Представителем кислородсодержащих гетероциклических соединений является. Ароматические гетероциклические соединения

Рис. 1. ПРОСТЕЙШИЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ

Классификация гетероциклических соединений.

В зависимости от природы гетероатома различают кислород-, азот- и серосодержащие соединения. Существуют и соединения, в составе которых есть одновременно несколько одинаковых (рис. 2, диоксан) или различных гетероатомов (рис. 2, тиазол, оксазин). Кроме того, их делят на насыщенные соединения (рис. 1, пиперидин) и ненасыщенные, т.е. содержащие кратные связи (рис. 1, фуран, пиридин, тиофен). В зависимости от числа циклических фрагментов в молекуле различают моноядерные – моноциклические соединения (рис. 1) и полиядерные – содержащие несколько циклов, причем циклы могут быть конденсированные (содержать два общих атома, рис. 2, индол), либо соединенные простой связью (рис. 2, бипиридил). В особую группу выделяют макроциклические соединения, так называемые краун-эфиры (crown англ. – корона), содержащие свыше четырех гетероатомов и более десяти звеньев в структуре цикла (звеном называют фрагмент из двух химически связанных атомов, (рис. 2).

Рис. 2. РАЗЛИЧНЫЕ ТИПЫ БОЛЕЕ СЛОЖНЫХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ : с двумя одинаковыми (диоксан), или различными (тиазол, оксазин) гетероатомами. Биядерные соединения: с конденсированными (индол) или разделенными циклами (бипиридил). Краун-эфиры – соединения с крупными циклами (макроциклические).

Номенклатура гетероциклических соединений.

Для большой группы гетероциклических соединений допускают использование тривиальных (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ) названий, сложившихся исторически (например, рис. 1), всего таких названий около 60. В остальных случаях названия (их именуют систематическими) составляют по специальным правилам ИЮПАК (Международный Союз Теоретической и Прикладной Химии), которые в этом случае своеобразны и отличаются от той системы, которая принята для большинства органических соединений иных классов. Из специально предложенных для этой цели корней и приставок формируют название, соблюдая оговоренный порядок. В его основе лежит корень, состоящий из двух слогов. Первый слог указывает на количество звеньев цикла, например, слог «ир » (две переставленные буквы из латинского корня «tri ») соответствует трехчленному циклу, слог «ет » (фрагмент латинского tet ra ) – четырехзвенный цикл, слог «ок » (часть латинского oc ta) используют для восьмичленных циклов. Происхождение некоторых других слогов, обозначающих размер цикла, не всегда логически обосновано, например, для шестичленных циклов используют слог «ин », взятый из названия распространенного гетероцикла «пиридин » (рис. 1).

Второй слог укаывает, является ли гетероцикл насыщенным – слог «ан », или ненасыщенным – слог «ен » (аналогия с названиями углеводородов: этан – этен) . Перед корнем помещают приставку, обозначающую природу гетероатома: О – окса, S – тиа, N – аза. Поскольку корень часто начинается с гласной буквы, в приставке обычно опускают последнюю букву «а». В результате насыщенный трехчленный цикл, содержащий S, называют тииран (рис. 3А): «ти -» сокращенная приставка «тио-», часть корня «ир » обозначает трехчленный цикл, а вторая часть корня «ан » соответствует насыщенному соединению. Аналогично трехчленный О-содержащий ненасыщенный цикл называют оксирен (рис. 3Б). Если в гетероцикле несколько гетероатомов, то их положение указывают с помощью числовых индексов, пронумеровав предварительно атомы в цикле, а количество таких атомов обозначают приставками ди-, три- и т.д., например, 1,3,5-триазин (рис. 3В). Если есть различные гетероатомы, их упоминают в следующем порядке: O > S > N (этот установленный порядок носит условный характер и не связан с химическими свойствами). В конце названия с помощью корня указывают размер цикла и ненасыщенность, например, 1,2,6-оксадиазин (рис. 3Д). Способ написания корней для N-содержащих циклов несколько отличается от описанного выше, что также специально оговорено, например, корень «ин » в названии 1,2,6-оксадиазин (рис. 3Д) обозначает одновременно и шестичленный и ненасыщенный цикл.

Правила составления систематических названий применимы к любым гетероциклическим соединениям, в том числе и к тем, для которых есть устоявшиеся тривиальные названия, например, у бициклического соединения с тривиальным названием хинолин (рис. 3Е) систематическое название бензазин. Часто химики вместо сложной системы систематических названий используют более простую, основанную на тривиальных названиях: в молекуле «вычленяют» фрагмент тривиального названия и с помощью цифровых индексов указывают положение заместителей По такой схеме составлено название 8-оксихинолин (рис. 3Ж).

Рис. 3. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ (А-Д). Сопоставление систематического и тривиального названия (Е). Использование тривиального термина при составлении названия (Ж). В 8-оксихинолине (Ж) два атома углерода, принадлежащие одновременно двум циклам, не нумеруют,т.к. у них не может быть заместителей.

Химические свойства гетероциклических соединений.

Трех- и четырехчленные гетероциклы представляют собой напряженные системы, для них характерны реакции с раскрытием цикла. Этиленоксид (при 150° С и давлении 2 мПа) гидролизуется, образуя этиленгликоль (рис. 4А). Реакция О-содержащих напряженных циклов со спиртами приводит к соединениям с ОН-группой и простой эфирной связью (целлозольвы, рис. 4Б), а при действии на них галогенводородов образуются соединения, содержащие Hal и ОН-группу (галогенгидрины, рис. 4В). N-содержащие напряженные циклы, взаимодействуя с галогеноводородами образуют галогеналкиламины (рис. 4Г).

Рис. 4. ПЯТИ- И ШЕСТИЧЛЕННЫЕ НЕНАСЫЩЕННЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ , а также их производные обладают ароматичностью , поэтому их химическое поведение напоминает свойства ароматических соединений (производных бензола) – при различных превращениях циклический фрагмент сравнительно устойчив, а атомы Н при углеродных атомах кольца, как у бензола, могут замещаться разнообразными группами (см . ХИМИЯ ОРГАНИЧЕСКАЯ). При сульфировании (рис. 5А), нитровании (рис. 5Б), ацилировании (рис. 5В,Г) атомы Н замещаются соответствующими группами, а цикл сохраняется неизменным. Тем не менее, устойчивость циклических фрагментов в таких соединениях ниже, чем у бензольного цикла, поэтому все реакции замещения проводят в более мягких условиях.

Рис. 5. РЕАКЦИИ ЗАМЕЩЕНИЯ в гетероциклических соединениях: А – сульфирование, Б – нитрование, В, Г – ацетилирование. Подобно реакциям замещения в бензольном ядре, циклический фрагмент остается неизменным.

Для возникновения ароматической системы в циклах среднего размера (5–7-звенных) нужно 6 р -электронов (см. АРОМАТИЧНОСТЬ). Каждая двойная связь состоит из двух связей (см . ОРБИТАЛИ), первую образуют два s- электрона двух соседних атомов, а вторую – образует пара р- электронов (обозначены точками внутри цикла пиридина, рис. 6А). Шестиэлектронная система в пиридине образуется за счет пяти р- электронов, принадлежащих атомам углерода (черные точки) и одного р- электрона от азота (синяя точка). В результате неподеленная электронная пара азота (красные точки) не участвует в образовании ароматической системы, поэтому такой атом азота может быть донором (дающим электроны) при образовании донорно-акцепторной связи (этим же свойством обладают и амины). Часто такой донор называют Льюисовским основанием, поскольку он проявляет свойства, типичные для основания: образует с минеральными кислотами устойчивые соли (рис. 6А), являющиеся комплексными соединениями. Аналогично ведет себя хинолин (рис. 6Б), который можно рассматривать как производное пиридина. Наиболее ярко свойства основания проявляются у 8-оксихинолина (рис. 3Ж). Это соединение прочно связывает ионы большинства металлов, образуя две обычные химические связи атома металла с двумя атомами О, и две донорно-акцепторных связи с атомами N. Такие комплексы называют хелатными (от греч. chele – клешня) или клешневидными. Это свойство 8-оксихинолина широко используют в аналитической химии для количественного определения металлов.

Рис. 6. ОБРАЗОВАНИЕ КОМПЛЕКСНЫХ СОЛЕЙ с участием шестичленных N-содержащих гетероциклов (А, Б). Хелатные комплексы ионов металлов (В).

При переходе от шестичленных к пятичленным N-содержащим ненасыщенным гетероциклам (пиррол, рис. 7) ситуация меняется. В этом случае неподеленная электронная пара азота (рис. 7, красные точки) вовлечена в образование шестиэлектронной ароматической системы и не может участвовать в образовании донорно-акцепторной связи, в итоге отчетливо проявляются кислотные свойства связи N-H: водород может замещаться металлом (рис. 7). Такие металлопроизводные являются удобными промежуточными соединениями для присоединения к азоту алкильных (рис. 7А) или ацетильных групп (рис. 7Б).

Пятичленный гетероцикл имидазол (рис. 7В), содержащий два атома N, также представляет собой ароматическое соединение – в образовании цикла участвует 6 р -электронов. Интересно, что он обладает одновременно и кислотными и основными свойствами. Атом N в группировке N-H может реагировать как кислота, аналогично пирролу (рис. 7А, Б), второй атом N по свойствам напоминает такой же атом в пиридине, для него характерны реакции, показанные на рис. 6А.

Рис. 7. КИСЛОТНЫЕ СВОЙСТВА ПЯТИЧЛЕННОГО ГЕТЕРОЦИКЛА ПИРРОЛА (А,Б). Сочетание кислотных и основных свойств в имидазоле (В). Два атома N в имидазоле и принадлежащие им электроны отмечены различающимися цветами.

Гетероциклические соединения получают с помощью различных конденсационных процессов, проходящих через стадию замыкания цикла (рис. 8А-В). Протекание таких реакций в нужном направлении стимулируется тем, что в результате образуются сравнительно стабильные гетероароматические соединения. Некоторые гетероциклические соединения получают, взяв за основу соединения сходного состава. При декарбонилировании (удалении СО) фурфурола получают фуран (рис. 8Г, фурфурол – устоявшееся тривиальное название, неточно отражающее состав, правильнее, фурфураль). Гидрирование фурана приводит к тетрагидрофурану (рис. 8Д).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

В ненасыщенных пятичленных гетероциклах один гетероатом заменяется другим без изменения циклического фрагмента (рис. 9).

Рис. 9. ВЗАИМОПРЕВРАЩЕНИЯ ПЯТИЧЛЕННЫХ ГЕТЕРОЦИКЛОВ

Многие гетероциклические соединения получают переработкой природных продуктов. Пиррол и индол (рис. 2) содержатся в каменноугольной смоле, тиофен добывают из продуктов коксования каменного угля и термического разложения горючих сланцев, фуран выделяют из продуктов сухой перегонки некоторых пород древесины. Пиридин (рис. 1) получают из каменноугольной смолы, продуктов сухой перегонки дерева и торфа. Фурфурол (рис. 8) получают гидролизом растительного сырья (кукурузных початков, овсяной и рисовой шелухи) в присутствии разбавленных минеральных кислот.

Участие гетероциклических соединений в биологических процессах.

Три соединения – урацил, тимин и цитозин, которые представляют собой производные азотсодержащего гетероцикла пиримидина (рис. 10, в скобках), а также два производных гетероцикла пурина (рис. 10, в скобках) – гуанин и аденин, входят в состав нуклеиновых кислот, порядок чередования этих гетероциклов вдоль полимерных цепей ДНК и РНК определяет всю наследственную информацию живого организма и способ сборки белковых молекул.

Рис.10. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ , входящие в состав нуклеиновых кислот

Некоторые аминокислоты (рис. 11), участвующие в образовании белков, также содержат гетероциклические фрагменты: триптофан включает в себя фрагмент индола (рис. 2), в гистидине есть цикл имидазола (рис. 7), пролин – производное пирролидина.

Фрагменты гетероциклов есть в структуре многих биологически-активных веществ, среди наиболее используемых лекарственных препаратов свыше 60% составляют гетероциклические соединения. Четырехчленный цикл азетидинон (рис. 11) входит в состав антибиотиков пенициллина и цефалоспорина, аскорбиновая кислота (витамин С) содержит в своем составе фурановый гетероцикл, другой витамин никотинамид включает в себя фрагмент пиридина, молекула кофеина «построена» на базе упомянутого ранее пурина (рис. 10).

Рис. 11. ПРИСУТСТВИЕ ФРАГМЕНТОВ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ в структуре биологически важных молекул

Для всех соединений (рис. 10), за исключением азетидинона, приведены тривиальные названия, которые утвердились и вошли в употребление до того, как были сформулированы правила систематической номенклатуры.

Применение гетероциклических соединений.

Диоксан (рис. 2) и тетрагидрофуран (рис. 8) широко используют в качестве высокополярных растворителей в органическом синтезе.

Фурфурол (рис. 8) является исходным продуктом для получения фурана (рис. 8), тетрагидрофурана, а также для синтеза некоторых лекарственных препаратов (фурацилин).

При конденсации фурфурола в кислой среде образуются полимерные продукты (фурановые смолы), по строению напоминающие фенольные смолы, – метиленовые группы СН 2 , соединяющие гетероциклы (рис. 12А). При нагревании таких смол в присутствии кислотных катализаторов (например, толуолсульфокислота) двойные связи раскрываются с образованием поперечных сшивок, в результате полимер переходит в нерастворимое состояние, что позволяет его использовать в качестве связующего при изготовлении различных наполненных прессматериалов: стекло- и углепластиков, древесноволокнистых плит и т.п. В твердом состоянии фурановые полимеры представляют собой химически стойкие вещества (до 300° С), это позволяет применять их и как коррозийноностойкие и огнеустойчивые герметики и мастики.

При конденсации ароматических тетраминов (4 амино-группы) с эфирами ароматических дикарбоновых кислот (см. СЛОЖНЫЕ ЭФИРЫ) образуются полимеры, в структуре которых в процессе синтеза возникают фрагменты бензимидазола (рис. 12Б). Такие полимеры, получившие название полибензимидазолы, обладают высокой прочностью и термостойкостью (до 500° С), из них изготавливают пленки, волокна (торговое название АРМОС и РУСАР), армированные пластики.

Рис. 12. ПОЛИМЕРЫ, СОДЕРЖАЩИЕ В ЦЕПИ ГЕТЕРОЦИКЛИЧЕСКИЕ ФРАГМЕНТЫ : фурановый полимер (А), полибензимидазол (Б).

Производные бензимидазола входят в состав лекарственных препаратов (дибазол).

Индол (рис. 2) применяют как фиксатор запахов в парфюмерной промышленности и при изготовлении некоторых лекарств (индометацин).

Михаил Левицкий

Органические соединения, содержащие в своих молекулах циклы, в состав которых могут входить неуглеродные атомы . Гетероциклические соединения классифицируют по количеству атомов в цикле и по типу гетероатома.

Шестичленные гетероциклы.

Пиридин C 5 H 5 N :

Строение гетероциклов.

Пиридин напоминает бензол: все атомы углерода и атом азота находится в sp 2 - гибридизации . Шесть электронов находятся на негибридных орбиталях и образуют π -электронную ароматическую систему. Из 3х гибридных орбиталей атома азота две вступают в образование сигма-связей С-N , а на третьей находится неподеленная пара:

Пиридин - бесцветная жидкость, немного легче воды , с неприяным запахом, с водой смешивается в любых пропорциях.

Получение гетероциклов.

Пиридин выделяют из каменноугольной смолы. В лабораторных условиях его можно синтезировать из синильной кислоты и ацетилена:

1. Основные свойства гетероциклов. Пиридин - слабое основание, его водных раствор окрашивается в синий цвет:

При реакции с сильными кислотами образуются соли пиридиния:

2. Ароматические свойства гетероциклов. Как и бензол пиридин вступает в реакции электрофильного замещения. Его активность в этих реакция ниже, чем у бензола из-за большой электроотрицательности атома азота. Нитрование проводят при 300 ºС с низким выходом:

Реакции нуклеофильного замещения. Атом азота оттягивает к себе электронную плотность ароматической системы и орто-, пара - положения «обеднены» электронами. Поэтому пиридин может реагировать с амидом натрия, образую смесь орто- и пара- аминопиридинов (реакция Чичибана ):


3. Гидрирование пиридина, в результате чего образуется пиперидин:

4. Гомологи пиридина подвергаются боковому окислению :

Пиримидин С 4 Н 4 N 2 .

Это шестичленный гетероцикл с 2-мя атомами азота:

Пиримидин менее активен в реакциях электрофильного замещения, и основные свойства его выражены хуже, чем и пиридина.

К пиримидиновым основаниям относят: урацил, тимин, цитозин:

Каждое из этих соединений может существовать в 2х формах - лактим-лактамная таутомерия.

Пятичленные циклы.

Ярким представителем является пиррол C 4 H 4 NH :

Строение гетероциклов.

Атомы азота и углерода находятся в sp 2 -гибридизации. 2 электрона на негибридной орбитали атома азота образуют π -элеткронную ароматическую систему:

Электронная пара входит в состав ароматической системы, поэтому пиррол практически лишен основных свойств.

Физические свойства гетероциклов.

Пиррол - бесцветная жидкость с запахом хлороформа. Он слабо растворим в воде , но растворим в органических растворителях.

Получение гетероциклов.

Конденсация ацетилена с аммиаком:

Аммонолиз - реакция Юрьева:

Химические свойства гетероциклов.

1. Сильные минеральные соли могут вытянуть электронную пару из ароматической системы, при этом ароматичность нарушается и пиррол превращается в неустойчивое соединение, которое сразу полимеризуется. Такая неустойчивость в кислой среде называется ацидофобностью.

2. Пиролл - очень слабая кислота, поэтому он может реагировать с калием:

3. Электрофильное замещение, сульфирование:

4. Гидрирование. В результате образуется пирролидин:

Интересными свойствами обладают имидазол и пиразол:

Они могут быть в таутомерной форме, т.к. NH - группа проявляет слабые кислотные свойства и способность отдавать протон невелика. Поэтому протон может переходить от одного атома к другому.

Классификация N-содержащих гетероциклических соединений

- Пятичленные гетероциклы:

а) с одним атомом азота (пиррол и его производные)



б) с двумя атомами азота (имидазол, пиразол и их производные)


- Шестичленные гетероциклы:

а) с одним атомом азота (пиридин и его производные)



б) с двумя атомами азота (пиримидин и его производные)



- Конденсированные (бициклические) гетероциклы (пурин и его производные)


Пиррол

Электронное строение молекулы


Цикл пиррола имеет ароматический характер, так как 4 неспаренных электрона атомов углерода и неподеленная пара электронов атома азота образуют единую шестиэлектронную π-систему. (В отличие от бензола, в структурных формулах гетероциклических соединений единая π-система обычно не показывается.) Участие неподеленной пары электронов атома азота в образовании ароматической связи объясняет, почему пиррол практически не проявляет основных свойств (в отличие от аминов) Напротив, пиррол обладает слабокислотными свойствами.

Химические свойства

I. Кислотные свойства: взаимодействие с активными металлами



II. Ароматические свойства:


а) реакции замещения (как правило, в α-положении)




б) реакции присоединения (гидрирование)



Пирролидин является циклическим вторичным амином, проявляет сильноосновные свойства. Цикл пирролидина входит в состав гетероциклических аминокислот - пролина и гидроксипролина:


Способы получения

1. Получение из фурана и тиофена




2. Получение из ацетилена



Физические свойства

Пиррол - бесцветная жидкость с запахом хлороформа, Т кип 131°С, практически нерастворим в воде, растворяется в спирте и ацетоне


Сосновая лучина, смоченная соляной кислотой, окрашивается парами пиррола в красный цвет (отсюда название pyrrol - «красное масло»).

Биологическая роль

Циклы замещенных производных пиррола входят в состав хлорофилла и гема. В молекуле хлорофилла четыре замещенных пиррольных кольца связаны с атомом магния, а в геме - с атомом железа

Пиридин

Электронное строение молекулы

Цикл пиридина (как и цикл пиррола) имеет ароматический характер и очень похож на цикл бензола. Ароматическая шестиэлектронная π-связь образована неспаренными электронами пяти атомов углерода и атома азота. В отличие от пиррола, неподеленная пара электронов атома азота в пиридине не участвует в образовании π-системы, поэтому может участвовать в образовании донорно-акцепторной связи с НФ. Следовательно, пиридин проявляет основные свойства.

Химические свойства

Основные свойства


а) взаимодействие с водой




(Водный раствор пиридина окрашивает лакмус в синий цвет)


б) взаимодействие с кислотами


II. Ароматические свойства:

а) реакции замещения (как правило, в β-положении, поскольку атом азота ведет себя как заместитель II рода)




б) реакции присоединения (гидрирование):


Способы получения

1. Выделение из каменноугольной смолы (содержит около 0,08 % пиридина).


2. Синтез из ацетилена и циановодорода


Физические свойства

Пиридин - бесцветная жидкость со специфическим запахом, Т кип 115°С, неограниченно смешивается с водой, весьма ядовит.

Биологическая роль

Гомолог пиридина - 3-метилпиридин (β-пиколин) - при окислении образует никотиновую кислоту:




Никотиновая кислота и её амид - никотинамид представляют собой две формы витамина РР, который применяется для лечения пеллагры (кожное заболевание).

Имидазол

Электронное строение молекулы. Общая характеристика химических свойств


Из приведенной формулы видно, что:


а) имидазол (подобно пирролу и пиридину) является ароматическим соединением;


б) имидазол обладает амфотерными свойствами, так как N(1) обусловливает кислотные свойства, а N(3) - основные свойства.

Физические свойства

Имидазол - бесцветное твердое вещество, Т пл 90°С, хорошо растворяется в воде и спирте.

Биологическая роль

Ядро имидазола входит в состав одной из природных аминокислот - гистидина:


При декарбоксилировании (-CO 2) гистидина образуется гистамин:



Гистамин содержится в связанной форме в различных органах и тканях человека и животных, освобождается при аллергических реакциях, шоке, ожоге.

Пиримидин

Общая характеристика электронного строения, химических свойств и биологической роли


Пиримидин, как и другие гетероциклические соединения, обладает ароматическим характером. Наличие двух пиридиновых атомов азота обусловливает основные свойства пиримидина. Производные пиримидина называются пиримидиновыми основаниями. Остатки трех пиримидиновых оснований (урацила, тимина, цитозина) входят в состав нуклеиновых кислот (см. «Нуклеиновые кислоты»).

Пурин

Строение молекулы. Биологическая роль

Молекула пурина представляет собой систему из пиримидинового и имидазольного циклов, имеющих два общих углеродных атома:




Производные пурина называются пуриновыми основаниями. Остатки двух пуриновых оснований (аденина и гуанина) входят в состав нуклеиновых кислот (см. «Нуклеиновые кислоты»).

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Гетероциклические соединения - это углеродные циклические соединения, в которых один или несколько атомов кольцевой системы являются отличными от углерода неметаллами (кислородом, азотом или серой). Как и карбоциклические соединения, гетероциклы можно подразделить на имеющие ароматический характер и продукты восстановления таких ароматических гетероциклов, которые аналогично алициклическим соединениям обнаруживают свойства и реакции, сходные со свойствами и реакциями алифатических соединений. Гетероциклы удобно классифицировать а) по числу атомов в кольце, б) по числу и природе гетероатомов. Ненасыщенные гетероциклы, обнаруживающие максимально ароматический характер, берутся в качестве ключевых представителей каждой циклической системы.
А. ПЯТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ
1. Один гетероатом

2. Два гетероатома

3. Три и более гетероатомов


Резонанс (см. "Резонанс" в начале разд. IV-3) пятичленных колец включает значительный вклад следующих структур:


Приобретенная таким путем энергия резонанса делает эти системы весьма устойчивыми к реакциям присоединения по двойным связям, и они вступают во многие типичные реакции ароматического замещения.
Б. ШЕСТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ
1. Один гетероатом


2. Два гетероатома


В. КОНДЕНСИРОВАННЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СИСТЕМЫ
Важные ряды соединений в каждом классе получают конденсацией гетероциклического кольца с одним или несколькими бензольными, например:


Гетероциклические системы широко распространены в природе, особенно в алкалоидах, растительных пигментах (антоцианины, флавоны), порфиринах (гемин, хлорофилл) и витаминах группы В (тиамин, рибофлавин, фолевая кислота). Ниже рассмотрены подробнее некоторые гетероциклические соединения.
Г. ПРАКТИЧЕСКИ ВАЖНЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Фуран, летучая жидкость, устойчивая к действию щелочей, но чувствительная к кислотам

Его легче всего получить декарбоксилированием пирослизевой кислоты (2,5-дикарбоксифурана), продукта пиролиза слизевой (тетрагидроксиадипиновой) кислоты. Наиболее общим методом получения фурановых производных является дегидратация g-дикетонов над хлоридом цинка:


Сухая перегонка пентоз HOCH2(CHOH)3CHO дает фурфурол (a-формилфуран). Фурфурол проявляет многие свойства ароматического альдегида. Так, подобно бензальдегиду, он вступает в реакцию Канниццаро и в бензоиновую конденсацию. Кумарон (бензофуран) (см. выше "Конденсированные гетероциклические системы") вместе с его гомологами содержится в каменноугольной смоле. Он имеет некоторую ценность для получения кумароновых смол, которые образуются при его обработке серной кислотой. Производные кумарона могут быть получены разложением дибромкумаринов щелочью:


или действием щелочи на о-гидрокси-b-хлорстирол, о-HO-C6H4-CH=CH-Cl. Кумароновая структура встречается во многих природных растительных веществах, которые являются мощными инсектицидами и ядами для рыб, например:


Тиофен (формулу см. выше, т. кип. 84° С) содержится в каменноугольной смоле и сопровождает бензол при ее фракционировании. Его можно удалить из бензола осаждением комплекса с ацетатом ртути, из которого при обработке соляной кислотой можно регенерировать тиофен. Серная кислота также удаляет его из бензола путем образования a-тиофенсульфокислоты. Производные тиофена можно получить следующими способами: 1) перегонкой янтарных кислот или g-кетокислот с P2S3:


2) перегонкой g-дикетонов с P2S5:


Тиофен и его гомологи очень устойчивы к окислению или восстановлению кольца. Реакции ароматического замещения (сульфирование, нитрование и т.д.) идут в a-положение. Тионафтен (бензотиофен) получают окислением о-меркаптокоричной кислоты красной кровяной солью (феррицианидом калия). Его 3-гидроксипроизводное, имеющее большое промышленное значение в химии красителей, получают действием уксусного ангидрида на о-карбоксифенилтиогликолевую кислоту о-HOOCC6H4-S-CH2COOH. Оно легко сочетается с солями диазония в положение 2, давая азокрасители, и конденсируется с альдегидами и кетонами, образуя тиоиндигоидные красители.


Пиррол (формулу см. выше), бесцветная, приятно пахнущая жидкость, содержащаяся в каменноугольной смоле, легко полимеризуется на воздухе. У него практически нет свойств основания, он устойчив к окислителям и щелочам, но легко полимеризуется в форме компонентов белков (пролин, триптофан), алкалоидов (никотин, атропин) и порфиринов (гемин, хлорофилл). Производные пиррола можно получить: 1) перегонкой сукцинимидов

С цинковой пылью; 2) нагреванием g-дикетонов с аммиаком; 3) нагреванием слизевой кислоты (см. выше) с аммиаком или первичными аминами; 4) одновременным восстановлением эквивалентных количеств b-кетоэфира и изонитрозокетона


Пирролы вступают в типичные реакции ароматического замещения в a-положение. Обработка реактивов Гриньяра превращает их в a-пиррилмагнийгалогениды


которые вступают в типичные реакции Гриньяра. Расширения кольца с образованием пиридиновой системы можно достичь: 1) обработкой хлороформом и этилатом натрия


2) пропусканием a-алкилпирролов через трубку, нагретую до красного каления


Восстановление путем каталитического гидрирования под давлением, хотя и медленно, ведет к пирролидинам:

Индол (бензопиррол; формулу см. в табл. 4, разд. III) содержится в каменноугольной смоле и эфирных маслах цветов апельсина и жасмина. Производные индола получают: 1) из о-аминофенилацетальдегида о-H2NC6H4CH2CH=O отщеплением воды; 2) нагреванием гидрохлоридов о-оў-диаминостильбенов:

3) из фенилгидразонов нагреванием с галогенидами меди или цинка


По своим реакциям индол похож на пиррол с тем исключением, что в реакциях замещения участвует b-положение. Заслуживают упоминания следующие производные индола: 1) скатол (b-метилиндол), вещество с неприятным запахом, присутствующее в экскрементах; 2) триптофан (b-(b-индолил)аланин), аминокислота, встречающаяся во многих белках; 3) гетероауксин (b-индолилуксусная кислота или 3-индолилуксусная кислота), фактор роста растений; 4) индиго


Оксазол (формулу см. выше) известен в чистом виде. Его производные можно получить конденсацией амидов с a-галогенокетонами:


или действием пентахлорида фосфора на ациламинокетоны:


Оксазолы - слабые основания, чувствительные к расщеплению сильными кислотами. Изоксазол

И его производные представляют меньший интерес. Они могут быть получены дегидратацией монооксимов b-дикетонов. Тиазол и его гомологи - слабые основания, в которых кольцо обнаруживает высокую устойчивость к окислению, восстановлению и действию сильных кислот

Тиазолы можно получить из a-ациламинокетонов действием P2S5, а также реакцией тиоамидов с a-галогенокетонами:


Сильные кислоты превращают тиазолы в соли (C3H3SN + HX (r) C3H3SNH+X-), которые устойчивы, но заметно гидролизуются в водных растворах. С алкилгалогенидами образуются N-замещенные соли тиазолия, содержащие четвертичный азот:

Наиболее важным природным соединением, содержащим тиазольное кольцо, является витамин B1 (тиамин). Ценный химиотерапевтический препарат сульфатиазол получают действием N-ацетилсульфанилхлорида на 2-аминотиазол с последующим удалением ацетильной группы гидролизом:


Имидазол (глиоксалин) и его гомологи

Получают из альдегидов, a-дикетонов и аммиака:


Их также можно приготовить взаимодействием амидинов

С a-галогенокетонами. Имидазолы - более сильные основания, чем пирролы. С алкилгалогенидами они дают N-алкилимидазолы. Эти вещества при пропускании через трубку при температуре красного каления изомеризуются в 2-алкилимидазолы; при взаимодействии со второй молекулой алкилгалогенида они превращаются в соли имидазолия, содержащие четвертичный азот

Действие реактивов Гриньяра RMgX на имидазолы ведет к соответствующим 2-имидазолилмагнийгалогенидам C3H3N2MgX, которые вступают в реакции, обычные для реактивов Гриньяра. Имидазольное кольцо встречается во многих природных соединениях, в том числе в аминокислоте гистидине (см. разд. IV-1.Б.4, "Аминокислоты"), алкалоидах группы пилокарпина и пуриновых основаниях. Пиразол и его производные - только синтетические соединения; кольцевая система пиразола

Не встречается в природе. Пиразолы получают взаимодействием гидразина с b-дикетонами:


или действием диазоалканов на ацетилен:


Реакция фенилгидразина с a,b-ненасыщенными кетонами или эфирами дает дигидропиразолы, или пиразолины:


Эти соединения легко окисляются в соответствующие пиразолы. Пиразольное кольцо очень устойчиво к окислению, восстановлению и действию сильных кислот. Пиразолиниевые соли, получаемые действием сильных кислот на пиразолины, нестойки и разлагаются в вакууме. Наиболее важный класс пиразолов - пиразолоны


получаемые действием гидразина и его производных на b-кетоэфиры, например,


Пиразолоны ведут себя как смесь трех таутомерных (т.е. находящихся в равновесии) форм, например:


1-Фенил-3-метилпиразол-5 является важным веществом. Окисление красной кровяной солью (феррицианидом калия) превращает его в индигоидный краситель пиразоловый голубой:


Метилирование (CH3I при 100° С) превращает его в жаропонижающий препарат антипирин (1-фенил-2,3-диметилпиразолон), 4-N-диметиламинопроизводное которого представляет собой аналогичное лекарственное средство амидопирин (пирамидон). Кольцевые системы с тремя и более гетероатомами не представляют практического интереса. Все они устойчивы к окислению, восстановлению и действию сильных кислот. Фуразаны получают дегидратацией диоксимов a-дикетонов. 1,2,3-Триазолы и тетразолы также относятся к этой группе соединений.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ" в других словарях:

    - (гетероциклы) органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее… … Википедия

    Органические соединения, содержащие в молекуле цикл, в состав которого наряду с атомами углерода входят атомы других элементов, чаще всего азота, кислорода, серы (т. н. гетероатомы). Природные гетероциклические соединения, напр., хлорофилл, гем,… … Большой Энциклопедический словарь

    ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ - см. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ новые гербициды, из которых перспективны реглон и базагран. Они могут попадать в водоемы с поверхностным стоком и со сточными водами химической промышленности. Реглон и базагран представляют собой коричневые… … Болезни рыб: Справочник

    ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ - ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ, обширный класс органич. соединений с циклическим строением молекул, в состав цикла к рых входят не только атомы углерода, но и атомы других элементов (гетероатомы). Известны циклические соединения, в к рых роль… … Большая медицинская энциклопедия

    ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ, см. ЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ … Научно-технический энциклопедический словарь

    Органические соединения, содержащие в молекуле цикл, в состав которого наряду с атомами углерода входят атомы других элементов, чаще всего азота, кислорода, серы (так называемые гетероатомы). Природные гетероциклические соединения, например… … Энциклопедический словарь

    Орг. соединения, молекулы к рых содержат циклы, включающие наряду с атомами углерода один или неск. атомов др. элементов (гетероатомов). Наиб. значение имеют Т. е., в цикл к рых входят атомы N, О, S. К ним относятся мн, алкалоиды, витамины,… … Химическая энциклопедия

    - (см. гетеро... + циклический) органические соединения с циклическим (кольцевым) строением, в состав цикла которых входят атомы не только углерода, но и других элементов (азота, кислорода, серы и др.). Новый словарь иностранных слов. by EdwART,… … Словарь иностранных слов русского языка

    Гетероциклы (от гетеро… (См. Гетеро...) и греч. kýklos круг), органические вещества, содержащие цикл, в состав которого, кроме атомов углерода, входят атомы других элементов (гетероатомы), наиболее часто N, О, S, реже Р, В, Si и др.… … Большая советская энциклопедия

    - (от гетеро... и греч. kyklos круг, цикл) органич. соединения, содержащие в молекуле цикл, в состав к рого, кроме атомов углерода, входят атомы др. элементов (гетероатомы), чаще всего азота (см., напр., Пиридин), кислорода, серы, реже фосфора,… … Большой энциклопедический политехнический словарь

Книги

  • Гетероциклические соединения с тремя и более гетероатомами. Учебное пособие , Миронович Людмила Максимовна. В учебном пособии излагаются основы химии гетероциклических соединений, имеющих в своем составе три и более гетероатома. Представлены основные способы полученияоксадиазолов, тиадиазо-лов,…

Гетероциклические соединения

Гетероциклическими называются соединения, имеющие в своем составе кольца (циклы), в образовании которых, кроме атомов углерода, принимают участие и атомы других элементов.

Атомы других элементов, помимо атомов углерода, входящие в состав гетероциклов, называются гетероатомами. Наиболее часто встречаются в составе гетероциклов гетероатомы азота (N), кислорода (O) и серы (S).

Классификация гетероциклов

1. по общему числу атомов в цикле: трех-, четырех-, пяти-, шестичленные циклы и др.

2. по природе гетероатома: кислородо-, азото-, серо-, фосфорсодержащие

3. По числу гетероатомов:1,2 и более в цикле

4. По степени насыщенности циклов

5. По количеству циклов

Наибольшее значение имеют пяти и шестичленные гетероциклы, содержащие азот, кислород и серу. Эти циклы образуются наиболее легко и отличаются большой прочностью. Это обусловлено тем, что валентные углы приведенных гетероатомов незначительно отличаются от валентного угла углерода. По степени насыщенности гетероциклические соединения могут быть насыщенными, ненасыщенными и ароматическими. Особо следует выделить гетероциклические соединения, которые по своим свойствам отличаются от всех остальных циклических и ациклических соединений, напоминая своей устойчивостью и реакциями скорее бензол и его производные. Это гетероциклические соединения ароматического характера.

Гетероциклические соединения имеют огромное значение. Многие из них являются основой важных лекарственных препаратов, участвуют в построении некоторых аминокислот, входящих в состав белков. Гетероциклы являются структурными компонентами нуклеиновых кислот, лежат в основе природных окрашенных веществ таких, как хлорофилл, гемоглобин.

Гетероциклические соединения ароматического характера

В гетероциклических соединениях ароматического характера встречаются только следующие гетероатомы: азот, кислород и сера. Они являются единственными элементами, кроме углерода, которые могут образовывать π-связи и, следовательно, участвовать в построении ароматических ядер.

Пятичленные гетероциклы с одним гетероатомом

Важнейшими пятичленными гетероциклами с одним гетероатомом являются:

Индол (бензпиррол) является примером конденсированного гетероциклического соединения, в состав которого входят бензольное и пиррольное ядра, имеющие общее сочленение.

Производные пиррола широко распространены в природе. Сам же пиррол встречается редко. Он входит в состав каменноугольной смолы и костяного масла. Целый ряд производных пиррола и индола был получен искусственно и занял важное место в промышленном органическом синтезе: красители, лекарственные препараты, пластики. Индол является структурным компонентом незаменимой аминокислоты триптофан.

Шестичленные гетероциклы с одним гетероатомами

Важнейшим шестичленным гетероциклом с одним гетероатомом азота является пиридин. Наряду с пиридином большое значение имеют конденсированные системы, в которых ядро пиридина сочетается с одним и двумя ядрами бензола. Например, хинолин.


Пятичленные и шестичленные гетероциклы с двумя гетероатомами


В азотосодержащих гетероциклах два атома азота могут быть расположены в непосредственном соседстве и могут быть разделены одной или двумя группами CH (1,2-, 1,3- и 1,4- расположение).

Пурин – сложная гетероциклическая система, состоящая из двух конденсированных гетероциклов: пиримидина и имидазола.

Критерии ароматичности

1. Плоская циклическая система

2. Замкнутая, сопряженная система, охватывающая все атомы цикла

3. Число электронов, участвующих в сопряжении равно 4n+2, где n=0,1,2,3,… (n- количество циклов)

В гетероциклических соединениях с одним циклом, в сопряжении участвуют 6 электронов

Строение бензола по схеме

Пиридин. Как и в случае бензола, ароматический характер пиридина обусловлен сопряжением шести p-электронов (ароматический секстет) по одному от каждого атома цикла. Атом азота (пиридиновый) связан с двумя соседними атомами углерода sp 2 -гибридизованными орбиталями аналогично атомам углерода в бензоле. Межатомные расстояния C-C в пиридине равны между собой и практически равны расстояниям C-C в бензольном ядре; расстояния C-N значительно меньше тех же расстояний в несопряженных молекулах. Неподеленная электронная пара на sp 2 -АО азота не участвует в сопряжении. Именно она и обуславливает основные свойства пиридина.

Пиррол. Ароматический секстет пиррола образуется сочетанием четырех p-элетронов углерода и двух неподеленных электронов азота на p z -АО с образованием единой π-электронной системы. Атом азота в этом случае называется пиррольным.

Наличие гетероатома приводит к неравномерному распределению электронной плотности. Влияние гетероатома меняется в зависимости от того, один или два p-электрона вносит он в ароматический секстет. Распределение электронной плотности, длины связей и валентные углы в молекулах пиридина и пиррола приведены на рисунке. Так как электроотрицательность азота больше, чем углерода, то в пиридине электронная плотность увеличена у атома азота и понижена у остальных атомов цикла, главным образом у атомов в положениях 2,4 и 6.

Вследствие участия пары неподеленных электронов атома азота пиррола в ароматическом сопряжении гетероатом становится более бедным электронами. CH- группы, находящиеся по соседству с гетероатомом (α-положения), будут значительно богаче электронами и, следовательно, более реакционноспособными в реакциях электрофильного замещения, чем более удаленные CH-группы (β-положения)

Пиримидин содержит два пиридиновых атома азота, а имидазол и пурин – пиррольный и пиридиновый атомы азота. Это определяет кислотно-основные свойства данных соединений.


Пиррол. Бесцветная жидкость, слабо растворима в воде, на воздухе быстро окисляется и темнеет. Получение:

1. Фуран, тиофен и пиррол могут превращаться в друг друга при нагревании до 400-450 в присутствии катализатора Al 2 O 3 (цикл Юрьева)

2. Пиррол образуется при пропускании смеси C 2 H 2 и NH 3 через нагретый katFe 2 O 3


Химические свойства

1. Пиррол проявляет слабокислотные свойства, реагируя со щелочными Me или с очень сильными основаниями при t.

2. Легче чем бензол вступает в реакции замещения. Распределение электронной плотности, обусловленное наличием гетероатома таково, что наиболее реакционноспособными являются альфа-положения по отношению к атому азота.

3. При восстановлении в мягких условиях (Zn+HCl) пиррол превращается в пирролин. Энергичное восстановление (например, гидрирование в присутствии никеля при 200) приводит к образованию тетрагидропиррола (пирролидина).


Основные свойства пиррола практически не проявляются из-за участия неподеленной электронной пары в системе кольцевого сопряжения (пиррольный азот). В ряду пиррол – пирролин – пирролидин, основность растет.

Ядро пиррола и некотрые его производные входят в состав важнейших биологических и биохимических структур. Например. пиррольные циклы входят в состав порфина и гемма. При их разрушении в организме образуются «линейные» тетрапирролы, называемые желчными пигментами (биливердин, билирубин, стеркобилин и т.д.). По соотношению пигментов определяются вид желтухи и причины, вызывающие заболевание (механическая желтуха, вирусный гепатит и т.д.)

Пиридин. Бесцветная жидкость с характерным неприятным запахом, с водой смешивается в любых соотношениях. Получение:

1. Выделение из каменноугольной смолы

2. Синтез из синильной кислоты и ацетилена

Химические свойства

1. Пиридин обладает основными свойствами, т.к. содержит ПИРИДИНОВЫЙ атом азота, в известной степени аналогичный атому азота аминов (электронная пара не участвует в образовании ароматического секстета):

2. Водные раствора пиридина окрашивают лакмус в синий цвет, при действии минеральных кислот образуются кристаллические пиридиниевые соли

3. Пиридин и его гомологи присоединяют галоген алкилы, давая соли пиридиния

4. Пиридин труднее бензола вступает в реакции замещения из-за большей чем у углерода, электроотрицательности атома азота. При этом замещение идет приемущественно по β-положения

5. При каталитическом восстановлении пиридин переходит в пиперидин

6. Пиридин устойчив к действию окислителей. Его гомологи окисляются с образованием гетероциклических карбоновых кислот

7. Горение пиридина

Пиридин и его производные основа многих лекарственных средств. Например – никотиновая кислота и ее амид являются витаминами группы PP.

Нуклеиновые основания


Из ранее изложенного следует, что соединения, содержащие пиридиновый атом азота, обладают основными свойствами (азотистые основания). Производные пиримидина и пурина, входящие в состав нуклеиновых кислот. получили название «нуклеиновые основания».

Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...