Скорость движения и подвижность ионов. Скорость движения ионов при электролизе, опыт

Электропроводность электролитов зависит от числа ионов в единице объема и от подвижности ионов.

Подвижность ионов определенного сорта выражается скоростью их перемещения в растворителе под действием электрического поля с падением потенциала в I в на I см.

Движение ионов можно обнаружить, например, проводя электролиз бесцветного раствора азотнокислого калия в -образной трубке, на дно которой посредством особой воронки осторожно введен ярко окрашенный раствор марганцовокислого калия причем этот раствор взят такой концентрации, чтобы его плотность по возможности не отличалась от плотности раствора азотнокислого калия. При включении тока движение ионов сообщающих раствору окраску, проявляется в перемещении к аноду границы окрашенной части электролита (рис. 134). Это перемещение ионов происходит со скоростью около когда напряженность поля в электролите составляет примерно 3 в/см.

Рис. 134. Прибор для демонстрации движения ионов при электролизе.

В подобных опытах можно непосредственно измерить подвижность различных окрашенных (или окрашивающих индикаторы) разновидностей ионов. Однако удобнее пользоваться другими, окольными, но более точными методами измерения подвижностей. Результаты этих измерений представлены в таблице на стр. 186. Численные значения экстраполированы для бесконечно больших разведений соответствующих электролитов. (Иногда подвижностью ионов называют произведение приведенных в данной таблице чисел на заряд, равный фарадею, т. е. на 96 500 кулонов.)

Как видно из таблицы, подвижности различных ионов независимо от знака и величины их зарядов имеют близкие значения (несколько десятитысячных долей сантиметра в секунду, или, что тоже,

Подвижности некоторых ионов в водном растворе при

(см. скан)

доли миллиметра в минуту для поля 1 в/см). Но подвижности гидроксония и гидроксила превосходят остальные в несколько раз. Это явление связано, по-видимому, с тем, что ионы гидроксила и гидроксония построены из тех же элементов из которых построены молекулы растворителя (воды), и механизм их движения в растворе несколько иной, чем в случае других ионов; их перемещение к электродам осуществляется, по-видимому, «эстафетным» путем. Так, в случае гидроксония его протон передается близлежащей незаряженной молекуле воды, которая сама теперь становится ионом гидроксония, и таким же порядком эстафета идет далее, по направлению к катоду, так, как это наглядно представлено на рис. 135. Вполне очевидно, что такое фиктивное движение гидроксония должно происходить быстрее, чем если бы гидроксоний, подобно другим ионам, перемещался сам. Любопытно, что приблизительно так представлял себе вначале механизм электролиза основатель теории электролиза выдающийся литовский физик и химик Гроттус, еще не знавший о существовании в растворах свободных ионов.

Рис. 135. Фиктивное движение ионов гидроксония при электролизе.

Покажем, как при помощи таблицы подвижностей ионов вычисляется электропроводность растворов, настолько разбавленных, чтобы ионы были достаточно удалены друг от друга и вследствие этого, с одной стороны, не сцеплялись в молекулы, а с другой, - не тормозили движения друг друга своими собственными электрическими полями. Пусть в растворе содержится по положительных и отрицательных ионов в каждом кубическом сантиметре и имеется

падение потенциала 1 в/см; катод находится слева, анод - справа. Подвижности анионов и катионов обозначим, как в вышеприведенной таблице, через Представим себе площадку размером перпендикулярную к направлению силовых линий. В течение 1 сек. эту площадку пересекут, двигаясь слева направо, все анионы, которые в начальный момент были удалены от нее не далее чем на сантиметров, т. е. содержались в объеме слоя, основанием которого служит выбранная площадка, а высотой Объем этого слоя в нем содержится анионов, и если заряд каждого равен то количество отрицательного электричества, которое они перенесут с собой через рассматриваемое сечение, равно

Рассуждая аналогично, для катионов мы найдем, что количество положительного электричества, ежесекундно переносимого ими через ту же площадку, но в противоположном направлении, составляет

Согласно определению удельная электропроводность раствора (как и всякого проводника) есть количество электричества, переносимое через поперечного сечения проводника в течение секунды, при падении потенциала в 1 в на 1 см. При этом, с формальной точки зрения, перенос положительного электричества справа налево эквивалентен переносу такого же количества отрицательного электричества слева направо. Следовательно, удельная электропроводность раствора

В этой формуле есть заряд всех ионов одного знака, находящихся в раствора. Между тем нам известно, что заряд числа Авогадро каких-либо ионов равен 96 500 кулонам. Обозначим через С концентрацию ионов, выраженную числом грамм-эквивалентов в т. е. выраженную сопоставлением имеющейся концентрации ионов с концентрацией ионов в нормальном растворе (стр. 180). В случае полной диссоциации С указывает, во сколько раз число ионов одного знака, содержащихся в раствора, превышает числа Авогадро. Очевидно, что в этом случае

а следовательно,

Если в растворе не два вида ионов, а больше, то вообще

т. е. доля участия каждого вида ионов в электропроводности пропорциональна их концентрации, с одной стороны, и подвижности, -

с другой. Например, электропроводность раствора азотной кислоты

Здесь мы воспользовались правом считать сильные электролиты (какова азотная кислота) в разбавленных растворах ( полностью диссоциированными и считать поэтому заданное значение концентрации 0,001 одинаково относящимся как к концентрации самой азотной кислоты, так и каждого из ее ионов.

Формула (6) показывает, что удельная электропроводность достаточно разбавленных растворов должна возрастать пропорционально увеличению концентрации раствора.

У достаточно разбавленных растворов такая пропорциональность между удельной электропроводностью и концентрацией действительно имеется. Примером могут служить числа, приведенные в таблице.

Электропроводность растворов хлористого калия при 18° С

(см. скан)

В более концентрированных растворах пропорциональность между концентрацией и удельной электропроводностью, требуемая найденным выше соотношением, нарушается. Наблюденная электропроводность у обычно оказывается менее вычисленной т. е. 1. Это имеет две причины. Прежде всего в случае мало разбавленных растворов нет полной диссоциации электролита; в каждый данный момент часть ионов связана в молекулы и не участвует в проведении электрического тока. Поэтому отношение - должно быть равно степени диссоциации а электролита в данном растворе. В связи с этим измерение электропроводности растворов является весьма простым, удобным и широко применяемым способом определения степени диссоциации; полученные таким способом значения а согласуются со значениями а, вычисленными для тех же растворов на основании закона Оствальда (т. I, § 121). Однако согласование с законом Оствальда имеет место только для слабых электролитов.

Изменение электропроводности сильных электролитов с концентрацией происходит не так, как можно было бы ожидать на основании закона действующих масс. Здесь при высоких концентрациях уменьшается не число ионов, фактически участвующих в проведении тока, а уменьшаются е. их подвижности. Противоположно заряженные ионы притягиваются, что уменьшает их подвижность, и соответственно уменьшается электропроводность, Полный расчет этих влияний очень сложен; он выполнен Дебаем»

Рис. 136 показывает, какая сложная зависимость существует между удельной электропроводностью растворов сильных электролитов и концентрацией, выраженной в единицах нормального раствора. Аналогичный вид имеют кривые, характеризующие зависимость электропроводности от концентрации» выраженной в процентах по весу. Эти графики показывают, что удельная электропроводность электролитов возрастает до определенной концентрации раствора и потом убывает. Например, среди растворов соляной кислоты наибольшую электропроводность имеет примерно пятинормальный раствор (около 20% по весу). В таблице на стр. 190 приведены значения удельного сопротивления и удельной электропроводности для растворов различной концентрации. Мы видим, что удельное сопротивление наиболее электропроводных электролитов почти в миллион раз превышает удельное сопротивление меди.

Рис. 136. Зависимость удельной электропроводности сильных электролитов от концентрации, выраженной в грамм-эквивалентах на литр.

По формуле (6), которая, впрочем, справедлива только для слабых электролитов и при достаточно больших разбавлениях, отношение удельной электропроводности к грамм-эквивалентной концентрации раствора должно быть одинаковым для растворов всех концентраций. Указанное отношение, увеличенное в 1000 раз, называют эквивалентной электропроводностью:

По формуле (6) эквивалентная электропроводность должна выражаться как произведение суммы подвижностей ионов на заряд Фарадея:

Для удобства сопоставления различных электролитов и для выявления того, в какой мере свойства какого-либо электролита отличаются от свойств слабого, разбавленного, полностью диссоциированного электролита, в электрохимии результаты измерения электропроводности растворов почти всегда выражают в виде значений эквивалентной электропроводности.

Из определения эквивалентной электропроводности как нетрудно сообразить, следует, что для нормального раствора (1 грамм-эквивалент в литре, эквивалентная электропроводность представляет собой электропроводность одного литра раствора, налитого в виде слоя между плоскими электродами, раздвинутыми на расстояние 1 см один от другого. Для двухнормального

Удельное сопротивление и электропроводность некоторых электролитов (водных растворов) при 18° С

(см. скан)

раствора из той же формулы для X следует, что X представляет собой электропроводность литра раствора, налитого в виде слоя между плоскими электродами, раздвинутыми по-прежнему на 1 см. Стало быть, и в этом случае берется слой, содержащий один грамм-эквивалент раствора. Вообще, эквивалентная электропроводность есть электропроводность такого слоя раствора, который содержит один грамм-эквивалент растворенного вещества между электродами, отстоящими друг от друга на 1 см.

Удельная электропроводность - это электропроводность неизменного количества раствора содержащего в зависимости от концентрации разные количества растворенного вещества. В противоположность этому эквивалентная электропроводность - это электропроводность различных количеств раствора, содержащих неизменное количество (1 грамм-эквивалент) растворенного вещества, причем в обоих случаях расстояние между электродами равно 1 см

Эквивалентная электропроводность как сильных, так и слабых электролитов возрастает с уменьшением концентрации. На рис. 137 показан характерный для большинства электролитов вид кривых, определяющих зависимость эквивалентной электропроводности от концентрации. В таблице приведены значения эквивалентной электропроводности для некоторых электролитов.

Эквивалентная электропроводность некоторых электролитов в водных растворах при 18° С

(см. скан)

Обратимся к вопросу о пределах применимости закона Ома к электролитам. Из теории движения тел в вязкой среде известно, что скорость установившегося (стационарного) движения в вязкой среде пропорциональна действующей на тело силе. Движущийся к электроду ион удовлетворяет тем условиям, для которых выведено это соотношение; поэтому скорость движения иона должна быть пропорциональна действующей на ион силе, т. е. произведению напряженности поля на заряд иона. Если напряжение тока а следовательно, и напряженность поля увеличатся в раз, то во столько же раз увеличится скорость движения всех присутствующих в растворе ионов, во столько же раз увеличится и количество ежесекундно переносимого ими через любое поперечное сечение проводника электричества, т. е. величина тока.

Рис. 137. Изменение эквивалентной электропроводности с изменением концентрации.

Таким образом, в случае элек тролитов закон Ома должен быть справедлив в тех пределах, в которых сохраняется пропорциональность между скоростью движения ионов и действующей на них электрической силой. Эти пределы очень широки, В недавнее время доказано, что отклонения от закона Ома становятся заметными лишь при напряжениях порядка 106 в/см. При этих напряжениям скорости движения ионов становятся сравнимы со скоростью движения пас сажирских поездов.

10. Электропроводность растворов электролитов

Электропроводность ("Каппа") раствора - величина, обратная его сопротивлению R , имеет размерность Ом -1 . Для проводника постоянного сечения

,

где - удельное сопротивление; S - площадь сечения проводника; l - длина проводника; - удельная электропроводность.

Удельной электропроводностью ("каппа") раствора называется электропроводность слоя раствора длиной 1 см, заключенного между электродами площадью 1см 2 . Она выражается в Ом -1. см -1 . В системе СИ удельная электропроводность измеряется в Ом -1. м -1 .

Эквивалентной электропроводностью ("лямбда") называется электропроводность такого объема раствора, в котором содержится 1 г-экв растворенного вещества; при условии, что электроды находятся на расстоянии 1 см друг от друга, она выражается в Ом -1. см 2. г-экв -1 .

где V = 1/C - разведение (или разбавление) раствора, т.е. объем, в котором содержится 1 г-экв растворенного вещества, а C - эквивалентная концентрация (нормальность) раствора. В системе СИ эквивалентная электропроводность выражается в Ом -1. м 2. кг-кв -1 .

Эквивалентная электропроводность растворов электролитов возрастает с ростом разбавления раствора и при бесконечном разбавлении (т.е. при бесконечно малой концентрации) достигает предельного значения 0. которое называется эквивалентной электропроводностью раствора при бесконечном разведении .

В разбавленных растворах сильных электролитов выполняется эмпирический закон Кольрауша (закон квадратного корня):

где и 0 - эквивалентная электропроводность раствора при концентрации С и при бесконечном разведении, A - константа (при данной температуре) для данного электролита и растворителя.

В растворах слабых электролитов и 0 связаны со степенью диссоциации электролита уравнением Аррениуса :

Кроме того, выполняется закон разведения Оствальда , который для бинарного электролита записывается следующим образом:

,

где K - константа диссоциации слабого электролита.

Электропроводность электролитов связана со скоростями движения ионов в растворе. Скорость движения v i [м. с -1 ] иона в растворе пропорциональна напряженности приложенного электрического поля E [В. м -1 ]:

Коэффициент пропорциональности u [м 2. с -1. В -1 ] называется абсолютной подвижностью иона.

Произведение u i F (F - постоянная Фарадея) называется подвижностью иона i [Ом -1. м 2. кг-экв -1 ]:

i = u i F .

Подвижность иона при бесконечном разбавлении называется предельной подвижностью иона и обозначается i 0 . Предельные подвижности i 0 некоторых ионов в водном растворе [Ом -1. см 2. г-экв -1 ] приведены в Таблице 10.1.

Согласно закону Кольрауша о независимой миграции ионов, эквивалентная электропроводность раствора при бесконечном разведении равна сумме предельных подвижностей катионов и анионов:

0 = 0 + + 0 - .

Доля тока, переносимая данным ионом, называется числом переноса t i иона:

,

причем по определению .

Согласно закону Стокса , предельная подвижность 0 иона с зарядом z и радиусом r в растворителе с вязкостью h описывается формулой:

где e - элементарный заряд, F - постоянная Фарадея.

Таблица 10.1

Предельные подвижности i 0 некоторых ионов в водном растворе при 25 o C [Ом -1. см 2. г-экв -1 ]

H + 349.8 OH - 198.3
Li + 36.68 F - 55.4
Na + 50.10 Cl - 76.35
K + 73.50 Br - 78.14
Rb + 77.81 I - 78.84
Ag + 61.90 ClO 3 - 64.6
NH 4 + 73.55 ClO 4 - 67.36
N(CH 3) 4 + 44.92 BrO 3 - 55.74
1 / 2 Mg 2+ 53.05 CN - 78
1 / 2 Ca 2+ 59.50 NO 3 - 71.46
1 / 2 Ba 2+ 63.63 CH 3 COO - 40.90
1 / 2 Mg 2+ 56.6 C 6 H 5 COO - 35.8
1 / 2 Cd 2+ 54 H 2 PO 4 - 36
1 / 3 Al 3+ 63 1 / 2 SO 4 2- 80.02
1 / 3 La 3+ 69.7 1 / 2 S 2 O 6 2- 93

Из этого уравнения следует правило Вальдена-Писаржевского , согласно которому для любого иона или электролита:

.

Пример 10-1. Удельная электропроводность 0.135 моль. л -1 раствора пропионовой кислоты C 2 H 5 COOH равна 4.79 . 10 -2 См. м -1 . Рассчитать эквивалентную электропроводность раствора, константу диссоциации кислоты и pH раствора, если предельные подвижности H + и C 2 H 5 COO - равны 349.8 См. см 2. моль -1 и 37.2 См. см 2 моль -1. соответственно.

0 = 349.8 + 37.2 = 387.0 См. см 2. моль -1 .

= /C? 1000 = 4.79 . 10 -2 См. м -1 /0.135 моль. л -1. 1000 = 3.55 См. см 2. моль -1 .

= / 0 = 3.55/387.0 = 0.009.

= 1.15 . 10 -5 (моль. л -1).

C =1.24 . 10 -3 (моль. л -1).

pH = -lg = 2.91.

Ответ. = 3.55 См. см 2. моль -1 ; = 0.009; K = 1.15 . 10 -5 моль. л -1 ; pH = 2.91.

Пример 10-2. Удельная электропроводность насыщенного раствора BaCO 3 в воде при 18 o C равна 25.475 . 10 -4 См. м -1 . Удельная электропроводность воды 4.5 . 10 -5 См. м -1 . Подвижности ионов Ba 2+ и CO 3 2- при 18 o C равны соответственно 55 и 66 См. см 2. г-экв -1 . Рассчитать растворимость BaCO 3 в воде при 18 o C в моль. л -1. считая соль полностью диссоциированной, а подвижности ионов равными подвижностям при бесконечном разведении.

(BaCO 3) = (р-ра) - (H 2 O) = 25.475 . 10 -4 - 4.5 . 10 -5 = 25.025 . 10 -4 См. м -1 .

0 (BaCO 3) = 0 (Ba 2+) + 0 (CO 3 2-) =

55 + 66 = 121 См. см 2. г-экв -1 = 1.21 . 10 -2 См. м 2. г-экв -1 .

С = / 0 = 0.206 г-экв. м -3 = 2.06 . 10 -4 г-экв. л -1 = 1.03 . 10 -4 моль. л -1 .

Ответ. С = 1.03 . 10 -4 моль. л -1 .

Пример 10-3. Удельная электропроводность 5%-го раствора Mg(NO 3) 2 при 18 o C равна 4.38 См. м -1. а его плотность - 1.038 г. см -3 . Рассчитать эквивалентную электропроводность раствора и кажущуюся степень диссоциации соли в растворе. Подвижности ионов Mg 2+ и NO 3 - при 18 o C равны соответственно 44.6 и 62.6 См. см 2. г-экв -1 .

0.35 моль. л -1 = 0.70 г-экв. л -1 .

= 6.25 . 10 -3 См. м 2. г-экв -1 = 62.5 (См. см 2. г-экв -1).

0 = 44.6 + 62.6 = 107.2 (См. см 2. г-экв -1).

= / 0 = 62.5/107.2 = 0.583.

Ответ: = 62.5 См. см 2. г-экв -1. = 0.583.

10-2 . Удельная электропроводность бесконечно разбавленных растворов KCl, KNO 3 и AgNO 3 при 25 o C равна соответственно 149.9, 145.0 и 133.4 См. м 2. моль -1 . Какова удельная электропроводность бесконечно разбавленного раствора AgCl при 25 o C? (ответ)

10-3. Удельная электропроводность бесконечно разбавленных растворов соляной кислоты, хлорида натрия и ацетата натрия при 25 o C равна соответственно 425.0. 128.1 и 91.0 См. м 2 . моль -1 . Какова удельная электропроводность бесконечно разбавленного раствора уксусной кислоты при 25 o C? (ответ)

10-4 . Удельная электропроводность 4% водного раствора H 2 SO 4 при 18 o C равна 0.168 См. см -1. плотность раствора - 1.026 г. см -3 . Рассчитать эквивалентную электропроводность раствора. (ответ)

10-5. Удельная электропроводность насыщенного раствора AgCl в воде при 25 o C равна 2.28 . 10 -4 См. м -1. а удельная электропроводность воды 1.16 . 10 -4 См. м -1 . Рассчитать растворимость AgCl в воде при 25 o C в моль. л -1 . (ответ)

10-6 . Какую долю общего тока переносит ион Li + в водном растворе LiBr при 25 o C? (ответ)

10-7 . Рассчитать число переноса H + в растворе HCl с концентрацией 1 . 10 -3 моль. л -1 . Каково будет число переноса H + , если к этому раствору добавить NaCl, чтобы его концентрация была равна 1.0 моль. л -1 ? (ответ)

10-9. Рассчитать скорость движения иона Na + в водном растворе при 25 o C, если разность потенциалов 10 В приложена к электродам, находящимся на расстоянии 1 см друг от друга. Сколько времени понадобится иону, чтобы пройти расстояние от одного электрода до другого?(ответ)

10-10. Удельная электропроводность водного раствора KI равна 89.00 См. м -1. а раствора KCl той же концентрации - 186.53 См. м -1 . Удельная электропроводность раствора, содержащего обе соли, равна 98.45 См. м -1 . Рассчитать долю KCl в растворе.

10-11 . Удельная электропроводность водного раствора сильного электролита при 25 o C равна 109.9 См. см 2 . моль -1 при концентрации 6.2 . 10 -3 моль. л -1 и 106.1 См. см 2 . моль -1 при концентрации 1.5 . 10 -2 моль. л -1 . Какова удельная электропроводность раствора при бесконечном разбавлении? (ответ)

10-12 . Рассчитать радиус иона N(CH 3) 4 + по закону Стокса из его предельной подвижности в водном растворе при 25 o C. Вязкость воды при 25 o C равна 8.91? 10 -4 Па. с. Оценить предельную подвижность этого иона в глицерине, вязкость которого равна 1.49 Па. с. (ответ)

10-13 . Оценить предельную подвижность иона K + в формамиде и метилацетате, если вязкость формамида в 3.7 раз больше, а вязкость метилацетата в 2.6 раз меньше, чем вязкость воды. (ответ)

10-14 . Рассчитать удельную электропроводность 1.0 . 10 -3 M водного раствора NaCl при 25 o C, считая, что подвижности ионов при этой концентрации равны их предельным подвижностям. Через слой раствора длиной 1 см, заключенный между электродами площадью 1 см 2. пропускают ток силой 1 мА. Какое расстояние пройдут ионы Na + и Cl - за 10 минут? (ответ)

10-15. Рассчитать эффективный радиус иона Li + при 25 o C из его предельной подвижности, используя закон Стокса. Рассчитать приблизительное число молекул воды, входящих в гидратную оболочку иона Li + . Кристаллографический радиус иона Li + равен 60 пм. Вязкость воды при 25 o C равна 8.91 . 10 -4 Па. с. Собственный объем молекулы воды оценить из параметров уравнения Ван-дер-Ваальса. (ответ)

10-16. Константа диссоциации гидроксида аммония равна 1.79 . 10 -5 моль. л -1 . Рассчитать концентрацию NH 4 OH, при которой степень диссоциации равна 0.01. и эквивалентную электропроводность раствора при этой концентрации. (ответ)

10-17 . Эквивалентная электропроводность 1.59 . 10 -4 моль. л -1 раствора уксусной кислоты при 25 o C равна 12.77 См. см 2 . моль -1 . Рассчитать константу диссоциации кислоты и pH раствора. (ответ)

10-18 . Константа диссоциации масляной кислоты C 3 H 7 COOH равна 1.74 . 10 -5 моль. л -1 . Эквивалентная электропроводность раствора при разведении 1024 л. моль -1 равна 41.3 См. см 2 . моль -1 . Рассчитать степень диссоциации кислоты и концентрацию ионов водорода в этом растворе, а также эквивалентную электропроводность раствора при бесконечном разведении. ( = 0.125; = 1.22 . 10 -4 моль. л -1 ; 0 = 330.7 См. см 2 . моль -1 .) (ответ)

10-19 . Эквивалентная электропроводность раствора гидроксида этиламмония C 2 H 5 NH 3 OH при бесконечном разведении равна 232.6 См. см 2 . моль -1 . Рассчитать константу диссоциации гидроксида этиламмония, эквивалентную электропроводность раствора, степень диссоциации и концентрацию ионов гидроксила в растворе при разведении 16 л. моль -1. если удельная электропроводность раствора при данном разведении равна 1.312 . 10 -3 См. см -1 .

Жидкости, как и твердые тела, могут быть проводниками, диэлектриками (спирт, вода) и полупроводниками (расплавленный селен, теллур). Растворы веществ, которые проводят электрический ток, называются электролитами. Электролитами являются, например водные растворы солей, кислот и щелочей. Их (молекулы состоят из двух частей, обладающих противоположными и равными по величине зарядами, т. е. из двух ионов. Когда они попадают в воду, диэлектрическая проницаемость которой ε = 81 , сила электрического взаимодействия между ними уменьшается в 81 раз. При таком уменьшении силы притяжения между ионами, составляющими молекулы растворяемого вещества, последние от столкновения с молекулами воды в процессе теплового движения распадаются на ионы, т. е. происходит электролитическая диссоциация. Ионы водорода и металлов положительные.

Некоторое количество противоположно заряженных ионов при своем движении может оказаться настолько близко друг к другу, что силы электрического притяжения объединяют их снова в нейтральную молекулу. Величина заряда иона (валентность) определяется числом потерянных или приобретенных атомом (или группой атомов, составляющих ион) электронов. Электролитическую диссоциацию записывают в виде уравнений, как и любые другие химические реакции:

Итак, в электролите имеются свободные носители заряда, ими? являются положительные и отрицательные ионы. Они находятся в тепловом движении.

Опустим в электролит два электрода и присоединим их к полюсам источника постоянного тока. Под действием электрического поля, образованного источником тока в электролите, свободные ионы помимо теплового движения начинают двигаться в противоположные стороны: положительные - к отрицательному электроду, а отрицательные - к положительному электроду. Поток положительных и отрицательных ионов в электролите поп действием электрического поля источника тока есть ток в электролите. Чем больше ионов содержится в 1 см 3 электролита и чем больше скорость их движения, тем больше сила тока. Скорость непрерывного движения ионов, образующих ток в электролите, невелика. Даже самый быстрый ион водорода при напряженности электрического поля Е = 100 в / м имеет скорость примерно 12 см / ч , а ион натрия - 1,6 см / ч . Для электролитов справедлив закон Ома.

При прохождении тока через электролит ионы, достигая электродов, нейтрализуются и выделяются на них в виде нейтральных молекул вещества. Значит, прохождение тока через электролиты всегда сопровождается переносом вещества. Из этого следует, что в электролитах, в отличие от металлических проводников, носителями тока являются не свободные электроны, а ионы. В отличие от металлов электролиты имеют ионную проводимость. Через электролит электрический ток проходит до тех пор, пока растворенное вещество в растворителе полностью не выделится на электродах, после этого ток прекратится.

Движение ионов в электрическом поле используется для введения их в организм с лечебной целью через неповрежденную кожу. Например, при введении в руку ионов кальция ее кисть помещают в ванну с водным раствором хлористого кальция, предплечье соединяют с отрицательным полюсом источника тока, а электрод, погруженный в электролит, с положительным полюсом (рис. 107). Под действием электрического поля положительные ионы кальция входят в тело и распространяются по всей руке.

Выясним, как зависит сопротивление электролита от температуры. Соберем электрическую цепь из источника тока, амперметра и пробирки с электролитом, в который погружены электроды (рис. 108). Нагревая электролит, мы замечаем увеличение силы тока в цепи. Значит, при нагревании электролитов их сопротивление уменьшается. Скорость молекул при этом становится большей, кинетическая энергия их увеличивается, что вызывает более частые и сильные соударения между молекулами электролита, в результате происходит больший распад молекул растворенного вещества на ионы. Рост числа ионов, образующих ток, увеличивает его силу. С возрастанием температуры повышается сопротивление электролита направленному движению свободных ионов, но рост их числа вызывает большее увеличение силы тока, чем уменьшение его за счет возрастания числа соударений ионов с молекулами электролита. В конечном итоге от нагревания сопротивление электролита уменьшается.

Скорость направленного движения иона, т. е. путь, пройденный ионом в растворе под действием электрического поля в направлении к электроду за единицу времени, зависит от действующей на ион силы, т. е. от напряженности электрического поля:

V = иЕ

где V - скорость движения иона, м/с; Е - напряженность поля, В/м; и - коэф­фициент пропорциональности, называемый электрической подвижностью иона или просто подвижностью иона, м 2 /(В с).

ПОДВИЖНОСТЬ ИОНА характеризует его способность преодолевать со­противление среды при направленном движении в электрическом по­ле. Рассмотрим основные факторы, влияющие на подвижность иона в водных растворах при наличии электрического поля.

Заряд и радиус иона , т. е. его природа: чем больше заряд и чем меньше радиус иона, тем сильнее гидратируется ион, тем ниже подвижность иона в растворе.

Природа растворителя, его диэлектрическая проницаемость и вязкость. Чем полярнее растворитель, тем больше размеры гидратированного иона и меньше его подвижность. Вязкость растворителя обуславливает сопротивление среды движущемуся иону: чем больше вязкость, тем меньше подвиж­ность иона.

Температура раствора. При повышении температуры уменьшают­ся вязкость растворителя и толщина сольватных оболочек ионов, а также снижается межионное взаимодействие. Все это приводит к уве­личению подвижности ионов.

Ионная сила раствора. Чем больше ионная сила раствора, тем сильнее межионное электростатическое взаимодействие и создаваемые им тормозящие эффекты.

Концентрация ионов. Чем больше концентрация ионов в раство­ре, тем сильнее электростатическое взаимодействие ионов, снижающее их подвижность. Концентрация ионов зависит от силы электролита и его количества в растворе. При разбавлении растворов сильных электро­литов подвижность соответствующих ионов растет, поскольку уменьша­ется их концентрация, а следовательно, снижается межионное взаимо­действие в растворе. В растворах слабых электролитов (обычно а < 0,03) подвижность ионов практически не зависит от разбавления, так как концентрация ионов в этих растворах всегда невелика.

Поскольку подвижность ионов зависит от многих факторов, и прежде всего от их концентрации в растворе, то для характеристики свойств ионов используются значения предельной электрической под­вижности ионов в данном растворителе при данной температуре.

Предельной подвижностью иона (и°,м 2 /(В с)) называется средняя скорость его направленного движения, приобретаемая им в бесконечно разбавленном растворе в однородном элек­трическом поле напряженностью 1 В/м.

7. Удельная электрическая проводимость

Количественной характеристикой способности растворов проводить ток служит электрическая проводимость.

Электрической проводимостью называется физическая вели­чина, обратная электрическому сопротивлению проводника: ω = 1 /R.

Единицей электрической проводимости в СИ является сименс (См), 1 См - 1 .

Электрическое сопротивление однородного проводника прямо про­порционально его длине l и обратно пропорционально площади попе­речного сечения в:

где р - удельное сопротивление, характеризующее природу проводника и вы­ражаемое в Ом м.

Удельная электрическая проводимость характеризует свойства про­водящей среды - раствора электролита.

Удельная электрическая проводимость раствора электро­лита равна количеству электричества, переносимому содер­жащимися в нем ионами через поперечное сечение раствора площадью 1 м 2 в однородном электрическом поле напряженно­стью 1В/мза 1 секунду.

Удельная электрическая прово­димость зависит от многих факторов, и прежде всего от природы электро­лита, его концентрации и температу­ры. Анализ позволяет сделать следующие выводы:

    Удельная электрическая проводимость максимальна у растворов сильных кислот и несколько меньше у растворов сильных оснований, что объясняется полной диссоциацией этих электролитов и высокой подвижностью ионов Н 3 0+ и ОН - .

    Наименьшие значения во всем интервале концентраций имеет удельная электрическая проводимость растворов слабых электролитов (СН3СООН) в связи с низкой концентрацией ионов в их растворах (а « 1).

    Удельная электрическая проводимость растет с концентрацией до некоторых максимальных значений, что отвечает увеличению ко­личества ионов в единице объема раствора. Достигнув максимума, удельная электрическая проводимость начинает снижаться несмотря на рост концентрации электролита. Подобный характер зависимости связан у сильных электролитов с уменьшением подвижности ионов из-за возрастающего по мере увеличения концентрации раствора межионного взаимодействия, а у слабых электролитов - со снижением степени электролитической диссоциации, а значит, с уменьшением ко­личества ионов.

При снижении концентрации электролита до очень малых значе­ний (при с -> 0) удельная электрическая проводимость растворов элек­тролитов стремится к удельной электрической проводимости чистой воды (10" 6 -1()- 5 См/м).

Увеличение температуры повышает удельную электрическую про­водимость, так как возрастают подвижность ионов и степень электро­литической диссоциации слабого электролита.

Все ткани организма пропитаны и омываются биологическими жидкостями, в которых растворены сильные и слабые электролиты. Поэтому такие биологические жидкости как кровь, лимфа, спинномозговая жидкость, слезная жидкость, слюна и т. д. относятся к проводникам второго рода.

Абсолютная скорость движения ионов. В растворах электролитов сольватированные ионы находятся в беспорядочном движении. При наложении электрического поля возникает упорядоченное движение ионов к противоположно заряженным электродам.

Сравнение скоростей движения различных видов ионов производят при градиенте потенциала поля 1 В/м. Для этих условий скорость движения ионов называют абсолютной, обозначают буквой w и выражают в м2 × B–1 × c–1. Абсолютная скорость движения иона –– это расстояние в метрах, которое проходит ион за 1 с при градиенте потенциала 1В/м. Численные значения абсолютных скоростей движения ионов в данном растворителе зависят только от их природы и температуры.

Для оценки способности ионов к перемещению под действием внешнего поля пользуются также количественной характеристикой – подвижность ионов (U). Подвижность иона представляет собой произведение числа Фарадея (F = 96465 B × с × См × моль–1) на абсолютную скорость движения иона и выражается в См × м2 × моль–1:

U = F × w (1)

Значения абсолютных скоростей движения и подвижностей ионов при 250С представлены в таблице 1:

Таблица 1

Катион

м2 × B–1 × c–1

См × м2 × моль–1

Анион

м2 × B–1 × c–1

См × м2 × моль–1

36,3 × 10–8

349,9 × 10–4

OH–

20,6 × 10–8

199,2 × 10–4

4,0 × 10–8

38,7 × 10–4

F–

5,7 × 10–8

55,4 × 10–4

5,2 × 10–8

50,3 × 10–4

Cl–

7,9 × 10–8

76,3 × 10–4

7,6 × 10–8

73,5 × 10–4

Br–

8,1 × 10–8

78,4 × 10–4

8,0 × 10–8

77,5 × 10–4

I–

8,0 × 10–8

76,9 × 10–4

8,0 × 10–8

77,5 × 10–4

7,4 × 10–8

71,5 × 10–4

7,6 × 10–8

73,5 × 10–4

CH3COO–

4,2 × 10–8

40,9 × 10–4

Mg2+

5,5 × 10–8

106,1 × 10–4

7,2 × 10–8

138,6 × 10–4

Al3+

6,5 × 10–8

183,2 × 10–4

8,3 × 10–8

159,6 × 10–4

Из приведенных в табл.1 данных можно усмотреть некоторые закономерности. Во-первых, абсолютная скорость движения катионов растет в пределах одной группы периодической системы элементов с ростом порядкового номера, как это видно из данных для катионов щелочных металлов. Сравнение расположенных в одном периоде и имеющих приблизительно одинаковый размер ионов Na+, Mg2+, Al3+ показывает незначительное увеличение абсолютной скорости движения с увеличением заряда иона. Оба эти факта объясняются явлением сольватации ионов в растворе. Молекулы растворителя группируются вокруг иона и увеличивают его эффективный радиус (который называется гидродинамическим радиусом).

В электрическом поле в растворах электролитов перемещается не свободный ион, а ион с плотно связанной с ним сольватной оболочкой. В силу меньшего размера ион Li+ сильнее притягивает диполи воды и в итоге имеет большую сольватную оболочку, чем ион калия. Следовательно, небольшие ионы имеют больший гидродинамический радиус и характеризуются меньшей абсолютной скоростью движения. Этим же объясняется малое отличие в абсолютной скорости движения ионов Na+, Mg2+, Al3+. С увеличением заряда, естественно, резко возрастает сольватная оболочка и тем самым размер перемещающейся частицы. Это увеличение размера почти полностью компенсирует эффект увеличения заряда.

Обращает также на себя внимание аномально высокая абсолютная скорость движения ионов гидроксония H 3 O + (H + ) и гидроксила OH – . Можно предположить, что ион Н+ должен быть сильно сольватирован, тем не менее он способен быстро передвигаться в растворе. В этом случае нельзя применить гидродинамический довод, поскольку действует так называемый «эстафетный механизм» перемещения ионов гидроксония и гироксила. В цепочке, построенной из молекул воды, заряд может перейти от одного конца цепочки к другому в результате сравнительно небольшого перемещения протонов, образующих водородные связи между молекулами воды, например:

Из приведенной схемы видно, что перемещение электрического заряда происходит без перемещения атомов водорода. Иными словами, вместо одного иона Н+, двигающегося в растворе, существует эффективное движение иона Н+ , включающее образование и разрыв связей вдоль длинной цепочки молекул воды. Аналогичную схему легко изобразить и для перемещения гидроксид-иона.

font-size:13.0pt;line-height:150%">Повышение температуры влияет на абсолютную скорость движения ионов путем дегидратации и уменьшения вязкости среды, что способствует увеличению скорости перемещения ионов.

Удельная электрическая проводимость

Электрическая проводимость (L) –– это способность веществ проводить электрический ток под действием электрического поля. Она представляет собой величину обратную электрическому сопротивлению R:

L = (2)

Единицей электрической проводимости в CИ является сименс (См), и 1 См = 1 Ом–1.

Известно, что R = r https://pandia.ru/text/79/437/images/image007_146.gif" width="20 height=41" height="41">.gif" width="16 height=44" height="44">= æ , то:

L == æ × , (3)

где æ (каппа) – удельная электрическая проводимость (См/м), S – площадь плоских электродов (м2), между которыми заключен раствор,ℓ – расстояние между электродами (м).

Удельной электрической проводимостью называется электрическая проводимость 1м3 раствора, находящегося в однородном электрическом поле при напряженности 1 В/м. Единицей удельной проводимости в CИ служит сименс/метр (См/м). Удельная электрическая проводимость зависит от многих факторов и, прежде всего, от природы электролита, его концентрации и температуры. Изотермы удельной электрической проводимости (рис.1) дают представление о характере зависимости удельной электрической проводимости от природы электролита и его концентрации для 250С (298К). Анализ изотермы позволяет сделать следующие выводы:

1. Удельная электрическая проводимость максимальна для растворов сильных кислот и несколько меньше – сильных оснований, что объясняется полной диссоциацией этих электролитов и высокой подвижностью ионов Н3О+ и ОН–.

2. Наименьшие значения во всем диапазоне концентраций имеет удельная электрическая проводимость растворов слабых электролитов (СН3СООН) в связи с низкой концентрацией ионов ( a <<1).

3. Удельная электрическая проводимость растет с увеличением концентрацией до некоторых максимальных значений, что отвечает увеличению количества ионов в единице объема раствора. Достигнув максимума, удельная электрическая проводимость начинает уменьшаться, несмотря на рост концентрации электролита. Подобный характер зависимости æ от С связан у сильных электролитов с уменьшением подвижности ионов из-за возрастающего по мере увеличения концентрации раствора межионного взаимодействия, а у слабых электролитов – с уменьшением степени электролитической диссоциации электролита, а значит, и уменьшением количества ионов в единице объема раствора.

С увеличением температуры удельная электрическая проводимость растет. Это обусловлено, в основном, дегидратацией ионов и уменьшением вязкости среды, т. е. уменьшением сопротивления движению ионов.

Удельная электрическая проводимость растворов зависит от разведения. Разведение величина обратная концентрации. (Разведение обозначается символом V или 1/С и характеризует объем раствора, содержащий 1 моль электролита). Когда разведение мало – раствор концентрирован и степень диссоциации слабого электролита мала. С ростом разведения a сначала увеличивается, а, следовательно, и увеличивается удельная электрическая проводимость. При дальнейшем увеличении разведения степень диссоциации приближается к единице и перестает расти, в то время как общее количество электролита в единице объема уменьшается, что вызовет падение электрической проводимости.

Удельная электрическая проводимость может быть вычислена теоретически:

æ = F × C × a × (w А + w K ) – для слабых электролитов (4)

æ = F × C × fa × (w А + w K ) –для сильных электролитов (5)

где F – число Фарадея, С – концентрация электролита (моль/м3), a – степень диссоциации слабого электролита, fa – коэффициент активности сильного электролита, w А и w K – абсолютная скорость движения аниона и катиона в м/сек при градиенте потенциала 1 В/м.

Молярная электрическая проводимость.

Молярная электрическая проводимость – электрическая проводимость 1 моль электролита, находящегося в растворе между параллельными электродами с расстоянием между ними 1 м и градиенте потенциала 1В/м. Между удельной электрической проводимостью и молярной электрической проводимостью (λm) существует зависимость:

λm = æ/C, (6)

где λm (лямда) – молярная электрическая проводимость, См × м2 × моль–1, æ – удельная электрическая проводимость, См × м–1; С – концентрация электролита в растворе, моль/м3.

Обычно молярная концентрация характеризуется количеством вещества в 1 дм3 (1л), а не в 1м3. В этом случае соотношение имеет вид:



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...