этим свойством R , то μ A x = 1 , если же x ∈ X определенно не обладает этим свойством R , то μ A x = 0 . Существуют прямые и косвенные методы построения функций принадлежности - .

Прямые методы (наиболее известны методы относительных частот, параметрический, интервальный ) целесообразно использовать для измеримых свойств, признаков и атрибутов, таких как скорость, время, температура, давление и т.п. При использовании прямых методов зачастую не требуется абсолютно точного поточечного задания μ A x . Как правило, бывает достаточно зафиксировать вид функции принадлежности и характерные точки, по которым дискретное представление функции принадлежности аппроксимируется непрерывным аналогом – наиболее подходящей типовой функцией принадлежности.

Косвенные методы (наиболее известен метод парных сравнений ) используются в тех случаях, когда отсутствуют измеримые свойства объектов в рассматриваемой предметной области. В силу специфики рассматриваемых задач при построении нечетких систем автоматического управления, как правило, применяются прямые методы. В свою очередь, в зависимости от числа привлеченных к опросу экспертов как прямые, так и косвенные методы делятся на одиночные и групповые. Наиболее грубую оценку характеристических точек функции принадлежности можно получить путем опроса одного эксперта, который просто задает для каждого значения x ∈ X соответствующее значение μ A x .

Пример. Рассмотрим нечеткое множество A , соответствующее понятию «расход теплоносителя небольшой». Объект x – расход теплоносителя, X 0; x max – множество физически возможных значений скорости изменения температуры. Эксперту предъявляются различные значения расхода теплоносителя x и задается вопрос: с какой степенью уверенности 0 ≤ μ A x ≤ 1 эксперт считает, что данный расход теплоносителя x небольшой. При μ A x = 0 – эксперт абсолютно уверен, что расход теплоносителя x небольшой. При μ A x = 1 – эксперт абсолютно уверен, что расход теплоносителя x нельзя классифицировать как небольшой.

Метод относительных частот. Пусть имеется m экспертов, n 1 из которых на вопрос о принадлежности элемента x ∈ X нечеткому множеству A отвечают положительно. Другая часть экспертов n 2 = m - n 1 отвечает на этот вопрос отрицательно. Тогда принимается μ A x = n 1 n 1 + n 2 = n 1 m .

Пример. Рассмотрим нечеткое множество A , соответствующее понятию «скорость изменения температуры положительная средняя». Объект x – скорость изменения температуры, X - x max ; x max – множество физически возможных значений скорости изменения температуры. Экспертам предъявляются различные значения скорости изменения температуры x и каждому из них задается вопрос: считает ли эксперт, что данная скорость изменения температуры x положительная средняя. Результаты опроса сведены в табл.2.1.

Для непрерывного представления нечеткой переменной используем какую нибудь из П-образных функций принадлежности, например, Гауссову. Из множества гауссовых функций gaussmf x,σ,c = exp - x - c 2 2 σ 2 через характерные точки функции принадлежности: точку перехода μ A 3 = 0,5 и максимум μ A 5 = 1 ; проходит функция с параметрами σ = 1,7 , c = 5 . В качестве альтернативного метода перехода от дискретного ряда точек к непрерывному заданию функции принадлежности можно предложить поиск параметров Гауссовой функции принадлежности, максимально близко аппроксимирующей дискретный ряд по критерию СКО (рис.2.4).

Рис.2.4. Аппроксимация дискретного ряда () непрерывной Гауссовой функцией принадлежности (– по характерным точкам, – – по СКО)



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...