Сера плюс вода уравнение реакции. Серный ангидрид и серная кислота

Сероводород (H₂S) представляет собой бесцветный газ c запахом тухлых яиц. По плотности он тяжелее водорода. Сероводород смертельно ядовит для человека и животных. Даже незначительное его содержание в воздухе вызывает головокружение и тошноту, но самым страшным является то, что при длительном его вдыхании этот запах уже не ощущается. Однако при отравлении сероводородом существует простое противоядие: следует завернуть в платок кусок хлорной извести, затем смочить, и какое-то время нюхать этот сверток. Сероводород получают путем взаимодействия серы с водородом при температуре 350 °С:

H₂ + S → H₂S

Это окислительно-восстановительная реакция: в ходе нее изменяются степени окисления участвующих в ней элементов.

В лабораторных условиях сероводород получают воздействием на сульфид железа серной или соляной кислоты:

FeS + 2HCl → Fe­Cl₂ + H₂S

Это реакция обмена: в ней взаимодействующие вещества обмениваются своими ионами. Данный процесс обычно проводят с помощью аппарата Киппа.


Аппарат Киппа

Свойства сероводорода

При горении сероводорода образуется оксид серы 4 и водяной пар:

2H₂S + 3О₂ → 2Н₂О + 2SO₂

H₂S горит голубоватым пламенем, а если над ним подержать перевернутый химический стакан, то на его стенках появится прозрачный конденсат (вода).

Однако при незначительном понижении температуры данная реакция проходит несколько иначе: на стенках предварительно охлажденного стакана появится уже желтоватый налет свободной серы:

2H₂S + О₂ → 2Н₂О + 2S

На этой реакции основан промышленный способ получения серы.

При поджигании предварительно подготовленной газообразной смеси сероводорода и кислорода происходит взрыв.

Реакция сероводорода и оксида серы(IV) также позволяет получить свободную серу:

2H₂S + SО₂ → 2Н₂О + 3S

Сероводород растворим в воде, причем три объема этого газа могут раствориться в одном объеме воды, образуя слабую и нестойкую сероводородную кислоту (Н₂S). Эту кислоту также называют сероводородной водой. Как видите, формулы газа-сероводорода и сероводородной кислоты записываются одинаково.

Если к сероводородной кислоте прилить раствор соли свинца, выпадет черный осадок сульфида свинца:

H₂S + Pb(NO₃)₂ → PbS + 2H­NO₃

Это качественная реакция для обнаружения сероводорода. Она же демонстрирует способность сероводородной кислоты вступать в реакции обмена с растворами солей. Таким образом, любая растворимая соль свинца является реактивом на сероводород. Некоторые другие сульфиды металлов также имеют характерную окраску, например: сульфид цинка ZnS - белую, сульфид кадмия CdS - желтую, сульфид меди CuS - черную, сульфид сурьмы Sb₂S₃ - красную.

Кстати, сероводород является нестойким газом и при нагревании практически полностью разлагается на водород и свободную серу:

H₂S → Н₂ + S

Сероводород интенсивно взаимодействует с водными растворами галогенов:

H₂S + 4Cl₂ + 4H₂O→ H₂­SO₄ + 8HCl

Сероводород в природе и жизнедеятельности человека

Сероводород входит в состав вулканических газов, природного газа и газов, сопутствующих месторождениям нефти. Много его и в природных минеральных водах, например, в Черном море он залегает на глубине от 150 метров и ниже.

Сероводород применяют :

  • в медицине (лечение сероводородными ваннами и минеральными водами);
  • в промышленности (получение серы, серной кислоты и сульфидов);
  • в аналитической химии (для осаждения сульфидов тяжелых металлов, которые обычно нерастворимы);
  • в органическом синтезе (для получения сернистых аналогов органических спиртов (меркаптанов) и тиофена (серосодержащего ароматического углеводорода). Еще одно из недавно появившихся направлений в науке - сероводородная энергетика. Всерьез изучается получение энергии из залежей сероводорода со дна Черного моря.

Природа окислительно-восстановительных реакций серы и водорода

Реакция образования сероводорода является окислительно-восстановительной:

Н₂⁰ + S⁰→ H₂⁺S²⁻

Процесс взаимодействия серы с водородом легко объясняется строением их атомов. Водород занимает первое место в периодической системе, следовательно, заряд его атомного ядра равен (+1), а вокруг ядра атома кружится 1 электрон. Водород с легкостью отдает свой электрон атомам других элементов, превращаясь в положительно заряженный ион водорода - протон:

Н⁰ -1е⁻= Н⁺

Сера находится на шестнадцатой позиции в таблице Менделеева. Значит, заряд ядра ее атома равен (+16), и количество электронов в каждом атоме также 16е⁻. Расположение серы в третьем периоде говорит о том, что ее шестнадцать электронов кружатся вокруг атомного ядра, образуя 3 слоя, на последнем из которых находится 6 валентных электронов. Количество валентных электронов серы соответствует номеру группы VI, в которой она находится в периодической системе.

Итак, сера может отдать все шесть валентных электронов, как в случае образования оксида серы(VI):

2S⁰ + 3O2⁰ → 2S⁺⁶O₃⁻²

Кроме того, в результате окисления серы, 4е⁻могут быть отданы ее атомом другому элементу с образованием оксида серы(IV):

S⁰ + О2⁰ → S⁺4 O2⁻²

Сера может отдать также два электрона c образованием хлорида серы(II) :

S⁰ + Cl2⁰ → S⁺² Cl2⁻

Во всех трех вышеуказанных реакциях сера отдает электроны. Следовательно, она окисляется, но при этом выступает в роли восстановителя для атомов кислорода О и хлора Cl. Однако в случае образования H2S окисление - удел атомов водорода, поскольку именно они теряют электроны, восстанавливая внешний энергетический уровень серы с шести электронов до восьми. В результате этого каждый атом водорода в его молекуле становится протоном:

Н2⁰-2е⁻ → 2Н⁺,

а молекула серы, наоборот, восстанавливаясь, превращается в отрицательно заряженный анион (S⁻²): S⁰ + 2е⁻ → S⁻²

Таким образом, в химической реакции образования сероводорода окислителем выступает именно сера.

С точки зрения проявления серой различных степеней окисления, интересно и еще одно взаимодействие оксида серы(IV) и сероводорода - реакция получения свободной серы:

2H₂⁺S-²+ S⁺⁴О₂-²→ 2H₂⁺O-²+ 3S⁰

Как видно из уравнения реакции, и окислителем, и восстановителем в ней являются ионы серы. Два аниона серы (2-) отдают по два своих электрона атому серы в молекуле оксида серы(II), в результате чего все три атома серы восстанавливаются до свободной серы.

2S-² - 4е⁻→ 2S⁰ - восстановитель, окисляется;

S⁺⁴ + 4е⁻→ S⁰ - окислитель, восстанавливается.

Сера – элемент 3‑го периода и VIA‑группы Периодической системы, порядковый номер 16, относится к халькогенам. Электронная формула атома [ 10 Ne]3s 2 3p 4 , характерные степени окисления 0, ‑II, +IV и +VI, состояние S VI считается устойчивым.

Шкала степеней окисления серы:

Электроотрицательность серы равна 2,60, для нее характерны неметаллические свойства. В водородных и кислородных соединениях находится в составе различных анионов, образует кислородсодержащие кислоты и их соли, бинарные соединения.

В природе – пятнадцатый по химической распространенности элемент (седьмой среди неметаллов). Встречается в свободном (самородном) и связанном виде. Жизненно важный элемент для высших организмов.

Сера S. Простое вещество. Желтая кристаллическая (α‑ромбическая и β‑моноклинная,

при 95,5 °C) или аморфная (пластическая). В узлах кристаллической решетки находятся молекулы S 8 (неплоские циклы типа «корона»), аморфная сера состоит из цепей S n . Низкоплавкое вещество, вязкость жидкости проходит через максимум при 200 °C (разрыв молекул S 8 , переплетение цепей S n). В паре – молекулы S 8 , S 6 , S 4 , S 2 . При 1500 °C появляется одноатомная сера (в химических уравнениях для простоты любая сера изображается как S).

Сера не растворяется в воде и при обычных условиях не реагирует с ней, хорошо растворима в сероуглероде CS 2 .

Сера, особенно порошкообразная, обладает высокой активностью при нагревании. Реагирует как окислитель с металлами и неметаллами:

а как восстановитель – с фтором, кислородом и кислотами (при кипячении):

Сера подвергается дисмутации в растворах щелочей:

3S 0 + 6КОН (конц.) = 2K 2 S ‑II + K 2 S IV O 3 + 3H 2 O

При высокой температуре (400 °C) сера вытесняет иод из иодоводорода:

S + 2НI (г) = I 2 + H 2 S,

но в растворе реакция идет в обратную сторону:

I 2 + H 2 S (p) = 2 HI + S↓

Получение : в промышленности выплавляется из природных залежей самородной серы (с помощью водяного пара), выделяется при десульфурации продуктов газификации угля.

Сера применяется для синтеза сероуглерода, серной кислоты, сернистых (кубовых) красителей, при вулканизации каучука, как средство защиты растений от мучнистой росы, для лечения кожных заболеваний.

Сероводород H 2 S. Бескислородная кислота. Бесцветный газ с удушающим запахом, тяжелее воздуха. Молекула имеет строение дважды незавершенного тетраэдра [::S(H) 2 ]

(sp 3 ‑гибридизация, валетный угол Н – S–Н далек от тетраэдрического). Неустойчив при нагревании выше 400 °C. Малорастворим в воде (2,6 л/1 л Н 2 O при 20 °C), насыщенный раствор децимолярный (0,1М, «сероводородная вода»). Очень слабая кислота в растворе, практически не диссоциирует по второй стадии до ионов S 2‑ (максимальная концентрация S 2‑ равна 1 10 ‑13 моль/л). При стоянии на воздухе раствор мутнеет (ингибитор – сахароза). Нейтрализуется щелочами, не полностью – гидратом аммиака. Сильный восстановитель. Вступает в реакции ионного обмена. Сульфидирующий агент, осаждает из раствора разноокрашенные сульфиды с очень малой растворимостью.


Качественные реакции – осаждение сульфидов, а также неполное сгорание H 2 S с образованием желтого налета серы на внесенном в пламя холодном предмете (фарфоровый шпатель). Побочный продукт очистки нефти, природного и коксового газа.

Применяется в производстве серы, неорганических и органических серосодержащих соединений как аналитический реагент. Чрезвычайно ядовит. Уравнения важнейших реакций:

Получение : в промышленности – прямым синтезом:

Н 2 + S = H 2 S (150–200 °C)

или при нагревании серы с парафином;

в лаборатории – вытеснением из сульфидов сильными кислотами

FeS + 2НCl (конц.) = FeCl 2 + H 2 S

или полным гидролизом бинарных соединений:

Al 2 S 3 + 6Н 2 O = 2Al(ОН) 3 ↓ + 3H 2 S

Сульфид натрия Na 2 S. Бескислородная соль. Белый, очень гигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде, гидролизуется по аниону, создает в растворе сильнощелочную среду. При стоянии на воздухе раствор мутнеет (коллоидная сера) и желтеет (окраска полисульфида). Типичный восстановитель. Присоединяет серу. Вступает в реакции ионного обмена.

Качественные реакции на ион S 2‑ – осаждение разноокрашенных сульфидов металлов, из которых MnS, FeS, ZnS разлагаются в НCl (разб.).

Применяется в производстве сернистых красителей и целлюлозы, для удаления волосяного покрова шкур при дублении кож, как реагент в аналитической химии.

Уравнения важнейших реакций:

Na 2 S + 2НCl (разб.) = 2NaCl + H 2 S

Na 2 S + 3H 2 SO 4 (конц.) = SO 2 + S↓ + 2H 2 O + 2NaHSO 4 (до 50 °C)

Na 2 S + 4HNO 3 (конц.) = 2NO + S↓ + 2H 2 O + 2NaNO 3 (60 °C)

Na 2 S + H 2 S (насыщ.) = 2NaHS

Na 2 S (т) + 2O 2 = Na 2 SO 4 (выше 400 °C)

Na 2 S + 4H 2 O 2 (конц.) = Na 2 SO 4 + 4H 2 O

S 2‑ + M 2+ = MnS (телесн.)↓; FeS (черн.)↓; ZnS (бел.)↓

S 2‑ + 2Ag + = Ag 2 S (черн.)↓

S 2‑ + M 2+ = СdS (желт.)↓; PbS, CuS, HgS (черные)↓

3S 2‑ + 2Bi 3+ = Bi 2 S 3 (кор. – черн.)↓

3S 2‑ + 6H 2 O + 2M 3+ = 3H 2 S + 2M(OH) 3 ↓ (M = Al, Cr)

Получение в промышленности – прокаливание минерала мирабилит Na 2 SO 4 10Н 2 O в присутствии восстановителей:

Na 2 SO 4 + 4Н 2 = Na 2 S + 4Н 2 O (500 °C, кат. Fe 2 O 3)

Na 2 SO 4 + 4С (кокс) = Na 2 S + 4СО (800–1000 °C)

Na 2 SO 4 + 4СО = Na 2 S + 4СO 2 (600–700 °C)

Сульфид алюминия Al 2 S 3 . Бескислородная соль. Белый, связь Al – S преимущественно ковалентная. Плавится без разложения под избыточным давлением N 2 , легко возгоняется. Окисляется на воздухе при прокаливании. Полностью гидролизуется водой, не осаждается из раствора. Разлагается сильными кислотами. Применяется как твердый источник чистого сероводорода. Уравнения важнейших реакций:

Al 2 S 3 + 6Н 2 O = 2Al(ОН) 3 ↓ + 3H 2 S (чистый)

Al 2 S 3 + 6НCl (разб.) = 2AlCl 3 + 3H 2 S

Al 2 S 3 + 24HNO 3 (конц.) = Al 2 (SO 4) 3 + 24NO 2 + 12H 2 O (100 °C)

2Al 2 S 3 + 9O 2 (воздух) = 2Al 2 O 3 + 6SO 2 (700–800 °C)

Получение : взаимодействие алюминия с расплавленной серой в отсутствие кислорода и влаги:

2Al + 3S = AL 2 S 3 (150–200 °C)

Сульфид железа (II) FeS. Бескислородная соль. Черно‑серый с зеленым оттенком, тугоплавкий, разлагается при нагревании в вакууме. Во влажном состоянии чувствителен к кислороду воздуха. Нерастворим в воде. Не выпадает в осадок при насыщении растворов солей железа(II) сероводородом. Разлагается кислотами. Применяется как сырье в производстве чугуна, твердый источник сероводорода.

Соединение железа(III) состава Fe 2 S 3 не известно (не получено).

Уравнения важнейших реакций:

Получение:

Fe + S = FeS (600 °C)

Fe 2 O 3 + H 2 + 2H 2 S = 9FeS + 3H 2 O (700‑1000 °C)

FeCl 2 + 2NH 4 HS (изб.) = FeS ↓ + 2NH 4 Cl + H 2 S

Дисульфид железа FeS 2 . Бинарное соединение. Имеет ионное строение Fe 2+ (–S – S–) 2‑ . Темно‑желтый, термически устойчивый, при прокаливании разлагается. Нерастворим в воде, не реагирует с разбавленными кислотами, щелочами. Разлагается кислотами‑окислителями, подвергается обжигу на воздухе. Применяется как сырье в производстве чугуна, серы и серной кислоты, катализатор в органическом синтезе. В природе – рудные минералы пирит и марказит.

Уравнения важнейших реакций:

FeS 2 = FeS + S (выше 1170 °C, вакуум)

2FeS 2 + 14H 2 SO 4 (конц., гор.) = Fe 2 (SO 4) 3 + 15SO 2 + 14Н 2 O

FeS 2 + 18HNO 3 (конц.) = Fe(NO 3) 3 + 2H 2 SO 4 + 15NO 2 + 7H 2 O

4FeS 2 + 11O 2 (воздух) = 8SO 2 + 2Fe 2 O 3 (800 °C, обжиг)

Гидросульфид аммония NH 4 HS. Бескислородная кислая соль. Белый, плавится под избыточным давлением. Весьма летучий, термически неустойчивый. На воздухе окисляется. Хорошо растворим в воде, гидролизуется по катиону и аниону (преобладает), создает щелочную среду. Раствор желтеет на воздухе. Разлагается кислотами, в насыщенном растворе присоединяет серу. Щелочами не нейтрализуется, средняя соль (NH 4) 2 S не существует в растворе (условия получения средней соли см. в рубрике «H 2 S»). Применяется в качестве компонента фотопроявителей, как аналитический реагент (осадитель сульфидов).

Уравнения важнейших реакций:

NH 4 HS = NH 3 + H 2 S (выше 20 °C)

NH 4 HS + НCl (разб.) = NH 4 Cl + H 2 S

NH 4 HS + 3HNO 3 (конц.) = S↓ + 2NO 2 + NH 4 NO 3 + 2H 2 O

2NH 4 HS (насыщ. H 2 S) + 2CuSO 4 = (NH 4) 2 SO 4 + H 2 SO 4 + 2CuS↓

Получение : насыщение концентрированного раствора NH 3 сероводородом:

NH 3 Н 2 O (конц.) + H 2 S (г) = NH 4 HS + Н 2 O

В аналитической химии раствор, содержащий равные количества NH 4 HS и NH 3 Н 2 O, условно считают раствором (NH 4) 2 S и используют формулу средней соли в записи уравнений реакций, хотя сульфид аммония полностью гидролизуется в воде до NH 4 HS и NH 3 Н 2 O.

Химическое строение молекул H 2 S аналогично строению молекул Н 2 O: (угловая форма)


Но, в отличие от воды, молекулы H 2 S малополярны; водородные связи между ними не образуются; прочность молекул значительно ниже.

Физические свойства

При обычной температуре H 2 S - бесцветный газ с чрезвычайно неприятным удушливым запахом тухлых яиц, очень ядовитый (при концентрации > 3 г/м 3 вызывает смертельное отравление). Сероводород тяжелее воздуха, легко конденсируется в бесцветную жидкость.H 2 S растворим в воде (при обычной температуре в 1 л H 2 O растворяется - 2,5 л газа).

Сероводород в природе

H 2 S присутствует в вулканических и подземных газах, в воде серных источников. Он образуется при гниении белков, содержащих серу, а также выделяется в процессе жизнедеятельности многочисленных микроорганизмов.

Способы получения

1. Синтез из простых веществ:


S + Н 2 = H 2 S


2. Действие неокисляющих кислот на сульфиды металлов:


FeS + 2HCI = H 2 S + FeCl 2


3.Действие конц. H 2 SO 4 (без избытка) на щелочные и щелочно-земельные Me:


5H 2 SO 4 (конц.) + 8Na = H 2 S + 4Na 2 SO 4 + 4H 2 О


4. Образуется при необратимом гидролизе некоторых сульфидов:


AI 2 S 3 + 6Н 2 О = 3H 2 S + 2Аl(ОН) 3 ↓

Химические свойства H 2 S

H 2 S - сильный восстановитель

Взаимодействие H 2 S с окислителями приводит к образованию различных веществ (S, SО 2 , H 2 SO 4),

Реакции с простыми веществами окислителями

Окисление кислородом воздуха


2H 2 S + 3О 2 (избыток) = 2SО 2 + 2Н 2 О


2H 2 S + О 2 (недостаток) = 2S↓ + 2Н 2 О


Окисление галогенами:


H 2 S + Br 2 = S↓ + 2НВr

Реакции с окисляющими кислотами (HNО 3 , H 2 SO 4 (конц.).

3H 2 S + 8HNО 3 (разб.) = 3H 2 SO 4 + 8NO + 4Н 2 О


H 2 S + 8HNО 3 (конц.) = H 2 SO 4 + 8NО 2 + 4Н 2 О


H 2 S + H 2 SO 4 (конц.) = S↓ + SО 2 + 2Н 2 О

Реакции с солями - окислителями

5H 2 S + 2KMnO 4 + 3H 2 SO 4 = 5S↓ + 2MnSO 4 + K 2 SO 4 + 8Н 2 О


5H 2 S + 6KMnO 4 + 9H 2 SO 4 = 5SО 2 + 6MnSO 4 + 3K 2 SO 4 + 14Н 2 О


H 2 S + 2FeCl 3 = S↓ + 2FeCl 2 + 2HCl

Водный раствор H 2 S проявляет свойства слабой кислоты

Сероводородная кислота H 2 S 2-основная кислота диссоциирует ступенчато


1-я ступень: H 2 S → Н + + HS -


2-я ступень: HS - → Н + + S 2-


Для H 2 S в водном растворе характерны реакции, общие для класса кислот, в которых она ведет себя как слабая кислота. Взаимодействует:


а) с активными металлами


H 2 S + Mg = Н 2 + MgS


б) с малоактивными металлами (Аg, Си, Нg) в присутствии окислителей


2H 2 S + 4Аg + O 2 = 2Ag 2 S↓ + 2Н 2 O


в) с основными оксидами


H 2 S + ВаО = BaS + Н 2 O


г) со щелочами


H 2 S + NaOH(недостаток) = NaHS + Н 2 O


д) с аммиаком


H 2 S + 2NH 3 (избыток) = (NH 4) 2 S

Особенности реакций H 2 S с солями сильных кислот

Несмотря на то, что сероводородная кислота - очень слабая, она реагирует с некоторыми солями сильных кислот, например:


CuSO 4 + H 2 S = CuS↓ + H 2 SO 4


Реакции протекают в тех случаях, если образующийся сульфид Me нерастворим не только в воде, но и в сильных кислотах.

Качественная реакция на сульфид-анион

Одна из таких реакций используется для обнаружения анионов S 2- и сероводорода:


H 2 S + Pb(NO 3) 2 = 2HNO 3 + PbS↓ черный осадок.


Газообразный H 2 S обнаруживают с помощью влажной бумаги, смоченной раствором Pb(NO 3) 2 , которая чернеет в присутствии H 2 S.

Сульфиды

Сульфидами называют бинарные соединения серы с менее ЭО элементами, в том числе с некоторыми неметаллами (С, Si, Р, As и др.).


Наибольшее значение имеют сульфиды металлов, поскольку многие из них представляют собой природные соединения и используются как сырье для получения свободных металлов, серы, диоксида серы.

Обратимый гидролиз растворимых сульфидов

Сульфиды щелочных Me и аммония хорошо растворимы в воде, но в водном растворе они подвергаются гидролизу в очень значительной степени:


S 2- + H 2 O → HS - + ОН -


Поэтому растворы сульфидов имеют сильнощелочную реакцию


Сульфиды щелочно-земельных Me и Mg, взаимодействуя с водой, подвергаются полному гидролизу и переходят в растворимые кислые соли - гидросульфиды:


2CaS + 2НОН = Ca(HS) 2 + Са(ОН) 2


При нагревании растворов сульфидов гидролиз протекает и по 2-й ступени:


HS - + H 2 O → H 2 S + ОН -

Необратимый гидролиз сульфидов

Сульфиды некоторых металлов подвергаются необратимому гидролизу и полностью разлагаются в водных растворах, например:


Al 2 S 3 + 6H 2 O = 3H 2 S + 2AI(OH) 3↓


Аналогичным образом разлагаются Cr 2 S 3 , Fe 2 S 3

Нерастворимые сульфиды

Большинство сульфидов тяжелых металлов в воде практически не растворяются и поэтому гид ролизу не подвергаются. Некоторые из них растворяются под действием сильных кислот, например:


FeS + 2HCI = FeCl 2 + H 2 S


ZnS + 2HCI = ZnCl 2 + H 2 S


Сульфиды Ag 2 S, HgS, Hg 2 S, PbS, CuS не pacтворяются не только в воде, но и во многих кислотах.

Окислительный обжиг сульфидов

Окисление сульфидов кислородом воздуха при высокой температуре является важной стадией переработки сульфидного сырья. Примеры:


2ZnS + 3O 2 = 2ZnO + 2SO 2


4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

Способы получения сульфидов

1. Непосредственное соединение простых веществ:



2.Взаимодействие H 2 S с растворами щелочей:


H 2 S + 2NaOH = 2H 2 O + Na 2 S сульфид натрия


H 2 S + NaOH = H 2 O + NaHS гидросульфид натрия


3.Взаимодействие H 2 S или (NH 4) 2 S с растворами солей:


H 2 S + CuSO 4 = CuS↓ + H 2 SO 4


H 2 S + 2AgNO 3 = Ag2S↓ + 2HNO 3


4. Восстановление сульфатов прокаливанием с углем:


Na 2 SO 4 + 4С = Na 2 S + 4СО


Этот процесс используют для получения сульфидов щелочных и щелочно-земельных металлов.

В этой статье мы рассмотрим получение сероводорода из серы. Подробнее разберем физические и химические свойства данного вещества.

Строение

Для того чтобы проанализировать основное получение сероводорода, необходимо выяснить особенности его строения. В составе данного вещества содержатся один атом серы и два водорода. Они являются неметаллами, поэтому между элементами образуются В сероводороде угловое строение. Между серой и водородом образуется угол в 92 градуса, что чуть меньше, чем в воде.

Физические свойства

Запах сероводорода, напоминающий тухлые яйца, знаком всем. При нормальных условиях данное вещество находится в газообразном состоянии. Оно не имеет цвета, плохо растворимо в воде, ядовито. В среднем при 20 градусах по Цельсию в воде будет растворяться 2,4 объема сероводорода. У сероводородной воды выявлены незначительные диссоциация вещества протекает ступенчато. Ядовитый сероводород опасен даже в незначительных дозах. Содержание в воздухе около 0,1 процента сероводорода приводит к параличу дыхательного центра с потерей сознания. Например, легендарный естествоиспытатель Плиний Старший погиб в 79 веке до нашей эры именно от сероводорода, который образовывался при извержении Везувия.

Причина отравляющего действия сероводорода в его химическом взаимодействии с гемоглобином крови. Железо, содержащееся в этом белке, образует сульфид с сероводородом.

Предельно допустимой концентрацией в воздухе сероводорода считается 0,01 мг/л. В качестве противоядия используется вдыхание чистого кислорода либо воздуха, в составе которого есть незначительное количество хлора.

Работа с сероводородом предполагает соблюдение определенных правил безопасности. Все эксперименты, касающиеся данного газообразного вещества, осуществляются в герметичных приборах и вытяжных шкафах.

Способы получения сероводорода

Каково получение сероводорода в лаборатории? Самым распространенным вариантом является взаимодействие водорода с серой. Данная химическая реакция относится к соединению, проводится в вытяжном шкафу.

Кроме того, получение сероводорода возможно и при обмене между твердым сульфидом железа (2) и раствором серной либо соляной кислоты. Чтобы получить такой результат, в пробирку достаточно взять несколько кусков сульфида, не превышающих по размеру горошину. Далее в пробирку (до половины объема) добавляют раствор кислоты, закрывают газоотводной трубкой. Прибор помещают под вытяжку, пробирку нагревают. Химическое взаимодействие сопровождается выделением пузырьков газа. Такое получение сероводорода позволяет создавать количество вещества, достаточное для рассмотрения его химических свойств.

Какие еще бывают способы? В лаборатории допускается получение сероводорода путем взаимодействия металлического железа (под вытяжкой) с кристаллической серой, с последующим взаимодействием сульфида с серной кислотой.

Химические свойства

Сероводород взаимодействует с кислородом воздуха, горит он голубоватым цветом. В случае полного сгорания продуктами реакции являются (4) и вода. Учитывая, что печной газ является кислотным оксидом, в растворе он образует слабую окрашивающую синюю в красный цвет.

В случае недостаточного количества сероводорода образуется кристаллическая сера. Данный процесс считается промышленным способом получения из сероводорода чистой серы.

У данного химического вещества выявлены и отличные восстановительные способности. Они проявляются, к примеру, при взаимодействии с солями, галогенами. Для того чтобы провести в лабораторных условиях подобную реакцию, в пробирки с хлором и бромом наливают раствор сероводорода, наблюдают обесцвечивание. В качестве продукта реакции наблюдают образование кристаллической серы.

При химической реакции сероводорода с водой происходит образование катиона гидроксония Н3О+.

Сероводород способен образовывать два вида соединений: сульфиды (средние соли) и гидросульфиды

У щелочных и щелочноземельных металлов сульфиды являются бесцветными соединениями. У тяжелых металлов (меди, никеля, свинца) они имеют черный цвет. Сульфид марганца обладает розовым цветом. Многие соли не растворяются в воде.

Качественной реакцией на сульфиды считают взаимодействие с раствором сульфата меди (2). Продуктом подобного взаимодействия будет выпадение черного осадка сульфида меди (2).

Заключение

В природе это вещество находится в минеральных источниках, вулканических газах. Данное соединение является продуктом гниения животных и растительных организмов, его отличает характерный запах сероводорода. Природные сульфиды обнаружены в составе редких металлов, в металлургии из них получают соответствующие элементы. Важно помнить и о том, что сероводород является сильным отравляющим веществом.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...