Построить график функции корень из x. Квадратный корень

Урок и презентация на тему: "График функции квадратного корня. Область определения и построение графика"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Электронное учебное пособие к учебнику Мордковича А.Г.
Электронная рабочая тетрадь по алгебре для 8 класса

График функции квадратного корня

Ребята, с построением графиков функций мы с вами уже встречались, и не раз. Мы строили множества линейных функций и парабол . В общем виде любую функцию удобно записать, как $y=f(x)$. Это уравнение с двумя переменными - для каждого значения x мы получаем y. Выполнив некоторую заданную операцию f, мы отображаем множество всех возможных x на множество y. В качестве функции f мы можем записывать практически любую математическую операцию.

Обычно при построении графиков функций мы пользуемся таблицей, в которой записываем значения х и у. Например, для функции $y=5x^2$ удобно использовать следующую таблицу: Отметим полученные точки на декартовой системе координат и аккуратно соединим их гладкой кривой. Наша функция не ограничена. Только этими точками мы можем подставить совершенно любое значение х из заданной области определения, то есть тех х, при которых выражение имеет смысл.

На одном из прошлых уроков мы изучили новую операцию извлечения корня квадратного . Возникает вопрос, а можем ли мы, используя эту операцию, задать какую-нибудь функцию и построить ее график? Воспользуемся общим видом функции $y=f(x)$. y и х оставим на своем месте, а вместо f введем операцию корня квадратного: $y=\sqrt{x}$.
Зная математическую операцию, мы смогли задать функцию.

Построение графика функции квадратного корня

Давайте построим график этой функции. Исходя из определения корня квадратного, мы можем вычислять его только из неотрицательных чисел, то есть $x≥0$.
Составим таблицу:
Отметим наши точки на координатной плоскости.

Нам осталось аккуратно соединить полученные точки.

Ребята, обратите внимание: если график нашей функции повернуть на бок, то получится левая ветка параболы. На самом деле, если строчки в таблице значений поменять местами (верхнюю строчку с нижней), то у нас получаться значения, как раз для параболы.

Область определения функции $y=\sqrt{x}$

Используя график функции, свойства описать довольно таки просто.
1. Область определения: $$.
б) $$.

Решение.
Мы можем решить наш пример двумя способами. В каждой букве опишем разные способы.

А) Вернемся к графику функции, построенному выше, и отметим требуемые точки отрезка. Хорошо видно, что при $х=9$ функция больше всех остальных значений. Значит и наибольшее значение она достигает в этой точке. При $х=4$ значение функции ниже всех остальных точек, а значит, тут и есть наименьшее значение.

$y_{наиб}=\sqrt{9}=3$, $y_{наим}=\sqrt{4}=2$.

Б) Мы знаем, что наша функция возрастающая. Значит, каждому большему значению аргумента соответствует большее значение функции. Наибольшее и наименьшее значение достигаются на концах отрезка:

$y_{наиб}=\sqrt{11}$, $y_{наим}=\sqrt{2}$.


Пример 2.
Решить уравнение:

$\sqrt{x}=12-x$.


Решение.
Проще всего построить два графика функции и найти их точку пересечения.
На графике хорошо видна точка пересечения с координатами $(9;3)$. А значит, $х=9$ - решение нашего уравнения.
Ответ: $х=9$.

Ребята, а можем ли мы быть уверены, что больше решений у этого примера нет? Одна из функций возрастает, другая - убывает. В общем случае, они либо не имеют общих точек, либо пересекаются только в одной.

Пример 3.


Построить и прочитать график функции:

$\begin {cases} -x, x 9. \end {cases}$


Нам нужно построить три частных графика функции, каждый на своем промежутке.

Опишем свойства нашей функции:
1. Область определения: $(-∞;+∞)$.
2. $y=0$ при $х=0$ и $х=12$; $у>0$ при $хϵ(-∞;12)$; $y 3. Функция убывает на отрезках $(-∞;0)U(9;+∞)$. Функция возрастает на отрезке $(0;9)$.
4. Функция непрерывна на всей области определения.
5. Наибольшего и наименьшего значения нет.
6. Область значений: $(-∞;+∞)$.

Задачи для самостоятельного решения

1. Найти наибольшее и наименьшее значение функции корня квадратного на отрезке:
а) $$;
б) $$.
2. Решить уравнение: $\sqrt{x}=30-x$.
3. Построить и прочитать график функции: $\begin {cases} 2-x, x 4. \end {cases}$
4. Построить и прочитать график функции: $y=\sqrt{-x}$.

Урок и презентация на тему: "Степенные функции. Корень кубический. Свойства корня кубического"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Образовательный комплекс 1C: "Алгебраические задачи с параметрами, 9–11 классы" Программная среда "1С: Математический конструктор 6.0"

Определение степенной функции - кубического корня

Ребята, мы продолжаем изучать степенные функции. Сегодня мы поговорим о функции "Корень кубический из х".
А что же такое корень кубический?
Число y называется корнем кубическим из x (корнем третьей степени), если выполняется равенство $y^3=x$.
Обозначают, как $\sqrt{x}$, где х - подкоренное число, 3 - показатель степени.
$\sqrt{27}=3$; $3^3=27$.
$\sqrt{(-8)}=-2$; $(-2)^3=-8$.
Как мы видим, корень кубический можно извлекать и из отрицательных чисел. Получается, что наш корень существует для всех чисел.
Корень третьей степени из отрицательного числа равен отрицательному числу. При возведении в нечетную степень знак сохраняется, третья степень является нечетной.

Проверим равенство: $\sqrt{(-x)}$=-$\sqrt{x}$.
Пусть $\sqrt{(-x)}=a$ и $\sqrt{x}=b$. Возведем оба выражения в третью степень. $–x=a^3$ и $x=b^3$. Тогда $a^3=-b^3$ или $a=-b$. В обозначениях корней получаем искомое тождество.

Свойства корней кубических

а) $\sqrt{a*b}=\sqrt{a}*\sqrt{6}$.
б) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.

Давайте докажем второе свойство. $(\sqrt{\frac{a}{b}})^3=\frac{\sqrt{a}^3}{\sqrt{b}^3}=\frac{a}{b}$.
Получили, что число $\sqrt{\frac{a}{b}}$ в кубе равно $\frac{a}{b}$ и тогда равно $\sqrt{\frac{a}{b}}$, что и требовалось доказать.

Ребята, давайте построим график нашей функции.
1) Область определения множество действительных чисел.
2) Функция нечетная, так как $\sqrt{(-x)}$=-$\sqrt{x}$. Далее рассмотрим нашу функцию при $х≥0$, после отразим график относительно начала координат.
3) Функция возрастает при $х≥0$. Для нашей функции, большему значению аргумента соответствует большее значение функции, что и означает возрастание.
4) Функция не ограничена сверху. На самом деле из сколь угодно большого числа можно вычислить корень третьей степени, и мы можем двигаться до бесконечности вверх, находя все большие значения аргумента.
5) При $х≥0$ наименьшее значение равно 0. Это свойство очевидно.
Построим график функции по точкам при х≥0.




Построим наш график функции на всей области определения. Помним, что наша функция нечетная.

Свойства функции:
1) D(y)=(-∞;+∞).
2) Нечетная функция.
3) Возрастает на (-∞;+∞).
4) Неограниченна.
5) Наименьшего и наибольшего значения нет.

7) Е(у)= (-∞;+∞).
8) Выпукла вниз на (-∞;0), выпукла вверх на (0;+∞).

Примеры решения степенных функций

Примеры
1. Решить уравнение $\sqrt{x}=x$.
Решение. Построим два графика на одной координатной плоскости $y=\sqrt{x}$ и $y=x$.

Как видим наши графики пересекаются в трех точках.
Ответ: (-1;-1), (0;0), (1;1).

2. Построить график функции. $y=\sqrt{(x-2)}-3$.
Решение. График нашей получается из графика функции $y=\sqrt{x}$, параллельным переносом на две единицы вправо и три единицы вниз.

3. Построить график функции и прочитать его. $\begin{cases}y=\sqrt{x}, x≥-1\\y=-x-2, x≤-1 \end{cases}$.
Решение. Построим два графика функций на одной координатной плоскости с учетом наших условий. При $х≥-1$ строим график корня кубического, при $х≤-1$ график линейной функции.
1) D(y)=(-∞;+∞).
2) Функция не является ни четной, ни нечетной.
3) Убывает на (-∞;-1), возрастает на (-1;+∞).
4) Неограниченна сверху, ограничена снизу.
5) Наибольшего значения нет. Наименьшее значение равно минус один.
6) Функция непрерывна на всей числовой прямой.
7) Е(у)= (-1;+∞).

Задачи для самостоятельного решения

1. Решить уравнение $\sqrt{x}=2-x$.
2. Построить график функции $y=\sqrt{(x+1)}+1$.
3.Построить график функции и прочитать его. $\begin{cases}y=\sqrt{x}, x≥1\\y=(x-1)^2+1, x≤1 \end{cases}$.

8 класс

Учитель: Мельникова Т.В.

Цели урока:


Оборудование:

ХОД УРОКА

План урока.

    Вступительное слово учителя.

    Повторение ранее изученного материала.

    Изучение нового материала (групповая работа).

    Исследование функции. Свойства графика.

    Обсуждение графика (фронтальная работа).

    Игра в математические карты.

    Итоги урока.

I. Актуализация опорных знаний.

Приветствие учителя.

Учитель :

Зависимость одной переменной от другой называется функцией. До сих пор Вы изучили функции y = kx + b; y =к/х, у=х 2 . Сегодня мы продолжим изучение функций. На сегодняшнем уроке вы узнаете, как выглядит график функции квадратного корня, научитесь сами строить графики функций квадратного корня.

Запишите тему урока ( слайд1).

2. Повторение изученного материала.

1. Как называются функции, задаваемые формулами:

а) у=2х+3; б) у=5/х; в) у = -1/2х+4; г) у=2х; д) у=-6/х е) у =х 2 ?

2. Что представляет собой их график? Как он расположен? Укажите область определения и область значения каждой из этих функций (на рис. изображены графики функций, заданные данными формулами, для каждой функции укажите её вид) ( слайд2).

3. Что представляет из себя график каждой функции, как эти графики строятся?

( слайд3, строятся схематически графики функций).

3. Изучение нового материала.

Учитель :

Итак, сегодня мы изучаем функцию
и её график.

Мы знаем, что графиком функции у=х 2 является парабола. Что будет графиком функции у=х 2 , если взять только х0 ? Является часть параболы - её правая ветвь. Построим теперь график функции
.

Повторим алгоритм построения графиков функций(слайд 4, с алгоритмом )

Вопрос : Как вы считаете, глядя на аналитическую запись функции, можно сказать о том, какие значения х допустимы? (Да, х≥0 ). Так как выражение
имеет смысл при всех х больших или равных 0.

Учитель: В явлениях природы, в человеческой деятельности часто встречаются зависимости между двумя величинами. Каким графиком можно представить эту зависимость? (групповая работа )

Класс разбивается на группы. Каждая группа получает задание: построить график функции
на миллиметровой бумаге, выполняя все пункты алгоритма. Затем от каждой группы выходит представитель и показывает работу группы. (открывается слад 5, идет проверка, затем график строится в тетрадях)

4. Исследование функции.(продолжается работа вгруппах)

Учитель:

    найдите область определения функции;

    найдите область значения функции;

    определите промежутки убывания (возрастания) функции;

    у>0, у<0.

Записывамв результаты( слайд6).

Учитель: Проведем анализ графика. Графиком функции является ветвь параболы.

Вопрос : Скажите, вы встречали где-нибудь этот график раньше?

Посмотрите на график и скажите, пересекает ли он прямую ОХ? (Нет) ОУ? (Нет) . Посмотрите на график и скажите, имеет ли график центр симметрии? Ось симметрии?

Подведем итоги:


Атеперь поверим, как усвоили новую тему и повторили пройденный материал. Игра в математические карты.(правила игры: каждой группе из 5 человек предлагается комплект карточек (25 карт). Каждый игрок получает по 5 карт, на которых написаны вопросы. Первый ученик дает одну из карт второму ученику, который должен ответить на вопрос из карточки. Если ученик отвечает на вопрос, то карта бита, если нет, то ученик забирает карту себе и предает ход и т.д. всего 5 ходов. Если у ученика не осталось карт, то оценка -5, осталась 1 карта-оценка 4, 2 карты – оценка 3, 3 карты – оценка- 2)

5. Итоги урока. (выставляются оценки обучающимся по контрольным листам)

Задание на дом.

    Изучить п.8.

    Решить №172, №179, №183.

    Подготовить сообщения на тему “Применение функции в различных областях науки и в литературе”.

Рефлексия.

Покажите свое настроение с помощью картинок на вашем столе.

Сегодня урок

    Мне понравилось.

    Мне не понравилось.

    Материал урока я (понял, не понял).

N-й степени из действительного числа, отметили, что из любого неотрицательного числа можно извлечь корень любой степени (второй, третьей, четвертой и т.д.), а из отрицательного числа можно извлечь корень любой нечетной степени. Но тогда следует подумать и о функции вида , о ее графике, о ее свойствах. Этим мы и займемся в нас стоящем параграфе. Сначала поговорим о функции в случае неотрицательных значений аргумента .

Начнем с известного вам случая, когда n =2, т.е. с функции На рис. 166 изображен график функции и график функции у = х 2 , х>0. Оба графика представляют собой одну и ту же кривую - ветвь параболы, только по-разному расположенную на координатной плоскости. Уточним: эти графики симметричны относительно прямой у = х, поскольку состоят из точек, симметричных друг другу относительно указанной прямой. Смотрите: на рассматриваемой ветви параболы у = х 2 есть точки (0; 0), (1; 1), (2; 4), (3; 9), (4; 16), а на графике функции точки (0; 0), (1; 1), (4; 2), (9; 3), (16; 4).

Точки (2; 4) и (4; 2), (3; 9) и (9; 3), (4; 16) и (16; 4) симметричны относительно прямой у = х, (а точки (0; 0) и (1; 1) лежат на этой прямой). И вообще, для любой точки (а; а 2) на графике функции у = х 2 есть симметричная ей относительно прямой у = x точка (а 2 ; а) на графике функции и обратно. Справедлива следующая теорема.

Доказательство. Будем считать для определенности, что а и b - положительные числа. Рассмотрим треугольники ОАМ и ОВР (рис. 167). Они равны, значит, ОР = ОМ и . Но тогда и поскольку прямая у = х - биссектриса угла АОВ. Итак, треугольник РОМ - равнобедренный, ОН - его биссектриса, а значит, и ось симметрии. Точки М и Р симметричны относительно прямой ОН, что и требовалось доказать.
Итак, график функции можно получить из графика функции у = х 2 , х>0 с помощью преобразования симметрии относительно прямой у = х. Аналогично график функции можно получить из графика функции у = х 3 , х> 0 с помощью преобразования симметрии относительно прямой у=х; график функции можно получить из графика функции с помощью преобразования симметрии относительно прямой у = х и т.д. Напомним, что график функции напоминает по виду ветвь параболы Чем больше п, тем круче эта ветвь устремляется вверх на промежутке и тем ближе подходит к оси х в окрестности точки х=0 (рис. 168).


Сформулируем общий вывод: график функции симметричен графику функции , относительно прямой у = х(рис. 169).

Свойства функции

1)
2) функция не является ни четной, ни нечетной;
3) возрастает на
4) не ограничена сверху, ограничена снизу;
5) не имеет наибольшего значения;
6) непрерывна;
7)

Обратите внимание на одно любопытное обстоятельство. Рассмотрим две функции, графики которых изображены на рис. 169: Только что мы перечислили семь свойств для первой функции, но абсолютно теми же свойствами обладает и вторая функция. Словесные «портреты» двух различных функций одинаковы. Но, уточним, пока одинаковы.

Математики не смогли вынести такой несправедливости, когда разные функции, имеющие разные графики, словесно описываются одинаково, и ввели понятия выпуклости вверх и выпуклости вниз. График функции обращен выпуклостью вверх, тогда как график функции у = х п обращен выпуклостью вниз.


Обычно говорят, что непрерывная функция выпукла вниз, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит ниже проведенного отрезка (рис. 170); непрерывная функция выпукла вверх, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит выше проведенного отрезка (рис. 171).

Свойство выпуклости мы будем в дальнейшем включать в процедуру чтения графика. Отметим его"(продолжив нумерацию описанных ранее свойств) для рассматриваемой функции:

8) функция выпукла вверх на луче
В предыдущей главе мы познакомились еще с одним свойством функции - дифференцируемостью, видели, что функция у = х п дифференцируема в любой точке, ее производная равна пх n-1 . Геометрически это означает, что в любой точке графика функции у = х п к нему можно провести касательную. Этим же свойством обладает и график функции : в любой его точке к графику можно провести касательную. Таким образом, мы можем отметить еще одно свойство функции
9) функция дифференцируема в любой точке х > 0.
Обратите внимание: о дифференцируемости функции в точке х = 0 речь не идет - в этой точке касательная к графику функции совпадает с осью у, т.е. перпендикулярна оси абсцисс.
Пример 1. Построить график функции
Решение. 1)Перейдем к вспомогательной системе координат с началом в точке (-1; -4) - пунктирные прямые х = -1 и у = -4 на рис. 172.
2) «Привяжем» функцию к новой системе координат. Это и будет требуемый график.
Пример 2. Решить уравнение

Решение. Первый способ. 1) Введем в рассмотрение две функции
2) Построим график функции


3) Построим график линейной функции у=2-х (см. рис. 173).

4) Построенные графики пересекаются в одной точке А, причем по графику можно сделать предположение, что координаты точкиА таковы: (1; 1). Проверка показывает, что на самом деле точка (1; 1) принадлежит и графику функции , и графику функции у=2-x. Значит, наше уравнение имеет один корень: х = 1 - абсцисса точки А.

Второй способ.
Геометрическая модель, представленная на рис. 173, наглядно иллюстрирует следующее утверждение, которое иногда позволяет очень изящно решить уравнение (и которым мы уже воспользовались в § 35 при решении примера 2):

Если функция у=f(х) возрастает, а функция у=g(х) убывает и если уравнение f(х)=g(х) имеет корень, то он только один.

Вот как, опираясь на это утверждение, мы можем решить заданное уравнение:

1) заметим, что при х = 1 выполняется равенство , значит, х = 1 - корень уравнения (этот корень мы угадали);
2) функция y=2-x убывает, а функция возрастает; значит, корень у заданного уравнения только один, и этим корнем является найденное выше значение x = 1.

Ответ : x = 1.

До сих пор мы говорили о функции только для неотрицательных значений аргумента. Но ведь если п - нечетное число, выражение имеет смысл и для x <0. Значит, есть смысл поговорить о функции в случае нечетного п для любых значений х.

Собственно говоря, к перечисленным добавится только одно свойство:

если n - нечетное число (n = 3,5, 7,...), то - нечетная функция.

В самом деле, пусть для нечетного показателя n такие преобразования верны. Итак, f(-x) = -f(x), а это и означает нечетность функции.

Как же выглядит график функции в случае нечетного показателя n? При так, как показано на рис. 169, - это ветвь искомого графика. Добавив к ней ветвь, симметричную ей относительно начала координат (что, напомним, характерно для любой нечетной функции), получим график функции (рис. 174). Обратите внимание: ось у является касательной к графику в точке х = 0.
Итак, повторим еще раз:
если п - четное число, то график функции имеет вид, представленный на рис. 169;
если п - нечетное число, то график функции имеет вид, представленный на рис. 174.


Пример 3. Построить и прочитать график функции у = f(x), где
Решение. Сначала построим график функции и выделим его часть на луче (рис. 175).
Затем построим график функции и выделим его часть на открытом луче (рис. 176). Наконец, оба «кусочка» изобразим в одной системе координат - это и будет график функции у = f(x)(рис. 177).
Перечислим (опираясь на построенный график) свойства функции у = f(x):

1)
2) ни четна, ни нечетна;
3) убывает на луче , возрастает на луче
4) не ограничена снизу, ограничена сверху;
5) нет наименьшего значения, а (достигается в точке х = 1);
6) непрерывна;
7)
8) выпукла вниз при , выпукла вверх на отрезке , выпукла вниз при
9) функция дифференцируема всюду, кроме точек х = 0 и х = 1.
10) график функции имеет горизонтальную асимптоту это означает, напомним, что

Пример 4. Найти область определения функции:

Решение, а) Под знаком корня четной степени должно находиться неотрицательное число, значит, задача сводится к решению неравенства
б) Под знаком корня нечетной степени может находиться любое число, значит, здесь на х не накладывается никаких ограничений, т.е. D(f) = R.
в) Выражение имеет смысл при условии а выражение Значит, должны одновременно выполняться два неравенства: т.е. задача сводится к решению системы неравенств:

Решая неравенство
Решим неравенство Разложим левую часть неравенства на множители: Левая часть неравенства обращается в 0 в точках -4 и 4. Отметим эти точки на числовой прямой (рис. 178). Числовая прямая разбивается указанными точками на три промежутка, причем на каждом промежутке выражение р(х)=(4-х)(4 + х) сохраняет постоянный знак (знаки указаны на рис. 178). Промежуток, на котором выполняется неравенство р(х)>0, заштрихован на рис. 178. По условию задачи нас интересуют и те точки х, в которых выполняется равенство р(х) = 0. Таких точек две: х =-4, х =4 - они отмечены на рис. 178 темными кружочками. Таким образом, на рис. 178 представлена геометрическая модель решения второго неравенства системы.


Отметим найденные решения первого и второго неравенств системы на одной координатной прямой, использовав для первого - верхнюю, а для второго - нижнюю штриховку (рис. 179). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Таким промежутком является отрезок [-1, 4].

Ответ. D(f) = [-1,4].

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе


График и свойства функции у = │ах │ (модуль)

Рассмотрим функцию у = │ах │, где а - определенное число.

Областью определения функции у = │ах │, является множество всех действительных чисел. На рисунке изображены соответственно графики функций у = │х │, у = │ │, у = │х /2│.

Можно заметить, что график функции у = | ах | получается из графика функции у = ах , если отрицательную часть графика функции у = ах (она находится ниже оси Ох ), отразить симметрично этой оси.

По графику легко усмотреть свойства функции у = │ ах │.

При х = 0, получаем у = 0, то есть графику функции принадлежит начало координат; при х = 0, получаем у > 0, то есть все другие точки графика лежат выше оси Ох .

Для противоположных значений х , значения у будут одинаковыми; ось Оу это ось симметрии графика.

К примеру, можно построить график функции у = │х 3 │. Чтобы сравнить функции у = │х 3 │и у = х 3 , составим таблицу их значений при одинаковых значениях аргументов.

Из таблицы видим, что для того, чтобы построить график функции у = │х 3 │, можно начать с построения графика функции у = х 3 . После этого стоит симметрично оси Ох отобразить ту его часть, которая находится ниже этой оси. В результате получим график, изображенный на рисунке.

График и свойства функции у = x 1/2 (корень)

Рассмотрим функцию у = x 1/2 .

Областью определения этой функции является множество неотрицательных действительных чисел, так как выражение x 1/2 имеет значение только при х > 0.

Построим график. Для составления таблицы ее значений используем микрокалькулятор, округляя значения функции до десятых.

После нанесения на координатную плоскость точек, и плавного их соединения, получаем график функции у = x 1/2 .

Построенный график позволяет сформулировать некоторые свойства функции у = x 1/2 .

При х = 0, получаем у = 0; при х > 0, получаем у > 0; график проходит через начало координат; остальные точки графика расположены в первой координатной четверти.

Теорема . График функции у = x 1/2 симметричен графику функции у = х 2 , где х > 0, относительно прямой у = х .

Доказательство . Графиком функции у = х 2 , где х > 0, является ветвь параболы, расположенная в первой координатной четверти. Пусть точка Р (а ; b ) - произвольная точка этого графика. Тогда истинно равенство b = а 2 . Поскольку по условию число а неотрицательное, то истинно также и равенство а = b 1/2 . А это означает, что координаты точки Q (b ; а ) превращают формулу у = x 1/2 в истинное равенство, или иначе, точка Q (b ; а у = x 1/2 .

Так же доказывается, что если точка М (с ; d ) принадлежит графику функции у = x 1/2 , то точка N (d ; с ) принадлежит графику у = х 2 , где х > 0.

Получается, что каждой точке Р (а ; b ) графика функции у = х 2 , где х > 0, соответствует единственная точка Q (b ; а ) графика функции у = x 1/2 и наоборот.

Остается доказать, что точки Р (а ; b ) и Q (b ; а ) симметричны относительно прямой у = х . Опустив перпендикуляры на координатные оси из точек Р и Q , получаем на этих осях точки Е (а ; 0), D (0; b ), F (b ; 0), С (0; а ). Точка R пересечения перпендикуляров РЕ и QC имеет координаты (а ; а ) и поэтому принадлежит прямой у = х . Треугольник PRQ является равнобедренным, так как его стороны RP и RQ равны │ b а │ каждая. Прямая у = х делит пополам как угол DOF , так и угол PRQ и пересекает отрезок PQ в определенной точке S . Поэтому отрезок RS является биссектрисой треугольника PRQ . Поскольку биссектриса равнобедренного треугольника является его высотой и медианой, то PQ RS и PS = QS . А это означает, что точки Р (а ; b ) и Q (b ; а ) симметричные относительно прямой у = х .

Поскольку график функции у = x 1/2 симметричен графику функции у = х 2 , где х > 0, относительно прямой у = х , то графиком функции у = x 1/2 является ветвь параболы.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...