Спин в химии. Ядерные реакции

Положительное число - так называемое спиновое квантовое число , которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия .

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике . Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами ; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы .

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы .

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином 1 2 {\displaystyle {\frac {1}{2}}} описываются двухкомпонентной волновой функцией (спинор), со спином 1 {\displaystyle 1} описываются четырёхкомпонентной волновой функцией (вектор), со спином 2 {\displaystyle 2} описываются шестикомпонентной волновой функцией (тензор) .

Энциклопедичный YouTube

  • 1 / 5

    Хотя термин спин относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже может быть описаны неким числом, которое показывает на сколько частей нужно разделить цикл вращения некого элемента системы, для того, чтобы она вернулась в состояние, неотличимое от начального.

    Самый простой пример спина - это целый спин равный 1:

    если взять вектор (для примера - положить ручку на стол) и повернуть его на 360 градусов , то этот вектор вернется в своё первоначальное состояние (ручка опять будет лежать так же, как и до поворота).

    Также легко представить себе спин равный 0 :

    это точка - она со всех сторон выглядит одинаково , как её ни крути.

    Чуть сложнее с целым спином равным 2 :

    нужно будет придумать объект, который ведёт себя так же, как в предыдущем примере со спином 1, но при повороте на 180 градусов (то есть вдвое меньше полного оборота) - это тоже просто - нужно взять двунаправленный вектор (примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще - главное чтобы был без надписей и однотонный, Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы ) - и тогда после поворота на 180 градусов он вернется в положение, не отличимое от исходного.

    А вот c полуцелым спином равным 1 / 2 уже придётся выходить в 3 измерения:

    • Если взять лист Мёбиуса и представить, что по нему ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов .
    • Еще один пример - четырехтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360 градусов поршень вернется в исходное положение (например, верхнюю мертвую точку), но распределительный вал вращается в 2 раза медленное и совершит полный оборот при повороте коленчатого вала на 720 градусов. То есть при повороте колечатого вала на 2 оборота двигатель внутреннего сгорания вернется в то же состояние. В этом случае третьим измерением будет положение распределительного вала.

    На подобных примерах можно проиллюстрировать сложение спинов:

    • Два заточенных только с одной стороны одинаковых карандаша ("спин" каждого - 1), скрепленные друг с другом, так, что острый конец одного будет рядом с тупым концом другого. Такая система вернется в неотличимое от начального состояния при повороте всего на 180 градусов, то есть "спин" системы стал равным двум.
    • Многоцилиндровый четырехтактный двигатель внутреннего сгорания ("спин" каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360 градусов (суммарный "спин" - 1), четырехцилиндровый - через 180 градусов ("спин" - 2), восьмицилиндровый - через 90 градусов ("спин" - 4).

    Свойства спина

    Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

    В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

    «В частности было бы совершенно бессмысленным представлять себе собственный момент элементарной частицы, как результат ее вращения „вокруг собственной оси“»

    Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина s → ^ , {\displaystyle {\hat {\vec {s}}},} алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента ℓ → ^ . {\displaystyle {\hat {\vec {\ell }}}.} Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

    Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например . При этом компоненты J x , J y {\displaystyle J_{x},J_{y}} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты J z {\displaystyle J_{z}} равно J {\displaystyle J} . В то же время квадрат J 2 {\displaystyle J^{2}} всего вектора спина равен J (J + 1) {\displaystyle J(J+1)} . Таким образом J x 2 + J y 2 = J 2 − J z 2 ⩾ J {\displaystyle J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2}\geqslant J} . При J = 1 2 {\displaystyle J={\frac {1}{2}}} среднеквадратические значения всех компонент из-за флуктуаций равны J x 2 ^ = J y 2 ^ = J z 2 ^ = 1 4 {\displaystyle {\widehat {J_{x}^{2}}}={\widehat {J_{y}^{2}}}={\widehat {J_{z}^{2}}}={\frac {1}{4}}} .

    Вектор спина меняет своё направление при преобразовании Лоренца. Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта .

    Примеры

    Ниже указаны спины некоторых микрочастиц.

    спин общее название частиц примеры
    0 скалярные частицы π -мезоны , K-мезоны , хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
    1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
    1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
    3/2 спин-векторные частицы Ω-гиперон , Δ-резонансы
    2 тензорные частицы гравитон , тензорные мезоны

    На июль 2004 года, максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать 9 2 ℏ {\displaystyle {\frac {9}{2}}\hbar } .

    История

    Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

    Спин и магнитный момент

    Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ( μ 0 {\displaystyle \mu _{0}} ):

    μ → ^ = g ⋅ μ 0 s → ^ . {\displaystyle {\hat {\vec {\mu }}}=g\cdot \mu _{0}{\hat {\vec {s}}}.}

    Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

    Спин и статистика

    Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

    Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами .

    Как в классической, так и в квантовой механике закон сохранения момента возникает как результат изотропии пространства по отношению к замкнутой системе. Уже в этом проявляется связь момента со свойствами симметрии по отношению к вращениям. Но в квантовой механике эта связь становится в особенности глубокой, делаясь по существу основным содержанием понятия о моменте, тем более, что классическое определение момента частицы как произведения теряет здесь свой непосредственный смысл в виду одновременной неизмеримости радиуса-вектора и импульса.

    Мы видели в § 28, что задание значений l к определяет угловую зависимость волновой функции частицы, а тем самым - все ее свойства симметрии по отношению к вращениям. В наиболее общем виде формулировка этих свойств сводится к указанию закона преобразования волновых функций при поворотах системы координат.

    Неизменной волновая функция системы частиц (с заданными значениями момента L и его проекции М) остается лишь при повороте системы координат вокруг оси . Всякий же поворот, меняющий направление оси , приводит к тому, что проекция момента на ось уже не будет иметь определенного значения. Это значит, что в новых координатных осях волновая функция превратится, вообще говоря, в суперпозицию (линейную комбинацию) функций, отвечающих различным возможным (при заданном L) значениям М. Можно сказать, что при поворотах системы координат функций преобразуются друг через друга. Закон этого преобразования, т. е. коэффициенты суперпозиции (как функции углов поворота координатных осей), полностью определяется заданием значения L. Таким образом, момент приобретает смысл квантового числа, классифицирующего состояния системы по их трансформационным свойствам по отношению к вращениям системы координат.

    Этот аспект понятия момента в квантовой механике в особенности существен в связи с тем, что он не связан непосредственно с явной зависимостью волновых функций от углов; закон их преобразования друг через друга может быть сформулирован сам по себе, без ссылки на эту зависимость.

    Рассмотрим сложную частицу (скажем, атомное ядро), покоящуюся как целое и находящуюся в определенном внутреннем состоянии. Помимо определенной внутренней энергии она обладает также и определенным по своей величине L моментом, связанным с движением частиц внутри нее; этот момент может еще иметь 2L + 1 различных ориентаций в пространстве. Другими словами, при рассмотрении движения сложной частицы как целого мы должны, наряду с ее координатами, приписывать ей еще и одну дискретную переменную - проекцию ее внутреннего момента на некоторое избранное направление в пространстве.

    Но при указанном выше понимании смысла момента становится несущественным вопрос о его происхождении, и мы приходим естественным образом к представлению о «собственном» моменте, который должен быть приписан частице вне зависимости от того, является ли она «сложной» или «элементарной».

    Таким образом, в квантовой механике элементарной частице следует приписывать некоторый «собственный» момент, не связанный с ее движением в пространстве. Это свойство элементарных частиц является специфически квантовым (исчезающим при переходе к пределу и поэтому принципиально не допускает классической интерпретации.

    Собственный момент частицы называют ее спином, в отличие от момента, связанного с движением частицы в пространстве, о котором говорят как об орбитальном моменте. Речь может идти при этом как об элементарной частице, так и о частице, хотя и составной, но ведущей себя в том или ином рассматриваемом круге явлений как элементарная (например, об атомном ядре). Спин частицы (измеренный, как и орбитальный момент, в единицах й) будем обозначать посредством s.

    Для частиц, обладающих спином, описание состояния с помощью волновой функции должно определять не только вероятности ее различных положений в пространстве, но и вероятности различных возможных ориентаций ее спина.

    Другими словами, волновая функция должна зависеть не только от трех непрерывных переменных - координат частицы, но и от одной дискретной спиновой переменной, указывающей значение проекции спина на некоторое избранное направление в пространстве (ось ) и пробегающей ограниченное число дискретных значений (которые мы будем обозначать далее буквой ).

    Пусть - такая волновая функция. По существу она представляет собой совокупность нескольких различных функций координат, отвечающих различным значениям а; об этих функциях мы будем говорить как о спиновых компонентах волновой функции. При этом интеграл

    определяет вероятность частице иметь определенное значение а. Вероятность же частице находиться в элементе Объема имея произвольное значение а, есть

    Квантовомеханический оператор спина при применении его к волновой функции действует именно на спиновую переменную . Другими словами, он каким-то образом преобразует друг через друга компоненты волновой функции. Вид этого оператора будет установлен ниже. Но, уже исходя из самых общих соображений, легко убедиться в том, что операторы удовлетворяют таким же условиям коммутации, как и операторы орбитального момента.

    Оператор момента в основном совпадает с оператором бесконечно малого поворота. При выводе в § 26 выражения для оператора орбитального момента мы рассматривали результат применения операции поворота к функции координат. В случае спинового момента такой вывод теряет смысл, поскольку оператор спина действует на спиновую переменную, а не на координаты. Поэтому для получения искомых соотношений коммутации мы должны рассматривать операцию бесконечно малого поворота в общем виде, как поворот системы координат. Производя последовательно бесконечно малые повороты вокруг оси х и оси у, а затем вокруг этих же осей в обратном порядке, легко убедиться непосредственным вычислением, что разница между результатами обеих этих операций эквивалентна бесконечно малому повороту вокруг оси (на угол, равный произведению углов поворота вокруг осей х и у). Мы не станем производить здесь этих простых вычислений, в результате которых вновь получаются обычные соотношения коммутации между операторами компонент момента импульса, которые, следовательно, должны иметь место и для операторов спина:

    со всеми вытекающими из них физическими следствиями.

    Соотношения коммутации (54,1) дают возможность определить возможные значения абсолютной величины и компонент спина. Весь вывод, произведенный в § 27 (формулы (27,7)-(27,9)), был основан только на соотношениях коммутации и потому полностью применим и здесь; надо только вместо L в этих формулах подразумевать s. Из формул (27,7) следует, что собственные значения проекции спина образуют последовательность чисел, отличающихся на единицу. Мы не можем, однако, теперь утверждать, что сами эти значения должны быть целыми, как это имело место для проекции орбитального момента (приведенный в начале § 27 вывод здесь неприменим, поскольку он основан на выражении (26,14) для оператора , специфическом для орбитального момента).

    Далее, последовательность собственных значений ограничена сверху и снизу значениями, одинаковыми по абсолютной величине и противоположными по знаку, которые мы обозначим посредством Разность между наибольшим и наименьшим значениями должна быть целым числом или нулем. Следовательно, число s может иметь значения 0, 1/2, 1, 3/2, ...

    Таким образом, собственные значения квадрата спина равны

    где s может быть либо целым числом (включая значение нуль), либо полуцелым. При заданном s компонента спина может пробегать значения - всего значений. Соответственно этому, и волновая функция частицы со спином s имеет компонент

    Опыт показывает, что большинство элементарных частиц - электроны, позитроны, протоны, нейтроны, мезоны и все гипероны - обладают спином 1/2. Кроме того, существуют элементарные частицы - -мезоны и -мезоны, - обладающие спином 0.

    Полный момент импульса частицы складывается из ее орбитального момента 1 и спина s. Их операторы, действуя на функции совершенно различных переменных, разумеется, коммутативны друг с другом.

    Собственные значения полного момента

    определяются тем же правилом «векторной модели», что и сумма орбитальных моментов двух различных частиц (§ 31).

    Именно, при заданных значениях полный момент может иметь значения . Так, у электрона (спин 1/2) с отличным от нуля орбитальным моментом l полный момент может быть равен ; при момент имеет, конечно, лишь одно значение

    Оператор полного момента J системы частиц равен сумме операторов моментов каждой из них, так что его значения опредег ляются снова правилами векторной модели. Момент J можно представить в виде

    где S можно назвать полным спином, а L - полным орбитальным моментом системы.

    Отметим, что если полный спин системы - полуцелый (или целый), то то же самое будет иметь место и для полного момента, поскольку орбитальный момент всегда целый. В частности, если система состоит из четного числа одинаковых частиц, то ее полный спин во всяком случае целый, а потому будет целым и полный момент.

    Операторы полного момента частицы j (или системы частиц J) удовлетворяют тем же правилам коммутации, что и операторы орбитального момента или спина, поскольку эти правила являются вообще общими правилами коммутации, справедливыми для всякого момента импульса. Следующие из правил коммутации формулы (27,13) для матричных элементов момента тоже справедливы для всякого момента, если матричные элементы определять по отношению к собственным функциям этого же момента. Остаются справедливыми (с соответствующим изменением обозначений) также и формулы (29,7)-(29,10) для матричных элементов произвольных векторных величин.

    Учитывая также, что найдем

    (англ. spin веретено) – фундаментальная характеристика микроскопической частицы (например атомного ядра или элементарной частицы), которая в некотором отношении аналогична «собственном момента импульса частицы». Спин является квантовой свойством частиц и не имеет аналогов в классической физике. Тогда как классический момент импульса возникает вследствие вращения массивного тела со конечными размерами, спин присущ даже частицам, которые на сегодня считаются точечными и не связан ни с одним вращением масс внутри такой частицы. (Спин неточкових частиц, например атомных ядер или адронов, является векторной суммой спинов и орбитального момента импульса ее составляющих, т.е. и в этом случае спин частично связан с вращательным движением внутри частицы.)
    Спин может принимать только определенные (квантованные) значения:

    Цели: 0,1,2,3 …
    полуцелым: 1 / 2, 3 / 2, …

    Спин является важной характеристокю элементарных частиц.
    История открытия
    Спин электрона открыли в 1925 Уленбек и Гоулдсмит, проводя эксперименты по расщеплению пучка электронов в неоднородном магнитном поле. Ученые надеялись увидеть, как пучок электронов расщепится на несколько, в залежнотсти от квантованного орбитального момента. Если бы угловой момент электронов равен нулю, то пучок не расщеплялся, если бы угловой момент равен , То пучок расщепился бы на три, и т.д., на 2L +1 пучки при угловом моменте . Результат превзошел все ожидания: пучок расщепился на два. Объяснить это можно было лишь приписав электрону собственный момент . Этот собственный момент электрона получил название спина. Сначала думали, что спин соответствует какому-то внутреннему вращению электрона, но вскоре Поль Дирак вывел релятивистский аналог уравнения Шредингера (так называемое уравнение Дирака), которое автоматически объясняло существование спина совсем из других принципов.
    Понятие спина позволило построить теорию периодической системы, выяснить структуру атомных спектров, объяснить природу ковалентных связей, т.
    Оператор спина
    Математически спин описывают Спинор – столбиком с 2S +1 волновых функций, где S – это значение спина. Так частицы с нулевым спином описывают одной волновой функцией или скалярным полем, частицы со спином 1 / 2 (например электроны) – двумя волнового функциями или спинорно полем, частицы со спином 1 – тремя волновыми функциями или векторным полем.
    Операторами спина являются матрицы размерности (2S +1) x (2S +1). В случае частиц со спином 1 / 2 оператор спина пропорционален матрицам Паули

    Поскольку матрицы Паулу не коммутируют, то одновременно можно определить только собственные значения одной из них. Обычно выбирают? z. Следовательно, проекция спина на ось z для электрона может иметь следующие значения.

    О состоянии с часто говорят, как о состоянии со спином направленным вверх, о состоянии с говорят, как о состоянии со спином, направленным вниз, хотя эти названия вполне условны, и не соответствуют никаким направлениям в пространстве.
    Значения других компонент спина являются неопределенными.

    Итак, полностью абстрагируемся и забываем любые классические определения. Ибо спин – это понятие, присущее исключительно квантовому миру. Попробуем разобраться в том, что это такое.

    Больше полезной информации для учащихся – у нас в телеграм .

    Спин и момент импульса

    Спин (от английского spin – вращаться) – собственный момент импульса элементарной частицы.

    Теперь вспомним, что такое момент импульса в классической механике.

    Момент импульса – это физическая величина, характеризующая вращательное движение, точнее, количество вращательного движения.

    В классической механике момент импульса определяется как векторное произведение импульса частицы на ее радиус вектор:

    По аналогии с классической механикой спин характеризует вращение частиц. Их представляют в виде волчков, вращающихся вокруг оси. Если частица имеет заряд, то, вращаясь, она создает магнитный момент и явлеятся своего рода магнитом.

    Однако данное вращение нельзя трактовать классически. Все частицы помимо спина обладают внешним или орбитальным моментом импульса, характеризующим вращение частицы относительно какой-то точки. Например, когда частица движется по круговой траектории (электрон вокруг ядра).


    Спин же является собственным моментом импульса , то есть характеризует внутреннее вращательное состояние частицы вне зависимости от внешнего орбитального момента импульса. При этом спин не зависит от внешних перемещений частицы .

    Представить, что же там вращается внутри частицы, невозможно. Однако факт остается фактом – для заряженных частиц с разнонаправленными спинами траектории движения в магнитном поле будут различны.

    Спиновое квантовое число

    Для характеристики спина в квантовой физике введено спиновое квантовое число.

    Спиновое квантовое число – одно из квантовых чисел, присущих частицам. Часто спиновое квантовое число называют просто спином. Однако следует понимать, что спин частицы (в понимании собственного момента импульса) и спиновое квантовое число – это не одно и то же. Спиновое число обозначается буквой J и принимает ряд дискретных значений, а само значение спина пропорционально приведенной постоянной Планка:

    Бозоны и фермионы

    Разным частицам присущи разные спиновые числа. Так, главное отличие состоит в том, что одни обладают целым спином, а другие – полуцелым. Частицы обладающие целым спином называются бозонами, а полуцелым – фермионами.

    Бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – Ферми-Дирака. В ансамбле частиц, состоящем из бозонов, любое их количество может находиться в одинаковом состоянии. С фермионами все наоборот – наличие двух тождественных фермионов в одной системе частиц невозможно.


    Бозоны: фотон, глюон, бозон Хиггса. - в отдельной статье.

    Фермионы: электрон, лептон, кварк

    Попробуем представить, чем отличаются частицы с разными спиновыми числами на примерах из макромира. Если спин объекта равен нулю, то его можно представить в виде точки. Со всех сторон, как ни вращай этот объект, он будет одинаков. При спине равном 1 поворот объекта на 360 градусов возвращает его в состояние, идентичное первоначальному состоянию.

    Например, карандаш, заточенный с одной стороны. Спин равный 2 можно представить в виде карандаша, заточенного с двух сторон - при повороте такого карандаша на 180 градусов мы не заметим никаких изменений. А вот полуцелый спин равный 1/2 представляется объектом, для возвращения которого в первоначальное состояние нужно соверщить оборот в 720 градусов. Примером может служить точка, движущаяся по листу Мебиуса.


    Итак, спин - квантовая характеристика элементарных частиц, которая служит для описания их внутреннего вращения, момент импульса частицы, не зависящий от ее внешних перемещений.

    Надеемся, что вы осилите эту теорию быстро и сможете при случае применить знания на практике. Ну а если задачка по квантовой механике оказалось непосильно сложной или не можете не забывайте о студенческом сервисе , специалисты которого готовы прийти на выручку. Учитывая, что сам Ричард Фейнман сказал, что "в полной мере квантовую физику не понимает никто", обратиться за помощью к опытным специалистам – вполне естественно!

    СПИН продажи – это метод продаж, разработанный Нилом Рэкхемем и описанный им в одноименной книге. Метод СПИН стал одним из самых широко используемых . Применяя данный способ можно добиться очень высоких результатов личных продаж, Нил Рэкхем смог это доказать проведя масштабные исследования. И несмотря, на то что в последнее время многие начали считать что данный метод продаж становится не актуальным, почти все крупные компании используют при обучении продавцов именно технику продаж СПИН.

    Что такое СПИН продажи

    Если коротко СПИН (SPIN) продажи это способ подведения клиента к покупке путём задавания поочередно определенных вопросов, вы не презентуете товар в открытую, а скорее подталкиваете клиента самостоятельно прийти к решению совершить покупку. Метод СПИН лучше всего подходит для так называемых «длинных продаж», часто это и продажи дорогого или сложного товара. То есть SPIN нужно применять, когда клиенту не просто сделать выбор. Необходимость в данной методике продаж возникла прежде всего благодаря выросшей конкуренции и насыщении рынка. Клиент стал более разборчивым и опытным и это потребовало большей гибкости от продавцов.

    Техника продаж СПИН разделяется на следующие блоки вопросов:

    • С итуационные вопросы (Situation)
    • П роблемные вопросы (Problem)
    • И звлекающие вопросы (Implication)
    • Н аправляющие вопросы (Need-payoff)

    Сразу стоит отметить, что СПИН продажи достаточно трудозатраты. Дело в том чтобы применять данную технику на практику, нужно очень хорошо знать товар, иметь хороший опыт продаж этого товара, сама по себе такая продажа занимает много времени у продавца. Поэтому СПИН продажи не стоит использовать в массовом сегменте, например в , поскольку если цена покупки невелика, а спрос на товар и так большой, то нет смысла тратить кучу времени на долгое общение с клиентом, лучше потратить время на рекламу и .

    СПИН продажи построены на том, что клиент при прямом предложении товара продавцом часто включает защитный механизм отрицания. Покупателям изрядно надоело, что им постоянно, что то продают и реагируют отрицательно уже на сам факт предложения. Хотя товар сам по себе может быть и нужен, просто в момент презентации клиент думает не о том, что товар ему необходим, а о том что зачем ему это предлагают? Применение техники продаж СПИН заставляет клиента принять самостоятельное решение о покупке, то есть клиент даже и не понимает, что его мнением управляют, задавая правильные вопросы.

    Техника продаж СПИН

    Техника продаж СПИН (SPIN) – это модель продаж, основанная не только на , сколько на их . Другими словами, для успешного применения данной техники продаж, продавец должен уметь задавать правильные вопросы. Для начала разберем отдельно каждую группу вопросов техники продаж СПИН:

    Ситуационные вопросы

    Этот вид вопросов нужен для полноценного и определения его первичных интересов. Цель ситуационных вопросов выяснить опыт использования клиентом продукта, который вы собираетесь продавать, его предпочтения, для каких целей будет использоваться. Как правило, требуется около 5 открытых вопросов и несколько уточняющих. По итогам этого блока вопросов вы должны раскрепостить клиента и настроить его на общение, именно поэтому стоит уделить внимание открытым вопросам, а так же использовать . Кроме того вы должны собрать всю необходимую информацию для постановки проблемных вопросов, для того чтобы эффективно определить ключевые потребности стоит использовать . Как правило, блок ситуативных вопросов самый долгий по времени. Когда вы получили необходимую информацию от клиента, нужно переходить к проблемным вопросам.

    Проблемные вопросы

    Задавая проблемные вопросы, вы должны обратить внимание клиента на проблеме. Важно на стадии ситуационных вопросов понять, что важно клиенту. К примеру, если клиент всё время про деньги, то логично будет задавать проблемные вопросы, касающиеся денег: «вас устраивает цена, которую вы платите сейчас?»

    Если вы не определились с потребностями, и не знаете, какие проблемные вопросы нужно задавать. Нужно иметь ряд заготовленных, стандартных вопросов затрагивающие разные сложности, с которыми может столкнуться клиент. Ваша основная цель обозначить проблему и главное чтобы она была важна для клиента. Например: клиент может признать, что переплачивает за услуги компании, которой он пользуется сейчас, но его это не волнует, так как для него важно качество услуг, а не цена.

    Извлекающие вопросы

    Данный тип вопросов направлен на определение того насколько для него эта проблема важна, и что будет если её не решить сейчас. Извлекающие вопросы – должны дать понять клиенту что, решая сложившуюся проблему, он получит пользу.

    Сложность извлекающих вопросов заключается в том, что их не продумать заранее, в отличие от остальных. Конечно, с опытом у вас сформируется пул таких вопросов, и вы научитесь их использовать в зависимости от ситуации. Но вот изначально, многие продавцы, осваивающие СПИН продажи, испытывают сложности с задаванием таких вопросов.

    Суть извлекающих вопросов сводится к тому, чтобы установить для клиента причин следственную связь между проблемой и её решением. Еще раз хочется отметить, что в СПИН продажах, нельзя сказать клиенту: «наш продукт решит вашу проблему». Вы должны сформировать вопрос так чтобы в ответ клиент сам сказал, что ему поможет решить проблему.

    Направляющие вопросы

    Направляющие вопросы – должны вам помочь , на этом этапе клиент за вас должен проговорить все выгоды которые он получит от вашего продукта. Направляющие вопросы можно сравнить с позитивным способом завершения сделки, только не продавец суммирует все выгоды, которые получит клиент, а наоборот.



Последние материалы раздела:

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...