Сила сопротивления воздуха вычисляется по формуле. Как найти силу сопротивления

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх) - это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м 2 и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная - повышается. Установка заднего спойлера действует таким же образом.

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением - чем хуже аэродинамика, тем выше расход топлива.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

1. Движение АТС связано с перемещением частиц воздуха, на которое расходуется часть мощности двигателя. эти затраты складываются из следующих составляющих:

2. Лобового сопротивления, появляющееся из-за разности давлений спереди и сзади движущегося автомобиля (55-60% сопротивления воздуха).

3. Сопротивление, создаваемое выступающими частями – зеркало заднего вида и т.д. (12-18%).

4. Сопротивление, возникающее при прохождении воздуха через радиатор и подкапотное пространство.

5. Сопротивление из-за трения близлежащих поверхностей о слои воздуха (до 10%).

6. Сопротивление, вызваное разностью давлений сверху и снизу автомобиля (5-8%).

Для упрощения расчетов сопротивления воздуха, распределенное по всей поверхности автомобиля сопротивление заменяем силой сопротивления воздуха приложеной в одной точке, называемой центром парусности автомобиля.

Опытом устанавлено, что сила сопротивления воздуха зависит от следующих факторов:

От скорости движения автомобиля, причем данная зависимость носит квадратических характер;

От лобовой площади автомобиля F ;

От коэффициента обтекаемости К в , который числено равен силе сопротивления воздуха, созхдаваемой одним квадратным метром лобовой площади АТС при движении его со скоростью 1 м/с.

Тогда сила сопротивления воздушной среды .

При определении F используют эмпирические формулы, определяющие приблизительную площадь сопротивления. Для грузовых автомобилей F обычно: F=H×B (произведение высоты и ширины), аналогично для автобусов. Для легковых автомобилей принимают F=0,8H×B . Существуют иные формулы, где учитывают колею автомобиля, вероятность изменения высоты АТС и др. Произведение К в ×F называют фактором обтекаемости и обозначают W .

Для определения коэффициента обтекаемости используют специальные устройства либо метод выбега, заключающийся в определении изменения пути свободнокатящегося авотмобиля при движении с различной начальной скоростью. При движении автомобиля в воздушном потоке силу сопротивления воздуха Р в возможно разложить на составляющие по осям АТС. При этом формулы для определения проекций сил отличаются лишь коэфициентами, учитывающими распределение силы по осям. Коэффициент обтекаемости возможно определить из выражения:

где С Х – коэффициент, определяемый опытным путем и учитывающий распределение силы сопротивления воздуха по оси "х". Этот коэффициент получают путем продувки в аэродинамической трубе, ;

r - плотность воздуха, согласно ГОСТ r=1,225 кг/м 3 на нулевой отметке.

Получаем .

Произведение представляет собой скоростной напор, равный кинетической энергии кубического метра воздуха, движущегося со скоростью движения автомобиля относительно воздушной среды.

Коэффициент К в имеет размерность .

Между К в и С Х существует зависимость: К в =0,61С Х .

Прицеп на АТС увеличивает силу сопротивления в среднем на 25%.

В результате многочисленных опытов, исследований и теоретических обобщений установлена формула для подсчёта силы сопротивления воздуха

где S - площадь поперечного сечения пули,

с - масса воздуха при данных атмосферных условиях;

Скорость пули;

- опытный коэффициент, зависящий от формулы пули и числа который берётся из заранее составленных таблиц.

Величина силы сопротивления зависит от следующих факторов:

Площади поперечного сечения пули. Следовательно, сила сопротивления воздуха прямо пропорциональна площади поперечного сечения пули;

- плотности воздуха. Из формулы видно, что сила сопротивления воздуха прямо пропорциональна плотности воздуха. Таблицы стрельбы составлены для нормальных атмосферных условий. В случае отклонения фактической температуры и давления от нормальных значений необходимо вносить поправки при пользовании таблицами стрельбы;

- скорости пули. Зависимость силы сопротивления воздуха от скорости пули выражается сложным законом. В формулу входят члены V 2 и, устанавливающие зависимость силы сопротивления воздуха от скорости. Для изучения этой зависимости рассмотрим график, показывающий, как влияет скорость пули на силу сопротивления воздуха (рис. 8).

График 1 - Зависимость силы сопротивления от скорости пули

Похожие по виду графики получаются и для артиллерийских снарядов. Из графика следует, что сила сопротивления воздуха возрастает с увеличением скорости пули. Возрастание силы сопротивления до скорости 240 м/сек идёт сравнительно медленно. При скорости, близкой к скорости звука, сила сопротивления воздуха резко растет. Это объясняется образованием баллистической волны и увеличением в связи с этим разности давлений воздуха на головную и дольную части пули;

- формы пули. Форма пули существенно сказывается на функции входящей в формулу. Вопрос о наивыгоднейшей форме пули чрезвычайно сложен и не может решаться на базе одной только внешней баллистики. Очень важным фактором при выборе формы пули является: назначение пули, способ её ведения по нарезам, калибр и вес пули, устройство оружия, для которого она предназначена и др.

Для уменьшения влияния избыточного давления воздуха приходится заострять и удлинять головную часть пули. Это вызывает некоторый поворот фронта головной волны, благодаря чему уменьшается избыточное давление воздуха на головную часть пули. Такое явление можно объяснить тем, что по мере заострения головной части уменьшается скорость, с которой частицы воздуха отталкиваются в стороны от поверхности пули.

Опыт показывает, что форма головной части пули играет второстепенную роль в сопротивлении воздуха. Основным фактором является высота головной части и способ её сопряжения с ведущей частью. Обычно за образующею головной части пули принимают дугу окружности, центр которой находится либо на основании головной части, либо несколько ниже его (рис. 9). Хвостовую часть чаще всего выполняют в виде усечённого конуса с углом наклона образующей (рис. 10).

Рисунок 8 - Форма оживальной части пули

Рисунок 9 - Форма донной части пули

Обтекание воздуха при конусной хвостовой части происходит значительно лучше. Область низкого давления почти отсутствует и вихреобразование значительно менее интенсивно. Ведущею часть пули с точки зрения внешней баллистики выгодно делать, возможно, более короткой. Но при короткой ведущей части затрудняется правильное влияние пули по нарезам ствола: возможен демонтаж оболочки пули. Необходимо заметить, что о наивыгоднейшей форме пули можно говорить лишь для определённой скорости, так как для каждой скорости существует своя наивыгоднейшая форма.

На рис. 9 изображены наивыгоднейшие формы снарядов для различных скоростей. По горизонтальной оси отложены скорости снарядов, по вертикальной - высоты снарядов в калибрах.


Рисунок 9 - Зависимость относительной длины снаряда от скорости

Как видно, с ростом скорости длина головной части, и общая длина снаряда увеличиваются, а хвостовая часть уменьшается. Такая зависимость объясняется тем, что при больших скоростях основная доля силы сопротивления воздуха приходится на головную часть. Поэтому основное внимание уделяется уменьшению сопротивления головной части, что достигается её заострением и удлинением. Хвостовая часть снаряда в этом случае делается короткой, чтобы снаряд не был слишком длинным.

При малых скоростях снаряда давление воздуха на головную часть невелико и разряжение за данной частью хотя и меньше, чем при больших скоростях, но составляет значительную долю всей силы сопротивления воздуха. Поэтому необходимо делать сравнительно длинную коническую хвостовую часть снаряда для уменьшения действия разряженного пространства. Головная часть может быть более короткой, так как её длинна, имеет в этом случае меньшее значение. Заострение хвостовой части особенно велико для снарядов, скорость которых меньше скорости звука. В этом случае наиболее выгодной является каплеобразная форма. Такая форма придаётся минам и авиабомбам.

Опыты по определению

Начиная с 1860 г. В разных странах производились опыты со снарядами различных калибров и форм с целью определения.

График 2 - Кривые для различных форм снарядов: 1, 2, 3 - близкие по форме; 4 - легкая пуля

Рассматривая кривые для снарядов сходной формы, можно убедится, что они имеют также сходный вид. Это даёт возможность приближенно выразить для некоторого снаряда через другого снаряда, принятого как бы за эталон, при помощи постоянного множителя i:

Этот множитель, или отношение данного снаряда к другого снаряда, принятого за эталон, называется коэффициентом формы снаряда. Для определения коэффициента формы какого-либо снаряда надо опытным путём найти для него силу сопротивления воздуха для какой-либо скорости. Тогда по формуле можно найти

Деля полученное выражение на получаем коэффициент формы

Разные учёные дали различные математические выражения для подсчёта Например, Сиачи (график 3) выразил закон сопротивления следующей формулой


где F(V) - функция сопротивления.


График 3 - Закон сопротивления

Функция сопротивления Н.В. Маиевского и Н.А. Забудского меньше, чем функция сопротивления Сиаччи. Переводной множитель от закона сопротивления Сиаччи к закону сопротивления Н.В. Майевского и Н.А. Забудского в среднем равен 0,896.

В Военно-инженерной артиллерийской академии им. Ф.Э. Дзержинского выведен закон сопротивления воздуха для дальнобойных снарядов. Этот закон получен на основании обработки результатов специальных стрельб дальнобойными снарядами и пулями. Функции сопротивления в этом законе выбраны такими, чтобы при баллистических расчётах для дальнобойных снарядов, а также для пуль и оперённых снарядов (мин), коэффициент формы получился по возможности близким к единице. Функция для скоростей, меньших 256 м/сек или больших 1410 м/сек может быть выражена одночленом Определим коэффициент

Для V < 256 м/ сек

Для V > 1410 м/ сек

При задании коэффициента формы всегда следует указывать, по отношению, к какому закону сопротивления он дан. В формуле для определения силы сопротивления воздуха, заменяя получаем на, получаем

Среднее значение коэффициента формы для закона сопротивления Сиаччи приведены в табл. 3.

Таблица 3 - значения i для различных снарядов и пуль

Все составляющие сопротивления воздуха трудно определяются аналитически. Поэтому в практике нашла применение эмпирическая формула, имеющая для диапазона скоростей движения, характерного для реального автомобиля, следующий вид:

где с х – безразмерный коэффициент обтекаемости воздухом , зависящий от формы тела; ρ в – плотность воздуха ρ в = 1,202…1,225 кг/м 3 ; А – площадь миделева сечения (площадь поперечной проекции) автомобиля, м 2 ; V – скорость автомобиля, м/с.

В литературе встречается коэффициент сопротивления воздуха k в :

F в = k в А V 2 , где k в х ρ в /2 , –коэффициент сопротивления воздуха, Нс 2 /м 4 .

и фактор обтекаемости q в : q в = k в · А.

Если вместо с х подставить с z , то получим аэродинамическую подъемную силу.

Площадь миделева сечения для авто:

А=0,9 · В max · Н ,

где В max – наибольшая колея автомобиля, м; Н – высота автомобиля, м.

Сила приложена в метацентре, при этом создаются моменты.

Скорость сопротивления потока воздуха с учетом ветра:

, где β – угол между направлениями движения автомобиля и ветра.

С х некоторых автомобилей

ВАЗ 2101…07

Оpel astra Sedan

ВАЗ 2108…15

Land Rover Free Lander

ВАЗ 2102…04

ВАЗ 2121…214

грузовик

грузовик с прицепом

      1. Сила сопротивления подъему

F п = G а sin α.

В дорожной практике величину уклона обычно оценивают величиной подъема полотна дороги, отнесенную к величине горизонтальной проекции дороги, т.е. тангенсом угла, и обозначают i , выражая полученное значение в процентах. При относительно небольшой величине уклона допустимо в расчетных формулах при определении силы сопротивления подъему использовать не sin α., а величину i в относительных значениях. При больших значениях величины уклона замена sin α величиной тангенса (i /100) недопустима.

      1. Сила сопротивления разгону

При разгоне автомобиля происходит разгон поступательно движущейся массы авто и разгон вращающихся масс, увеличивающих сопротивление разгону. Это увеличение можно учесть в расчетах, если считать, что массы автомобиля движутся поступательно, но использовать некую эквивалентную массу m э, несколько большей m a (в классической механике это выражается уравнением Кенига)

Используем метод Н.Е. Жуковского, приравняв кинетическую энергии поступательно движущейся эквивалентной массы сумме энергий:

,

где J д – момент инерции маховика двигателя и связанных с ним деталей, Н·с 2 ·м (кг·м 2); ω д угловая скорость двигателя, рад/с; J к –момент инерции одного колеса.

Так как ω к = V а / r k , ω д = V а · i кп · i o / r k , r k = r k 0 ,

то получим
.

Момент инерции J узлов трансмиссии автомобилей, кг· м 2

Автомобиль

Маховик с коленвалом J д

Ведомые колеса

(2 колеса с тормозными барабанами), J к1

Ведущие колеса

(2 колеса с тормозными барабанами и с полуосями) J к2

Произведем замену: m э = m а · δ,

Если автомобиль загружен не полностью:
.

Если автомобиль идет накатом: δ = 1 + δ 2

Сила сопротивления разгону автомобиля (инерции): F и = m э · а а = δ · m а · а а .

В первом приближении можно принять: δ = 1,04+0,04 i кп 2

Сопротивление воды. Мы уже знаем (§ 68), что при движении твердого тела в воздухе на тело действует сила сопротивления воздуха, направленная противоположно движению тела. Такая же сила возникает, если на неподвижное тело набегает поток воздуха; она направлена, конечно, по движению потока. Сила сопротивления вызывается, во-первых, трением воздуха о поверхность тела и, во-вторых, изменением движения потока, вызванным телом. В воздушном потоке, измененном присутствием тела, давление на передней стороне тела растет, а на задней - понижается по сравнению с давлением в невозмущенном потоке. Таким образом, создается разность давлений, тормозящая движущееся тело или увлекающая тело, погруженное в поток. Движение воздуха позади тела принимает беспорядочный вихревой характер.

Рис. 334. Тела, изображенные на рисунке, оказывают одинаковое сопротивление движению воздуха

Сила сопротивления зависит от скорости потока, от размеров и от формы тела. Рис. 334 иллюстрирует влияние формы тела. Для всех тел, изображенных на этом рисунке, сопротивление движению одинаково, несмотря на весьма разные размеры тел. Объяснение этому дает рис. 335, показывающий обтекание пластинки и «обтекаемого» тела потоком воздуха. На рисунке изображены линии тока, ограничивающие струи воздуха. Мы видим, что «обтекаемое» тело почти не нарушает правильности потока; поэтому давление на заднюю часть тела лишь немного понижено по сравнению с передней частью и сопротивление невелико. Напротив, за пластинкой образуется целая область беспорядочного вихревого движения воздуха, где давление сильно падает.

Рис. 335. а) Позади пластинки, помещенной в потоке, образуются вихри; давление значительно меньше давления . б) «Обтекаемое» тело плавно обтекается потоком; давление лишь немного меньше давления

Различные обтекатели, устанавливаемые на выдающихся частях самолета, как раз и имеют своим назначением устранять завихрения потока выступающими частями конструкции. Вообще же конструкторы стремятся оставлять на поверхности возможно меньшее число выдающихся частей и неровностей, могущих создавать завихрения (убирающиеся шасси, «зализанные» формы).

Оказывается, что главную роль играет при этом задняя часть движущегося тела, так как понижение давления вблизи нее больше, чем повышение давления в передней части (если только скорость тела или набегающего потока не очень велика). Поэтому особенно существенно придание обтекаемой формы именно задней части тела. Влияние сопротивления воздуха сильно сказывается и для наземных средств передвижения: с увеличением скорости автомобилей на преодоление сопротивления воздуха затрачивается все большая часть мощности двигателя. Поэтому современным автомобилям придают по возможности обтекаемую форму.

При движении со скоростью, большей скорости звука, «сверхзвуковой» скоростью (пули, снаряды, ракеты, самолеты), сопротивление воздуха сильно растет, так как летящее тело создает при этом мощные звуковые волны, уносящие энергию движущегося тела (рис. 336). Для уменьшения сопротивления при сверхзвуковой скорости нужно заострять переднюю часть движущегося тела, в то время как при меньших скоростях наибольшее значение имеет, как сказано выше, заострение его задней части («обтекаемость»).

Рис. 336. Около снаряда, движущегося со сверхзвуковой скоростью, возникают мощные звуковые волны

При движении тел в воде также возникают силы сопротивления, направленные противоположно движению тела. Если тело движется под водой (например, рыба, подводные лодки), то сопротивление вызывается теми же причинами, что и сопротивление воздуха: трением воды о поверхность тела и изменением потока, создающим дополнительное сопротивление. Быстро плавающие рыбы (акула, меч-рыба) и китообразные (дельфины, касатки) имеют «обтекаемую» форму тела, уменьшающую сопротивление воды при их движении. Обтекаемую форму придают и подводным лодкам. Вследствие большой плотности воды по сравнению с плотностью воздуха сопротивление движению данного тела в воде много больше сопротивления в воздухе при той же скорости движения.

Для обычных судов, идущих на поверхности воды, есть еще дополнительное волновое сопротивление: от идущего судна на поверхности воды расходятся волны (рис. 337), на создание которых непроизводительно затрачивается часть работы судовой машины.

Рис. 337. От идущего судна расходятся волны, уносящие энергию

Есть сходство между волновым сопротивлением, встречаемым судном, и сопротивлением, появляющимся при быстром полете снаряда вследствие возникновения звуковых волн; в обоих случаях энергия движущегося тела затрачивается на создание волн в среде. Однако корабль создает волны при любой скорости хода, звуковые же волны возникают только при сверхзвуковой скорости снаряда. Это различие связано с тем, что корабль создает волны на поверхности воды, приводя в движение границу раздела между жидкостью и воздухом; в случае же полета снаряда такой границы нет. Для уменьшения волнового сопротивления, которое для быстроходных судов может составлять свыше 3/4 полного сопротивления, корпусу судна придают специальную форму. Нос судна в подводной части иногда делают «бульбообразной» формы (рис. 338); при этом образование воли на поверхности воды уменьшается, а значит, уменьшается и сопротивление.

Рис. 338. «Бульбообразный» нос быстроходного судна

190.1. Если дуть на спичечную коробку, держа за ней зажженный жгут, то струя дыма отклоняется к коробке (рис. 339). Объясните явление.

190.2. На спицу надет легкий кружок, свободно скользящий вдоль нее. Если подуть на кружок слева, он скользнет по спице вправо (рис. 340, а). Если же подуть на кружок слева, надев предварительно на спицу экран перед кружком, то кружок скользнет налево и прижмется к экрану (рис. 340,б). Объясните явление.

Рис. 339. К упражнению 190.1

Рис. 340. К упражнению 190.2



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...