Теорема бернулли теория вероятности примеры. Независимые испытания и формула бернулли

Пусть производится независимых испытаний, в каждом из которых вероятность появления событияА равна р . Другими словами, пусть имеет место схема Бернулли. Можно ли предвидеть какова будет примерно относительная частота появлений события? Положительный ответ на этот вопрос даёт теорема, доказанная Я.Бернулли 1 , которая получила название «закона больших чисел» и положила начало теории вероятностей как науки 2 .

ТЕОРЕМА Бернулли : Если в каждом из независимых испытаний, проводимых в одинаковых условиях, вероятностьр появления события А постоянна, то относительная частота появления события А сходится по вероятности к вероятности р – появления данного события в отдельном опыте, то есть

.

Доказательство . Итак, имеет место схема Бернулли,
. Обозначим через
дискретную случайную величину – число появлений событияА в -ом испытании. Ясно, что каждая из случайных величин может принимать лишь два значения:1 (событие А наступило) с вероятностью р и 0 (событие А не наступило) с вероятностью
, то есть

(
)

Р

р

Нетрудно найти

Можно ли применить к рассматриваемым величинам теорему Чебышева? Можно, если случайные величины попарно независимы и дисперсии их равномерно ограничены. Оба условия выполняются. Действительно, попарная независимость величин
следует из того, что испытания независимы. Далее 3
при
и, следовательно, дисперсии всех величин ограничены, например числом
. Кроме того, заметим, что каждая из случайных величин
при появлении событияА в соответствующем испытании принимает значение, равное единице. Следовательно, сумма
равна числу
- появлений событияА в испытаниях, а значит

,

то есть дробь
равна относительной частотепоявлений события А в испытаниях.

Тогда, применяя теорему Чебышева к рассматриваемым величинам, получим:

что и требовалось доказать.

Замечание 1 : Теорема Бернулли является простейшим частным случаем теоремы Чебышева.

Замечание 2 : На практике часто неизвестные вероятности приходится приближённо определять из опыта, то для проверки согласия теоремы Бернулли с опытом было проведено большое число опытов. Так, например, французский естествоиспытатель XVIII века Бюффон бросил монету 4040 раз. Герб выпал при этом 2048 раз. Частота появления герба в опыте Бюффона приближённо равна 0,507. Английский статистик К.Пирсон бросал монету 12 000 раз и при этом наблюдал 6019 выпадений герба. Частота выпадения герба в этом опыте Пирсона равна 0,5016. В другой раз он бросил монету 24 000 раз, и герб при этом выпал 12 012 раз; частота выпадения герба при этом оказалась равной 0,5005. Как видим, во всех приведённых опытах частота лишь немного уклонилась от вероятности 0,5 – появления герба в результате одного бросания монеты.

Замечание 3 : Было бы неправильным на основании теоремы Бернулли сделать вывод, что с ростом числа испытаний относительная частота неуклонно стремится к вероятности р ; другими словами, из теоремы Бернулли не вытекает равенство
. В теоремеречь идёт лишь о вероятности того, что при достаточно большом числе испытаний относительная частота будет как угодно мало отличаться от постоянной вероятности появления события в каждом испытании. Таким образом, сходимость относительной частоты к вероятности р отличается от сходимости в смысле обычного анализа. Для того чтобы подчеркнуть это различие, вводят понятие «сходимости по вероятности» . Точнее, различие между указанными видами сходимости состоит в следующем: если стремится при
кр как пределу в смысле обычного анализа , то, начиная с некоторого
и для всех последующих значений, неуклонно выполняется неравенство
;если же стремится по вероятности к р при
, то для отдельных значенийнеравенство может и не выполняться.

    Теоремы Пуассона и Маркова

Замечено, если условия опыта меняются , то свойство устойчивости относительной частоты появления события А сохраняется. Это обстоятельство доказано Пуассоном.

ТЕОРЕМА Пуассона : При неограниченном увеличении числа независимых испытаний, проводимых в переменных условиях, относительная частота появления события А сходится по вероятности к среднему арифметическому вероятностей появления данного события в каждом из опытов, то есть

.

Замечание 4 : Нетрудно убедиться, что теорема Пуассона является частным случаем теоремы Чебышева.

ТЕОРЕМА Маркова : Если последовательность случайных величин
(как угодно зависимых) такова, что при

,

то,
выполняется условие:
.

Замечание 5 : Очевидно, если случайные величин
попарно независимы, то условие Маркова принимает вид: при

.

Отсюда видно, что теорема Чебышева является частным случаем теоремы Маркова.

    Центральная предельная теорема (Теорема Ляпунова)

Рассмотренные теоремы закона больших чисел касаются вопросов приближения некоторых случайных величин к определённым предельным значениям независимо от их закона распределения. В теории вероятностей, как уже отмечалось, существует другая группа теорем, касающихся предельных законов распределения суммы случайных величин. Общее название этой группы теорем – центральная предельная терема . Различные её формы различаются условиями, накладываемыми на сумму составляющих случайных величин. Впервые одна из форм центральной предельной теоремы была доказана выдающимся русским математиком А.М.Ляпуновым в 1900 году с использованием специально разработанного им метода характеристических функций.

ТЕОРЕМА Ляпунова : Закон распределения суммы независимых случайных величин
приближается к нормальному закону распределения при неограниченном увеличении(то есть, при
), если выполняются следующие условия:


,

Следует отметить, что центральная предельная теорема справедлива не только для непрерывных, но и для дискретных случайных величин. Практическое значение теоремы Ляпунова огромно. Опыт показывает, что закон распределения суммы независимых случайных величин, сравнимых по своему рассеиванию, достаточно быстро приближается к нормальному. Уже при числе слагаемых порядка десяти закон распределения суммы можно заменить на нормальный (в частности, примером такой суммы может быть среднее арифметическое наблюдаемых значений случайных величин, то есть
).

Частным случаем центральной предельной теоремы является теорема Лапласа. В ней, как вы помните, рассматривается случай, когда случайные величины
дискретны, одинаково распределены и принимают только два возможных значения: 0 и 1.

Далее, вероятность того, что заключено в интервале
можно вычислить по формуле

.

Используя функцию Лапласа, последнюю формулу можно записать в удобном для расчётов виде:

где
.

ПРИМЕР . Пусть производится измерение некоторой физической величины. Любое измерение даёт лишь приближённое значение измеряемой величины, так как на результат измерения оказывают влияние очень многие независимые случайные факторы (температура, колебания прибора, влажность и др.). Каждый из этих факторов порождает ничтожную «частную ошибку». Однако, поскольку число этих факторов очень велико, совокупное их действие порождает уже заметную «суммарную ошибку».

Рассматривая суммарную ошибку как сумму очень большого числа взаимно независимых частных ошибок, мы вправе заключить, что суммарная ошибка имеет распределение, близкое к нормальному. Опыт подтверждает справедливость такого заключения.

2 Доказательство, предложенное Я.Бернулли, было сложным; более простое доказательство было дано П.Чебышевым в 1846 году.

3 Известно, что произведение двух сомножителей, сумма которых есть величина постоянная, имеет наибольшее значение при равенстве сомножителей.

Теорема 13.3 (теорема Бернулли). Если в каждом из п независимых опытов вероятность р появления события А постоянна, то при достаточно большом числе испытаний вероят-ность того, что модуль отклонения относительной частоты появлений А в п опытах от р будет сколь угодно малым, как угодно близка к 1:

Доказательство. Введем случайные величины Х 1 , Х 2 , …, Х п , где X i – число появлений А в i -м опыте. При этом X i могут принимать только два значения: 1(с вероятностью р ) и 0 (с вероятностью q = 1 – p ). Кроме того, рассматриваемые случайные величины попарно независимы и их дисперсии равномерно ограничены (так как D (X i ) = pq , p + q = 1, откуда pq ≤ ¼). Следовательно, к ним можно применить теорему Чебышева при M i = p :

.

Но , так как X i принимает значение, равное 1, при появлении А в данном опыте, и значение, равное 0, если А не произошло. Таким образом,

что и требовалось доказать.

Замечание. Из теоремы Бернулли не следует , что Речь идет лишь о вероятно-сти того, что разность относительной частоты и вероятности по модулю может стать сколь угодно малой. Разница заключается в следующем: при обычной сходимости, рассматриваемой в математическом анализе, для всех п , начиная с некоторого значения, неравенство выполняется всегда; в нашем случае могут найтись такие значения п , при которых это неравенство неверно. Этот вид сходимости называют сходимостью по вероятности .

Конец работы -

Эта тема принадлежит разделу:

Закон больших чисел. Неравенство Чебышева. Теоремы Чебышева и Бернулли

На сайте сайт читайте: "закон больших чисел. неравенство чебышева. теоремы чебышева и бернулли"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Закон больших чисел. Неравенство Чебышева. Теоремы Чебышева и Бернулли
Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачи-вает случайный характер и становится

Неравенство Чебышева
Неравенство Чебышева, используемое для доказательства дальнейших теорем, справед-ливо как для непрерывных, так и для дискретных случайных величин. Докажем его для дискретных случайных величин.

Теоремы Чебышева и Бернулли
Теорема 13.2 (теорема Чебышева). Если Х1, Х2,…, Хп – попарно независимые случайные величины, дисперсии которых равномерно

Центральная предельная теорема Ляпунова. Предельная теорема Муавра-Лапласа
Закон больших чисел не исследует вид предельного закона распределения суммы случайных величин. Этот вопрос рассмотрен в группе теорем, называемых центральной предельной теоремой. О

Полигон частот. Выборочная функция распределения и гистограмма
Для наглядного представления о поведении исследуемой случайной величины в выборке можно строить различные графики. Один из них – полигон частот: ломаная, отрезки которой соединяют

Двумерного случайного вектора
При статистическом исследовании двумерных случайных величин основной задачей является обычно выявление связи между составляющими. Двумерная выборка представляет собой набор

Способы построения оценок
1. Метод наибольшего правдоподобия. Пусть Х – дискретная случайная величина, которая в результате п испытаний приняла значения х1, х

Построение доверительных интервалов
1. Доверительный интервал для оценки математического ожидания нормального распределения при известной дисперсии. Пусть исследуемая случайная величина Х распределена

Бернулли теорема

одна из важнейших теорем теории вероятностей; является простейшим случаем т. н. закона больших чисел (см. Больших чисел закон). Б. т. была впервые опубликована в труде Я. Бернулли «Искусство предположений», изданном в 1713. Первые доказательства Б. т. требовали сложных математических средств, лишь в середине 19 в. П. Л. Чебышев нашёл необычайно изящное и краткое её доказательство. Точная формулировка Б. т. такова: если при каждом из n независимых испытаний вероятность некоторого события равна р, то вероятность того, что частота m/n появления события удовлетворяет неравенству |m/n - p| n испытаний. Из доказательства Чебышева вытекает простая количественная оценка этой вероятности:

В. И. Битюцков.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Бернулли теорема" в других словарях:

    Большой Энциклопедический словарь

    Одна из предельных теорем теории вероятностей; простейший случай закона больших чисел, относится к распределению отклонений частоты появления некоторого случайного события от его вероятности при независимых испытаниях. Установлена Я. Бернулли… … Энциклопедический словарь

    Исторически первая форма больших чисел закона. Б. т. приведена в четвертой части книги Я. Бернулли (J. Bernoulli) Ars conjeсtandi (Искусство предположений). Эту часть можно считать первым серьезным трудом по теории вероятностей. Книга издана в… … Математическая энциклопедия

    Одна из предельных теорем теории вероятностей; простейший случай закона больших чисел, относится к распределению отклонений частоты появления нек рого случайного события от его вероятности при независимых испытаниях. Установлена Я. Бернулли… … Естествознание. Энциклопедический словарь

    - (Bernoulli) семья швейцарских учёных, родоначальник которой Якоб Б. (умер 1583) был выходцем из Голландии. Якоб Б. (27.12.1654, Базель, 16.8.1705, там же), профессор математики Базельского университета (1687). Ознакомившись в… …

    Независимые испытания с двумя исходами каждое (успехом и неудачей) и такие, что вероятности исходов не изменяются от испытания к испытанию. Б. и. служат одной из основных схем, рассматриваемых в теории вероятностей. Пусть р вероятность успеха и … Математическая энциклопедия

    - (названа по имени Я. Бернулли одна из основных математических моделей для описания независимых повторений опытов, используемых в вероятностей теории (См. Вероятностей теория). Б. с. предполагает, что имеется некоторый опыт S и связанное с … Большая советская энциклопедия

    теорема Бернулли - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Bernoulli theorem … Справочник технического переводчика

    Многочлены вида где Bs Бернулли числа. Так, для n=0, 1, 2, 3 Б. м. можно вычислять по рекуррентной формуле Для натурального Б. м. впервые рассматривались Я. Бернулли (J. Bernoulli, 1713) в связи с вычислением суммы При произвольном хБ. м. впервые … Математическая энциклопедия

    Теорема Жуковского теорема о подъёмной силе тела, обтекаемого плоскопараллельным потоком идеальной жидкости или газа. Сформулирована Н. Е. Жуковским в 1904 году. Формулировка теоремы: Подъёмная сила крыла бесконечного размаха… … Википедия

Книги

  • , Р. Н. Бончковский. Сборник Математическое Просвещение выпуск 6 составлен по образцу предыдущих выпусков и имеет отделы: элементарная математика, высшая математика, методика, задачии решения задач. В конце…
  • Математическое просвещение. Выпуск 6 , Бончковского Р. Н.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Сборник «Математическое Просвещение» выпуск 6 составлен по образцу предыдущих выпусков и имеет…

Не будем долго размышлять о высоком — начнем сразу с определения.

Схема Бернулли — это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A , причем известна вероятность этого события P (A ) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A , которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Теорема Бернулли. Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: формула Бернулли. Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A », т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A , когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A », когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k , кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + ... + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P . S . А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.

Известная теорема Я. Бернулли, устанавливающая связь между частотой события и его вероятностью, может быть доказана как прямое следствие закона больших чисел.

Пусть производится независимых опытов, в каждом из которых может появиться или не появиться некоторое событие , вероятность которого в каждом опыте равна . Теорема Я. Бернулли утверждает, что при неограниченном увеличении числа опытов частота события сходится по вероятности к его вероятности .

Обозначим частоту события в опытах через и запишем теорему Я. Бернулли в виде формулы

, (13.5.1)

где, - сколь угодно малые положительные числа.

Требуется доказать справедливость этой формулы при достаточно большом .

Доказательство. Рассмотрим независимые случайные величины:

Число появлений события в первом опыте;

Число появлений события во втором опыте, и т. д.

Все эти величины прерывны и имеют один и тот же закон распределения, выражаемый рядом вида:

где . Математическое ожидание каждой из величин равно , а ее дисперсия (см. 10.3).

Частота представляет собой не что иное, как среднее арифметическое величин :

и, согласно закону больших чисел, сходится по вероятности к общему математическому ожиданию этих случайных величин. Отсюда и следует справедливость неравенства (13.5.1).

Теорема Я. Бернулли утверждает устойчивость частоты при постоянных условиях опыта. Но при изменяющихся условиях опыта аналогичная устойчивость также существует. Теорема, устанавливающая свойство устойчивости частот при переменных условиях опыта, называется теоремой Пуассона и формулируется следующим образом:

Если производится независимых опытов и вероятность появления события в -м опыте равна , то при увеличении частота события сходится по вероятности к среднему арифметическому вероятностей .

Теорема Пуассона выводится из обобщенной теоремы Чебышева точно так же, как теорема Бернулли была выведена из закона больших чисел.

Теорема Пуассона имеет большое принципиальное значение для практического применения теории вероятностей. Дело в том, что зачастую вероятностные методы применяются для исследования явлений, которые в одних и тех же условиях не имеют шансов повториться достаточно много раз, но повторяются многократно при весьма разнообразных условиях, причем вероятности интересующих нас событий сильно зависят от этих условий. Например, вероятность поражения цели в воздушном бою существенно зависит от дальности стрельбы, ракурса цели, высоты полета, скорости стреляющего самолета и цели и т. д. Комплекс этих условий слишком многочислен для того, чтобы можно было рассчитывать на многократное осуществление воздушного боя именно в данных фиксированных условиях. И все же, несмотря на это, в данном явлении налицо определенная устойчивость частот, а именно частота поражения цели в реальных воздушных боях, осуществляемых в самых разных условиях, будет приближаться к средней вероятности поражения цели, характерной для данной группы условий. Поэтому те методы организации стрельбы, которые основаны на максимальной вероятности поражения цели, будут оправданы и в данном случае, несмотря на то, что нельзя ожидать подлинной массовости опытов в каждом определенном комплексе условий.

Аналогичным образом обстоит дело в области опытной проверки вероятностных расчетов. На практике очень часто встречается случай, когда требуется проверить на опыте соответствие вычисленной вероятности какого-либо события его фактической частоте. Чаще всего это делается для того, чтобы проверить правильность той или иной теоретической схемы, положенной в основу метода вычисления вероятности события. Зачастую при такой экспериментальной проверке не удается воспроизвести достаточно много раз одни и те же условия опыта. И все же эта проверка может быть осуществлена, если сравнить наблюденную в опыте частоту события не с его вероятностью для фиксированных условий, а со средним арифметическим вероятностей, вычисленных для различных условий.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...