Теория ядерных реакций. Решение задач по физике: ядерные реакции

Открытие нейтрона и его свойства

Ядерные реакции под действием нейтронов занимают особое место в ядерной физике. Из-за того, что нейтрон не имеет электрического заряда, он свободно проникает в любые атомные ядра и вызывает ядерные реакции. Рассмотрим сначала свойства нейтрона.
Нейтрон был открыт после предсказания Резерфорда, сделанного в 1920 году.
В опытах Бете и Беккера (1930 год) ядра бериллия облучались α-частицами и было зарегистрировано нейтральное излучение, природа которого не была определена.

α + Be → нейтральное излучение (какое?, γ?).

В опытах Жолио-Кюри (1932 год) α-частицы направлялись на бериллиевую мишень, а затем на парафиновую, чтобы определить природу нейтрального излучения. После парафиновой мишени наблюдался выход протонов. Схема опыта показана ниже.

α + Be → парафин → p

Регистрировались протоны отдачи с Е р = 4.3 МэВ. Возник вопрос: под действием каких частиц они образовывались?
Если бы они вызывались γ-квантами, то энергия γ-квантов Е γ должна была быть ~ 50 МэВ. γ-кванты с такой энергией не могли появиться из указанной реакции.
Чедвик проанализировал эти эксперименты и предположил, что в результате реакции вылетают нейтральные частицы с массой, сравнимой с массой протона. Далее он поставил опыт в камере Вильсона и наблюдал ядра отдачи азота. Он сравнил эти результаты с результатами опытов Жолио-Кюри, в которых регистрировались протоны отдачи из парафина, и определил массу этой нейтральной частицы из законов сохранения энергии

и импульса

m 1 v = m 1 v 1 + m p v p ;

где N − ядро азота; v 1 − скорость нейтральной частицы после столкновения; m 1 − масса нейтральной частицы. Она оказалась близкой к массе протона

Таким образом, стало ясно, что в опытах Жолио-Кюри протекала реакция, в которой испускались нейтральные частицы − нейтроны:

α + 9 Ве → 12 С+ n.

Они, попадая на парафин, выбивали протоны отдачи с энергией Е р = 4.3 МэВ.

Свойства нейтрона, полученные из многочисленных экспериментов, представлены ниже:
масса − m n c 2 = 939.5 МэВ, m n = 1.008665 а. е. м.,
магнитный момент − μ n = −1.91μ я,
спин − J = ћ/2,
время жизни − τ n = (10.61 ±0.16) мин,
среднеквадратичный радиус − = (0.78 ± 0.18)·10 -2 фм 2 .

Ядерные реакции не только дают новые сведения о природе и свойствах ядерных сил, но и практически используются в народном хозяйстве и в военном деле. Это в первую очередь относится к ядерным реакциям под действием нейтронов при низких энергиях.

11.4 Источники нейтронов

Источники нейтронов − это различные ядерные реакции.


Рис. 88: Спектр нейтронов.

1. Используется смесь радия с бериллием (иногда полония с бериллием), где протекает реакция

α + 9 Ве → 12 С+ n + 5.5 МэВ.

Кинетическая энергия нейтрона Т распределена по спектру
(рис. 88).
При распаде Ra образуются α-частицы с энергией 4.8 МэВ и 7.7 МэВ. Они вступают в реакцию с 9 Ве и генерируют поток нейтронов. Разброс по энергии нейтронов связан с тем, что α-частицы разных энергий создают нейтроны разных энергий. Ядро углерода 12 C образуется в основном и возбужденном состояниях.
Выход нейтронов ~ 10 7 нейтронов на 1 г Ra в секунду. Одновременно испускаются γ-лучи.

2. Другие источники нейтронов − фотоядерные реакции (γ,n), в которых получаются медленные и монохроматические нейтроны.

γ + 2 H → p + n, Q = -2.23 МэВ.

Используется ThC" (208 Tl). Он испускает γ-кванты с Е γ ~ 2.62 МэВ и Е n ~ Е р; Т n ~20 кэВ.

3. Фоторасщепление Be фотонами с энергией Е γ = 1.78 МэВ

γ + 9 Ве → 8 Ве + n, Q = -1.65 МэВ; Т n ~ 100 кэВ.

4. Вылет нейтронов под действием ускоренных дейтонов с E d = 16 МэВ в реакции

2 H + 9 Be → 10 B + n + 4.3 МэВ.

Е n = 4 МэВ, выход 10 6 нейтронов в секунду.

5. Реакция 2 H + 2 H → 3 Не + n + 3.2 МэВ,
D + D (лед из тяжелой воды), i?n = 2.5 МэВ.

6. Облучение дейтонами трития

2 H + 3 H → 4 Не + n + 17.6 МэВ.

Поскольку эта реакция экзотермическая, дейтоны ускоряются до энергии E d = 0.3 МэВ в газоразрядных трубках. Образуются монохроматические нейтроны с Е n ~ 14 МэВ.
Этот источник нейтронов используется в геологии.

7. В реакциях срыва под действием дейтонов с E d ~ 200 МэВ на тяжелых ядрах образуются n с
Е n ~ 100 МэВ.

11.5 Ядерные реакторы, цепная ядерная реакция

Самый мощный источник нейтронов − ядерные реакторы − устройства, в которых поддерживается управляемая цепная реакция деления.
В реакторе происходит деление ядер U и образуются нейтроны с Е n от 0 до 13 МэВ, интенсивность источника 10 19 нейтронов/с см2. Процесс деления идет под действием нейтронов, беспрепятственно проникающих в ядра из-за отсутствия кулоновского потенциального барьера.
При делении ядра образуются радиоактивные осколки и испускается 2-3 n, которые снова вступают в реакцию с ядрами U; идет цепной процесс (рис. 89).

n + 235 U → 236 U → 139 La + 95 Мо + 2n


Рис. 89: Иллюстрация деления ядра 235U.

Для описания процесса деления 235 U используется модель жидкой капли, в которой работает формула Вайцзеккера. После попадания нейтрона в ядро урана происходит конкуренция между поверхностной энергией нового ядра и энергией кулоновского расталкивания. В итоге под действием кулоновских сил ядро делится на два более легких ядра.
Энергия Q, освобождающаяся при делении ядра (A,Z)

(A,Z) → 2(A/2,Z/2) + Q,

вычисляется с использованием формулы Вайцзеккера

Q = 2ε(A/2,Z/2) − ε(A,Z) = (1 − 2 1/3)·а сим ·A 2/3 + (1 − 2 2/3)·а кул ·Z 2 ·A -1/3 ;

Q (МэВ) = -4.5A 2/3 + 0.26·Z 2 A -1/3 , ε − удельная энергия связи: Е св /А. Для ядра 235 U Q = 180 МэВ.

Для того, чтобы ядро разделилось, в него должна быть внесена энергия Е > Е а, где Е а Рис. 90: Потенциальная энергия ядра в зависимости от расстояния до центра ядра (сплошная кривая), E 0 − основное состояние, E 0 + Е а − возбужденное состояние, Е а − энергия активации
(рис. 90).
Мерой способности ядер к делению служит отношение энергии кулоновского отталкивания протонов к энергии поверхностного натяжения:

где Z 2 /A − параметр деления, чем он больше, тем легче ядро делится; Z 2 /A = 49 критическое значение параметра деления.
Иллюстрация процесса деления ядра приведена на рис. 91.
В ядерном реакторе процесс деления ядер многократно повторяется в результате образования многих поколений деления. В 1-м акте деления 235 U возникает в среднем 2.4 нейтрона. Время жизни одного поколения ~ 10 с. Если происходит рождение K поколений, то образуется ~ 2 K нейтронов через время ~ 2·10 -6 с. Если K = 80, число нейтронов будет 2 80 ~ 10 24 − это приведет к делению 10 24 атомов (140 г урана). Выделяющаяся при этом энергия 3·10 13 вт равна энергии, образующейся при сжигании 1000 тонн нефти.


Рис. 91: Процесс деления ядра, протекающий в ядерном реакторе.

В реакциях деления энергия выделяется в виде тепла. Отвод тепла из реактора осуществляется теплоносителем, к которому предъявляются особые требования. Он должен обладать большой теплоемкостью, слабо поглощать нейтроны и иметь низкую химическую активность. Не будем обсуждать конструктивные особенности элементов ядерного реактора. Заметим только, что при попадании тепловых нейтронов на ядро 235 U образуются быстрые нейтроны, а реакция идет только на медленных нейтронах. Следовательно, необходимо замедлить быстрые нейтроны. Это происходит в замедлителе. В качестве замедлителя используется углерод или тяжелая вода. Остановка процесса деления реализуется с помощью ядер кадмия, которые захватывают образующиеся нейтроны. Таким образом, в конструкцию ядерного реактора обязательно входит замедлитель нейтронов (углерод) и кадмиевые стержни, поглощающие образующиеся нейтроны.
В реакторах используется природный уран 238 U (99.3%) и обогащенный 235 U (0.7%). 235 U делится под действием тепловых нейтронов. 238 U используется в реакторах на быстрых нейтронах.
Процессы, происходящие в реакторе, характеризуются следующими вероятностями:
ν − количество образованных быстрых нейтронов;
ε − коэффициент размножения быстрых нейтронов;
Р − вероятность нейтрону дойти до тепловой энергии;
ƒ − вероятность захвата нейтрона в процессе замедления;
σ t /σ tot − вероятность вызвать реакцию деления.

Произведение этих вероятностей дает оценку коэффициента размножения k тепловых нейтронов в ядерном реакторе:

Цепная реакция идет, если k > 1; входящие в коэффициент размножения величины имеют следующие значения: ν = 2.47; ε = 1.02; Р = 0.89; ƒ = 0.88; σ t /σ tot = 0.54.
Таким образом, k ∞ = 1.07 для реактора бесконечных размеров. В реальных условиях к эф < k ∞ , т.к. часть нейтронов уходит из реактора.
В реакторах на быстрых нейтронах (239 Ри и 238 U) происходит следующий процесс:

В результате этой реакции воспроизводится 239 Рu. Образовавшийся плутоний вступает в реакцию с нейтроном: n + 239 Рu, образуется ν = 2.41 нейтронов.
Число ядер 239 Ри удваивается через каждые 7-10 лет.
Реакция деления атомных ядер используется для получения атомной энергии. Ядерные реакторы работают на многих атомных электростанциях.

11.6 Реакции слияния, синтез легких ядер

Другим источником атомной энергии может служить синтез легких атомных ядер. Легкие ядра связаны менее прочно, и при их слиянии в тяжелое ядро выделяется больше энергии. Кроме того, термоядерные реакции чище из-за отсутствия сопровождающих их радиоактивных излучений, чем цепные реакции деления.
Для получения термоядерной энергии могут быть использованы следующие реакции синтеза:

d + d = 3 He + n + 4 МэВ,
d + d = t + р + 3.25 МэВ,
d + t = 4 Не + n + 17.б МэВ,
3 Не + d = 4 Нe + р + 18.3 МэВ,
6 Li + 2di = 2 4 Не + 22.4 МэВ. J

Энергия ядер, вступающих в реакцию, должна быть достаточной для преодоления кулоновского потенциального барьера. На рис. 92 показана энергетическая зависимость сечений некоторых реакций. Как видно из рисунка, синтез ядер дейтерия d и трития t является наиболее предпочтительным. В этой реакции синтеза низок кулоновский потенциальный барьер и велико сечение взаимодействия при малых энергиях сливающихся ядер. Для протекания реакции необходимо иметь достаточную концентрацию этих ядер в единице объема и достаточную температуру разогретой плазмы.
Число актов слияния R ab в единицу времени в единице объема определяется соотношением

R ab = n a ·n b ·w ab (T).
w ab (T) = σ ab ·v ab ,

где n a , n b − число ядер a, b; σ ab − эффективное сечение реакции, v ab − относительная скорость частиц в плазме, Т − температура. В результате реакции освобождается энергия

W = R ab ·Q ab ·τ,

где R ab − число актов слияния, Q ab − энергия, выделившаяся в 1 акте, τ − время.
Пусть n a = n b = 10 15 ядер/см 3 , Т = 100 кэВ. Тогда W ~ 10 3 вт/см 3 с.
В самоподдерживающейся термоядерной реакции должно выделяться больше энергии, чем идет на нагрев и удержание плазмы. Затраты на нагрев n a = n b = 2n частиц до температуры Т: 3n·kТ: k − постоянная Больцмана. Таким образом, надо удовлетворить условию:

n 2 ·w ab ·Q ab ·τ > 3nkТ

(высвобождающаяся энергия > энергии нагрева).
Лоусон сформулировал следующее условие для реакции слияния d + t:

nτ > 10 14 с·см -3 ,

где nτ − параметр удержания. На рис. 93 показана зависимость этого параметра от температуры. Реакция идет, если nτ > ƒ(T). Температура Т ~ 2·10 8 K соответствует энергии 10 кэВ. Минимальное значение параметра удержания nτ = 10 14 с/см 3 для реакции d + t достигается при температуре 2·10 8 K.

Рис. 93: Зависимость параметров удержания от температуры. Заштрихованная область ƒ(Т) − зона управляемого термоядерного синтеза для реакции d + t. − значения параметров, достигнутые на различных установках к 1980 году.

Для других реакций:

Удержание плазмы, имеющей необходимые условия для протекания реакции, реализуется в установках типа Токамак с помощью магнитного поля. Такие установки работают в России и в ряде других стран. Как видно из рис. 93, режим управляемого термоядерного синтеза пока не достигнут.
Делаются попытки получить необходимые для термоядерного синтеза условия с помощью лазерных установок. В этом случае небольшой объем, в котором заключены ядра дейтерия и трития, обжимается со всех сторон лазерным излучением. При этом ядра дейтерия и трития нагреваются до нужной температуры. Лазерный термояд требует введения коэффициента 100, т.к. велика бесполезная энергия, идущая на накачку лазера.
Попытки осуществить управляемый термоядерный синтез в лабораторных условиях наталкиваются на ряд трудностей.

  1. 1. До сих пор не удается получить устойчивый режим высокотемпературной плазмы.
  2. 2. Велики энергетические потери в плазме даже из-за малых концентраций примесей атомов с большими Z.
  3. 3. Не решена "проблема первой стенки" в Токамаке, ограничивающей плазму реактора (поток нейтронов ее разрушает).
  4. 4. В природе отсутствует радиоактивный тритий t с периодом полураспада Т 1/2 = 12.5 лет, поэтому существует проблема воспроизводства трития в реакции

n + 7 Li = α + t + n.

До сих пор не удалось преодолеть эти трудности и получить управляемую термоядерную реакцию синтеза.
В естественных условиях реакции термоядерного синтеза протекают на Солнце и в звездах.

Литература

  1. 1. Широков Ю.М., Юдин Н.П. Ядерная физика. -М.: Наука, 1972.
  2. 2. Капитонов И.М. Введение в физику ядра и частиц. -М.: УППС, 2002.

На протяжении долгого времени человека не оставляли мечты о взаимопревращении элементов - точнее, о превращении различных металлов в один. После осознания бесплодности этих попыток утвердилась точка зрения о незыблемости химических элементов. И только открытие структуры ядра в начале XX века показало, что превращение элементов один в другой возможно - но не химическими методами, то есть воздействием на внешние электронные оболочки атомов, а путем вмешательства в структуру атомного ядра. Такого рода явления (и некоторые другие) относятся к ядерным реакциям, примеры которых будут рассмотрены ниже. Но прежде необходимо вспомнить о некоторых основных понятиях, которые потребуются в ходе этого рассмотрения.

Общее понятие о ядерных реакциях

Существуют явления, в которых ядро атома того или иного элемента вступает во взаимодействие с другим ядром или какой-либо элементарной частицей, то есть обменивается с ними энергией и импульсом. Подобные процессы и называются ядерными реакциями. Результатом их может стать изменение состава ядра или образование новых ядер с испусканием определенных частиц. При этом возможны такие варианты, как:

  • превращение одного химического элемента в другой;
  • синтез, то есть слияние ядер, при котором образуется ядро более тяжелого элемента.

Начальная фаза реакции, определяемая типом и состоянием вступающих в нее частиц, называется входным каналом. Выходные каналы - это возможные пути, по которым реакция будет протекать.

Правила записи ядерных реакций

В примерах, приведенных ниже, демонстрируются способы, с помощью которых принято описывать реакции с участием ядер и элементарных частиц.

Первый способ - тот же, что применяется в химии: в левой части ставятся исходные частицы, в правой - продукты реакции. Например, взаимодействие ядра бериллия-9 с налетающей альфа-частицей (так называемая реакция открытия нейтрона) записывается следующим образом:

9 4 Be + 4 2 He → 12 6 C + 1 0 n.

Верхние индексы обозначают количество нуклонов, то есть массовые числа ядер, нижние - количество протонов, то есть атомные номера. Суммы тех и других в левой и правой части должны совпадать.

Сокращенный способ написания уравнений ядерных реакций, часто применяющийся в физике, выглядит так:

9 4 Be (α, n) 12 6 C.

Общий вид такой записи: A (a, b 1 b 2 …) B. Здесь A - ядро-мишень; a - налетающая частица или ядро; b 1 , b 2 и так далее - легкие продукты реакции; B - конечное ядро.

Энергетика ядерных реакций

В ядерных превращениях выполняется закон сохранения энергии (наряду с другими законами сохранения). При этом кинетическая энергия частиц во входном и выходном канале реакции могут различаться за счет изменения энергии покоя. Так как последняя эквивалентна массе частиц, до и после реакции массы также будут неодинаковы. Но полная энергия системы всегда сохраняется.

Разность энергии покоя вступающих в реакцию и выходящих из нее частиц называется энергетическим выходом и выражается в изменении их кинетической энергии.

В процессах с участием ядер задействуются три вида фундаментальных взаимодействий - электромагнитное, слабое и сильное. Благодаря последнему ядро обладает такой важнейшей особенностью, как высокая энергия связи между составляющими его частицами. Она существенно выше, чем, например, между ядром и атомными электронами или между атомами в молекулах. Об этом свидетельствует заметный дефект массы - разница между суммой масс нуклонов и массой ядра, которая всегда меньше на величину, пропорциональную энергии связи: Δm = E св /c 2 . Расчет дефекта массы производится по простой формуле Δm = Zm p + Am n - М я, где Z - заряд ядра, A - массовое число, m p - масса протона (1,00728 а.е.м.), m n - масса нейтрона (1,00866 а.е.м.), M я - масса ядра.

При описании ядерных реакций используется понятие удельной энергии связи (то есть в расчете на один нуклон: Δmc 2 /A).

Энергия связи и стабильность ядер

Наибольшей устойчивостью, то есть наивысшей удельной энергией связи, отличаются ядра с массовым числом от 50 до 90, например, железо. Такой «пик стабильности» обусловлен нецентральным характером ядерных сил. Поскольку каждый нуклон взаимодействует только с соседями, на поверхности ядра он связан слабее, нежели внутри. Чем меньше в ядре взаимодействующих нуклонов, тем меньше и энергия связи, поэтому легкие ядра менее стабильны. В свою очередь, с ростом количества частиц в ядре возрастают кулоновские силы отталкивания между протонами, так что энергия связи тяжелых ядер тоже уменьшается.

Таким образом, для легких ядер наиболее вероятными, то есть энергетически выгодными, являются реакции слияния с формированием устойчивого ядра средней массы, для тяжелых же - напротив, процессы распада и деления (нередко многоступенчатые), в результате которых также образуются более стабильные продукты. Этим реакциям свойственен положительный и часто очень высокий энергетический выход, сопровождающий увеличение энергии связи.

Ниже мы рассмотрим некоторые примеры ядерных реакций.

Реакции распада

Ядра могут претерпевать спонтанное изменение состава и структуры, при которых происходит испускание каких-либо элементарных частиц или фрагментов ядра, таких как альфа-частицы или более тяжелые кластеры.

Так, при альфа-распаде, возможном благодаря квантовому туннелированию, альфа-частица преодолевает потенциальный барьер ядерных сил и покидает материнское ядро, которое, соответственно, уменьшает атомный номер на 2, а массовое число - на 4. Например, ядро радия-226, испуская альфа-частицу, превращается в радон-222:

226 88 Ra → 222 86 Rn + α (4 2 He).

Энергия распада ядра радия-226 составляет около 4,87 МэВ.

Бета-распад, обусловленный происходит без изменения количества нуклонов (массового числа), но с увеличением или уменьшением заряда ядра на 1, при испускании антинейтрино или нейтрино, а также электрона или позитрона. Примером ядерной реакции данного типа является бета-плюс-распад фтора-18. Здесь один из протонов ядра превращается в нейтрон, излучаются позитрон и нейтрино, а фтор превращается в кислород-18:

18 9 K → 18 8 Ar + e + + ν e .

Энергия бета-распада фтора-18 - около 0,63 МэВ.

Деление ядер

Гораздо больший энергетический выход имеют реакции деления. Так называется процесс, при котором ядро самопроизвольно или вынужденно распадается на близкие по массе осколки (как правило, два, редко - три) и некоторые более легкие продукты. Ядро делится, если его потенциальная энергия превысит исходное значение на некоторую величину, называемую барьером деления. Однако вероятность спонтанного процесса даже для тяжелых ядер невелика.

Она существенно возрастает при получении ядром соответствующей энергии извне (при попадании в него частицы). Наиболее легко проникает в ядро нейтрон, поскольку он не подвержен силам электростатического отталкивания. Попадание нейтрона приводит к повышению внутренней энергии ядра, оно деформируется с образованием перетяжки и делится. Осколки разлетаются под действием кулоновских сил. Пример ядерной реакции деления демонстрирует уран-235, поглотивший нейтрон:

235 92 U + 1 0 n → 144 56 Ba + 89 36 Kr + 3 1 0 n.

Расщепление на барий-144 и криптон-89 - лишь один из возможных вариантов деления урана-235. Эту реакцию можно записать в виде 235 92 U + 1 0 n → 236 92 U* → 144 56 Ba + 89 36 Kr + 3 1 0 n, где 236 92 U* - сильно возбужденное составное ядро с высокой потенциальной энергией. Избыток ее наряду с разностью энергий связи материнского и дочерних ядер выделяется главным образом (около 80%) в форме кинетической энергии продуктов реакции, а также частично в форме потенциальной энергии осколков деления. Общая энергия деления массивного ядра - примерно 200 МэВ. В пересчете на 1 грамм урана-235 (при условии, что прореагировали все ядра) это составляет 8,2 ∙ 10 4 мегаджоулей.

Цепные реакции

Деление урана-235, а также таких ядер, как уран-233 и плутоний-239, характеризуется одной важной особенностью - наличием среди продуктов реакции свободных нейтронов. Эти частицы, проникая в другие ядра, в свою очередь, способны инициировать их деление опять-таки с вылетом новых нейтронов и так далее. Подобный процесс именуется цепной ядерной реакцией.

Течение цепной реакции зависит от того, как соотносится число вылетающих нейтронов очередного поколения с количеством их в предыдущем поколении. Это отношение k = N i /N i -1 (здесь N - количество частиц, i - порядковый номер поколения) носит название коэффициента размножения нейтронов. При k < 1 цепная реакция не идет. При k > 1 число нейтронов, а значит, и делящихся ядер, возрастает лавинообразно. Пример цепной ядерной реакции такого типа - взрыв атомной бомбы. При k = 1 процесс протекает стационарно, примером чему служит реакция, управляемая при помощи поглощающих нейтроны стержней, в ядерных реакторах.

Ядерный синтез

Наибольшее энерговыделение (в расчете на один нуклон) происходит при слиянии легких ядер - так называемых реакциях синтеза. Чтобы вступить в реакцию, положительно заряженные ядра должны преодолеть кулоновский барьер и сблизиться на расстояние сильного взаимодействия, не превышающее размеров самого ядра. Поэтому они должны обладать чрезвычайно большой кинетической энергией, что означает высокие температуры (десятки миллионов градусов и выше). По этой причине реакции синтеза еще называют термоядерными.

Пример ядерной реакции синтеза - образование гелия-4 с вылетом нейтрона при слиянии ядер дейтерия и трития:

2 1 H + 3 1 H → 4 2 He + 1 0 n.

Здесь высвобождается энергия 17,6 МэВ, что в расчете на один нуклон более чем в 3 раза превышает энергию деления урана. Из них 14,1 МэВ приходится на кинетическую энергию нейтрона и 3,5 МэВ - ядра гелия-4. Такая существенная величина создается за счет огромной разницы в энергиях связи ядер дейтерия (2,2246 МэВ) и трития (8,4819 МэВ) с одной стороны, и гелия-4 (28,2956 МэВ) - с другой.

В реакциях деления ядра высвобождается энергия электрического отталкивания, в то время как при синтезе энерговыделение происходит за счет сильного взаимодействия - самого мощного в природе. Это и определяет столь значительный энергетический выход данного типа ядерных реакций.

Примеры решения задач

Рассмотрим реакцию деления 235 92 U + 1 0 n → 140 54 Xe + 94 38 Sr + 2 1 0 n. Каков ее энергетический выход? В общем виде формула для его расчета, отражающая разность энергий покоя частиц до и после реакции, выглядит следующим образом:

Q = Δmc 2 = (m A + m B - m X - m Y + …) ∙ c 2 .

Вместо умножения на квадрат скорости света можно умножить разность масс на коэффициент 931,5 и получить значение энергии в мегаэлектронвольтах. Подставив в формулу соответствующие значения атомных масс, получим:

Q = (235,04393 + 1,00866 - 139,92164 - 93,91536 - 2∙1,00866) ∙ 931,5 ≈ 184,7 МэВ.

Еще один пример - на реакцию синтеза. Это один из этапов протон-протонного цикла - главного источника солнечной энергии.

3 2 He + 3 2 He → 4 2 He + 2 1 1 H + γ.

Применим ту же формулу:

Q = (2 ∙ 3,01603 - 4,00260 - 2 ∙ 1,00728) ∙ 931,5 ≈ 13,9 МэВ.

Основная доля этой энергии - 12,8 МэВ - приходится в данном случае на гамма-фотон.

Мы рассмотрели только простейшие примеры ядерных реакций. Физика этих процессов чрезвычайно сложна, они отличаются огромным разнообразием. Исследование и применение ядерных реакций имеет большое значение как в практической области (энергетика), так и в фундаментальной науке.

>> Ядерные реакции

§ 106 ЯДЕРНЫЕ РЕАКЦИИ

Атомные ядра при взаимодействиях испытывают превращения. Эти превращения сопровождаются увеличением или уменьшением кинетической энергии участвующих в них частиц.

Ядерными реакциями называют изменения атомных ядер при взаимодействии их с элементарными частицами или друг с другом. С примерами ядерных реакций вы уже ознакомились в § 103. Ядерные реакции происходят, когда частицы вплотную приближаются к ядру и попадают в сферу действия ядерных сил. Одноименно заряженные частицы отталкиваются друг от друга. Поэтому сближение положительно заряженных частиц с ядрами (или ядер друг с другом) возможно, если этим частицам (или ядрам) сообщена достаточно большая кинетическая энергия. Эта энергия сообщается протонам, ядрам дейтерия - дейтронам, -частицам и другим более тяжелым ядрам с помощью ускорителей.

Для осуществления ядерных реакций такой метод гораздо эффективнее, чем использование ядер гелия, испускаемых радиоактивными элементами. Во-первых , с помощью ускорителей частицам может быть сообщена энергия порядка 10 5 МэВ, т. е. гораздо большая той, которую имеют а-частицы (максимально 9 МэВ). Во-вторых , можно использовать протоны, которые в процессе радиоактивного распада не появляются (это целесообразно потому, что заряд протонов вдвое меньше заряда -частиц, и поэтому действующая на них сила отталкивания со стороны ядер тоже в 2 раза меньше). В-третьих , можно ускорить ядра более тяжелые, чем ядра гелия.

Первая ядерная реакция на быстрых протонах была осуществлена в 1932 г. Удалось расщепить литий на две -частицы:

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Темы кодификатора ЕГЭ : ядерные реакции, деление и синтез ядер.

В предыдущем листке мы неоднократно говорили о расщеплении атомного ядра на составные части. Но как этого добиться в действительности? В результате каких физических процессов можно разбить ядро?

Наблюдения радиоактивного распада в изменяющихся внешних условиях - а именно, при различных давлениях и температурах, в электрических и магнитных полях - показали, что скорость радиоактивного распада от этих условий не зависит. Никаких превращений химических элементов друг в друга все эти факторы вызвать не способны. Очевидно, изменения энергии тут слишком малы, чтобы повлиять на атомное ядро - так ветер, обдувающий кирпичный дом, не в состоянии его разрушить.

Но разрушить дом можно артиллерийским снарядом. И Резерфорд в 1919 году решил воспользоваться наиболее мощными «снарядами», которые имелись тогда в распоряжении. Это были -частицы, вылетающие с энергией около 5 МэВ при радиоактивном распаде урана. (Как вы помните, это те самые снаряды, которыми он восемь лет назад бомбардировал лист золотой фольги в своих знаменитых опытах, породивших планетарную модель атома.)

Правда, превращений золота в другие химические элементы в тех экспериментах не наблюдалось. Ядро золота само по себе весьма прочное, да и к тому же содержит довольно много протонов; они создают сильное кулоновское поле, отталкивающее -частицу и не подпускающее её слишком близко к ядру. А ведь для разбивания ядра -снаряд должен сблизиться с ядром настолько, чтобы включились ядерные силы! Что ж, раз большое количество протонов мешает - может, взять ядро полегче, где протонов мало?

Резерфорд подверг бомбардировке ядра азота и в результате осуществил первую в истории физики ядерную реакцию :

(1)

В правой части (1) мы видим продукты реакции - изотоп кислорода и протон.

Стало ясно, что для изучения ядерных реакций нужно располагать частицами-снарядами высоких энергий. Такую возможность дают ускорители элементарных частиц. Ускорители имеют два серьёзных преимущества перед естественными «радиоактивными пушками».

1. В ускорителях можно разгонять любые заряженные частицы. В особенности это касается протонов, которые при естественном распаде ядер не появляются. Протоны хороши тем, что несут минимальный заряд, а значит - испытывают наименьшее кулоновское отталкивание со стороны ядер-мишеней.

2. Ускорители позволяют достичь энергий, на несколько порядков превышающие энергию α-частиц при радиоактивном распаде. Например, в Большом адронном коллайдере протоны разгоняются до энергий в несколько ТэВ; это в миллион раз больше, чем 5 МэВ у -частиц в реакции (1) , осуществлённой Резерфордом.

Так, с помощью протонов, прошедших через ускоритель, в 1932 году удалось разбить ядро лития (получив при этом две -частицы):

(2)

Ядерные реакции дали возможность искусственного превращения химических элементов.

Кроме того, в продуктах реакций стали обнаруживаться новые, не известные ранее частицы. Например, при облучении бериллия -частицами в том же 1932 году был открыт нейтрон:

(3)

Нейтроны замечательно подходят для раскалывания ядер: не имея электрического заряда, они беспрепятственно проникают внутрь ядра. (При этом ускорять нейтроны не надо - медленные нейтроны легче проникают в ядра. Нейтроны, оказывается, нужно даже замедлять, и делается это пропусканием нейтронов через обычную воду.) Так, при облучении азота нейтронами протекает следующая реакция:

(4)

Энергетический выход ядерной реакции

Обсуждая энергию связи, мы видели, что в результате ядерных процессов масса системы частиц не остаётся постоянной. Это, в свою очередь, приводит к тому, что кинетическая энергия продуктов ядерной реакции отличается от кинетической энергии исходных частиц.

Прежде всего напомним, что полная энергия частицы массы складывается из её энергии покоя и кинетической энергии :

Пусть в результате столкновения частиц и происходит ядерная реакция, продуктами которой служат частицы и :

(5)

Полная энергия системы частиц сохраняется:

(6)

Кинетическая энергия исходных частиц равна . Кинетическая энергия продуктов реакции равна . Энергетический выход ядерной реакции - это разность кинетических энергий продуктов реакции и исходных частиц:

Из (6) легко получаем:

(7)

Если class="tex" alt="Q > 0"> , то говорят, что реакция идёт с выделением энергии больше кинетической энергии исходных частиц. Из (7) мы видим, что в этом случае суммарная масса продуктов реакции меньше

Если же , то реакция идёт с поглощением энергии : кинетическая энергия продуктов реакции меньше кинетической энергии исходных частиц. Суммарная масса продуктов реакции в этом случае больше суммарной массы исходных частиц.

Таким образом, термины «выделение» и «поглощение» энергии не должны вызывать недоумение: они относятся только к кинетической энергии частиц. Полная энергия системы частиц, разумеется, в любой реакции остаётся неизменной.

1. С помощью таблицы масс нейтральных атомов находим и , выраженные в а. е. м. (для нахождения массы ядра не забываем вычесть из массы нейтрального атома массу электронов).

2. Вычисляем массу исходных частиц, массу продуктов реакции и находим разность масс .

3. Умножаем на и получаем величину , выраженную в МэВ.

Мы сейчас подробно рассмотрим вычисление энергетического выхода на двух примерах бомбардировки ядер лития : сначала - протонами, затем - -частицами.

В первом случае имеем уже упоминавшуюся выше реакцию (2) :

Масса атома лития равна а. е. м. Масса электрона равна а. е. м. Вычитая из массы атома массу трёх его электронов, получаем массу ядра лития :

А. е. м.

Масса протона равна а. е. м., так что масса исходных частиц:

А. е. м.

Переходим к продуктам реакции. Масса атома гелия равна а. е. м. Вычитаем массу электронов и находим массу ядра гелия :

А. е. м.

Умножая на , получаем массу продуктов реакции:

А. е. м.

Масса, как видим, уменьшилась ; это означает, что наша реакция идёт с выделением энергии. Разность масс:

А. е. м.

Выделившаяся энергия:

МэВ.

Теперь рассмотрим второй пример. При бомбардировке ядер лития -частицами происходит реакция:

(8)

Массы исходных ядер нам уже известны; остаётся сосчитать их суммарную массу:

А. е. м.

Из таблицы берём массу атома бора (она равна а. е. м.); вычитаем массу пяти электронов и получаем массу ядра атома бора:

А. е. м.

Масса нейтрона равна а. е. м. Находим массу продуктов реакции:

А. е. м.

На сей раз масса увеличилась class="tex" alt="(m_2 > m_1)"> , то есть реакция идёт с поглощением энергии.

Разность масс равна:

А. е. м.

Энергетический выход реакции:

МэВ.

Таким образом, в реакции (8) поглощается энергия МэВ. Это означает, что суммарная кинетическая энергия продуктов реакции (ядра бора и нейтрона) на МэВ меньше, чем суммарная кинетическая энергия исходных частиц (ядра лития и -частицы). Поэтому чтобы данная реакция в принципе осуществилась, энергия исходных частиц должна быть не меньше МэВ.

Деление ядер

Бомбардируя ядра урана медленным нейтронами, немецкие физики Ган и Штрассман обнаружили появление элементов средней части периодической системы: бария, криптона, стронция, рубидия, цезия и т. д. Так было открыто деление ядер урана.

На рис. 1 мы видим процесс деления ядра (изображение с сайта oup.co.uk.). Захватывая нейтрон, ядро урана делится на два осколка , и при этом освобождаются два-три нейтрона.

Рис. 1. Деление ядра урана

Осколки являются ядрами радиоактивных изотопов элементов середины таблицы Менделеева. Обычно один из осколков больше другого. Например, при бомбардировке урана могут встречаться такие комбинации осколков (как говорят, реакция идёт по следующим каналам ).

Барий и криптон:

Цезий и рубидий:

Ксенон и стронций:

В каждой из этих реакций выделяется очень большая энергия - порядка МэВ. Сравните эту величину с найденным выше энергетическим выходом реакции (2) , равным МэВ! Откуда берётся такое количество энергии?

Начнём с того, что из-за большого числа протонов ( штуки), упакованных в ядре урана, кулоновские силы отталкивания, распирающие ядро, очень велики. Ядерные силы, конечно, ещё в состоянии удерживать ядро от распада, но могучий кулоновский фактор готов сказать своё слово в любой момент. И такой момент настаёт, когда в ядре застревает нейтрон (рис. 2 - изображение с сайта investingreenenergy.com).

Рис. 2. Деформация, колебания и разрыв ядра

Застрявший нейтрон вызывает деформацию ядра. Начнутся колебания формы ядра, которые могут стать столь интенсивными, что ядро вытянется в «гантельку». Короткодействующие ядерные силы, скрепляющие небольшое число соседних нуклонов перешейка, не справятся с силами электрического отталкивания половинок гантельки, и в результате ядро разорвётся.

Осколки разлетятся с огромной скоростью - около скорости света. Они и уносят большую часть высвобождающейся энергии (около МэВ из ).

Деление тяжёлых ядер можно истолковать с точки зрения уже известного нам графика зависимости удельной энергии связи ядра от его массового числа (рис. 3 ).

Рис. 3. Деление тяжёлых ядер энергетически выгодно

Цветом выделена область , в которой удельная энергия связи достигает наибольшего значения МэВ/нуклон. Это область наиболее устойчивых ядер. Справа от этой области удельная энергия связи плавно уменьшается до МэВ/нуклон у ядра урана.

Процесс превращения менее устойчивых ядер в более устойчивые является энергетически выгодным и сопровождается выделением энергии. При делении ядра урана, как видим, удельная энергия связи повышается примерно на МэВ/нуклон; эта энергия как раз и выделяется в процессе деления. Умножив это на число нуклонов в ядре урана, получим приблизительно те самые МэВ энергетического выхода, о которых говорилось выше.

Цепная ядерная реакция

Появление двух-трёх нейтронов в процессе деления ядра урана - важнейший факт. Эти нейтроны «первого поколения» могут попасть в новые ядра и вызвать их деление; в результате деления новых ядер возникнут нейтроны «второго поколения», которые попадут в следующие ядра и вызовут их деление; возникнут нейтроны «третьего поколения», которые приведут к делению очередных ядер и т. д. Так идёт цепная ядерная реакция , в ходе которой высвобождается колоссальное количество энергии.

Для протекания цепной ядерной реакции необходимо, чтобы число высвободившихся нейтронов в очередном поколении было не меньше числа нейтронов в предыдущем поколении. Величина

называеся коэффициентом размножения нейтронов . Таким образом, цепная реакция идёт при условии class="tex" alt="k > 1"> . Если , то цепная реакция не возникает.

В случае class="tex" alt="k > 1"> происходит лавинообразное нарастание числа освобождающихся нейтронов, и цепная реакция становится неуправляемой . Так происходит взрыв атомной бомбы.

В ядерных реакторах происходит управляемая цепная реакция деления с коэффициентом размножения . Стационарное течение управляемой цепной реакции обеспечивается введением в активную зону реактора (то есть в ту область, где протекает реакция) специальных управляющих стержней, поглощающих нейтроны. При полностью введённых стержнях поглощение ими нейтронов настолько велико, что и реакция не идёт. В процессе запуска реактора стержни постепенно выводят из активной зоны, пока выделяемая мощность не достигнет требуемого уровня. Этот уровень тщательно контролируется, и при его превышении включаются устройства, вводящие управляющие стержни назад в активную зону.

Термоядерная реакция

Наряду с реакцией деления тяжёлых ядер энергетически возможным оказывается и обратный в некотором смысле процесс - синтез лёгких ядер , то есть слияние ядер лёгких элементов (расположенных в начале периодической таблицы) с образованием более тяжёлого ядра.

Чтобы началось слияние ядер, их нужно сблизить вплотную - чтобы вступили в действие ядерные силы. Для такого сближения нужно преодолеть кулоновское отталкивание ядер, резко возрастающее с уменьшением расстояния между ними. Это возможно лишь при очень большой кинетической энергии ядер, а значит - при очень высокой температуре (в десятки и сотни миллионов градусов). Поэтому реакция ядерного синтеза называется термоядерной реакцией .

В качестве примера термоядерной реакции приведём реакцию слияния ядер дейтерия и трития (тяжёлого и сверхтяжёлого изотопов водорода), в результате которой образуется ядро гелия и нейтрон:

(9)

Эта реакция идёт с выделением энергии, равной МэВ (попробуйте сами провести расчёты и получить данную величину). Это очень много, если учесть, что в реакции участвуют всего нуклонов! В самом деле, в расчёте на один нуклон в реакции (9) выделяется энергия примерно МэВ, в то время как при делении ядра урана выделяется «всего» МэВ на нуклон.

Таким образом, термоядерные реакции служат источником ещё большего количества энергии, чем реакции деления ядер. С физической точки зрения это понятно: энергия реакции ядерного деления есть в основном кинетическая энергия осколков, разогнанных электрическими силами отталкивания, а при ядерном синтезе энергия высвобождается в результате разгона нуклонов навстречу друг другу под действием куда более мощных ядерных сил притяжения.

Проще говоря, при делении ядер высвобождается энергия электрического взаимодействия, а при синтезе ядер - энергия сильного (ядерного) взаимодействия.

В недрах звёзд достигаются температуры, подходящие для синтеза ядер. Свет Солнца и далёких звёзд несёт энергию, выделяющуяся в термоядерных реакциях - при слиянии ядер водорода в ядра гелия и последующем слиянии ядер гелия в ядра более тяжёлых элементов, расположенных в средней части периодической системы. Направление термоядерного синтеза показано на рис. 4 ; синтез лёгких ядер энергетически выгоден, так как направлен в сторону увеличения удельной энергии связи ядра.

Рис. 4. Синтез лёгких ядер энергетически выгоден

Неуправляемая термоядерная реакция осуществляется при взрыве водородной бомбы. Сначала взрывается встроенная атомная бомба - это нужно для создания высокой температуры на первой ступени термоядерного взрыва. При достижении необходимой температуры в термоядерном горючем бомбы начинаются реакции синтеза, и происходит взрыв собственно водородной бомбы.

Осуществление управляемой термоядерной реакции остаётся пока нерешённой проблемой, над которой физики работают уже более полувека. Если удастся добиться управляемого течения термоядерного синтеза, то человечество получит в своё распоряжение фактически неограниченный источник энергии. Это чрезвычайно важная задача, стоящая перед нынешним и будущими поколениями - в свете угрожающей перспективы истощения нефтегазовых ресурсов нашей планеты.

При низких (< 1 МэВ), средних (1-100 МэВ) и высоких (> 100 МэВ) энергиях. Разграничивают р-ции на легких ядрах ( ядра мишени А < 50), ядрах ср. массы (50 < А < 100) и тяжелых ядрах (А > 100).
Я дерная может произойти, если две участвующие в ней частицы сближаются на расстояние, меньшее диаметра ядра (ок. 10 -13 см), т. е. на расстояние, при к-ром действуют силы внутриядерного взаимод. между составляющими ядра нуклонами. Если обе участвующие в ядерной частицы - и бомбардирующая, и ядро мишени - заряжены положительно, то сближению частиц препятствует сила отталкивания двух положит. зарядов, и бомбардирующая частица должна преодолеть т.наз. кулоновский потенциальный барьер. Высота этого барьера зависит от заряда бомбардирующей частицы и заряда ядра мишени. Для ядер, отвечающих со ср. значениями , и бомбардирующих частиц с зарядом +1, высота барьера составляет ок. 10 МэВ. В случае, если в ядерной участвуют частицы, не обладающие зарядом (), кулоновский потенциальный барьер отсутствует, и ядерные могут протекать с участием частиц, имеющих тепловую энергию (т. е. энергию, отвечающую тепловым колебаниям ).
Обсуждается возможность протекания ядерных не в результате бомбардировки ядер мишени налетающими частицами, а за счет сверхсильного сближения ядер (т. е. сближения на расстояния, сопоставимые с диаметром ядра), находящихся в твердой или на пов-сти (напр., с участием ядер , растворенного в ); пока (1995) надежных данных об осуществлении таких ядерных ("холодного термоядерного синтеза") нет.
Я дерные подчиняются тем же общим законам природы, что и обычные хим. р-ции ( и энергии, сохранения заряда, импульса). Кроме того, при протекании ядерных действуют и нек-рые специфич. законы, не проявляющиеся в хим. р-циях, напр., закон сохранения барионного заряда (барионы - тяжелые ).
Записывать ядерные можно так, как это показано на примере превращения ядер Рu в ядра Кu при облучении плутониевой мишени ядрами :

Из этой записи видно, что суммы зарядов слева и справа (94 + 10 = 104) и суммы (242 + 22 = 259 + 5) равны между собой. Т. к. символ хим. элемента однозначно указывает на его ат. номер (заряд ядра), то при записи ядерных значения заряда частиц обычно не указывают. Чаще ядерные записывают короче. Так, ядерную образования 14 С при облучении ядер 14 N записывают след. образом: 14 N(n, р) 14 С.
В скобках указывают сначала бомбардирующую частицу иликвант, затем, через запятую, образующиеся легкие частицы иликвант. В соответствии с таким способом записи различают (n, р), (d, р), (п, 2п)и др. ядерные .
При столкновении одних и тех же частиц ядерные могут идти разл. способами. Напр., при облучении алюминиевой мишени могут протекать след. ядерные : 27 А1(n,) 28 А1, 27 А1(n, n) 27 А1, 27 А1(n, 2n) 26 А1, 27 А1(n, p) 27 Mg, 27 Al(n,) 24 Na и др. Совокупность сталкивающихся частиц наз. входным каналом ядерной , а частицы, рождающиеся в результате ядерной , образуют выходной канал.
Я дерные могут протекать с выделением и поглощением энергии Q. Если в общем виде записать ядерную как А(a, b)В, то для такой ядерной энергия равна: Q = [(М А + М а) - (М в + М b)] x с 2 , где М -массы участвующих в ядерной частиц; с - скорость света. На практике удобнее пользоваться значениями дельтаМ (см. ), тогда выражение для вычисления Q имеет вид: причем из соображения удобства обычно выражают в килоэлектронвольтах (кэВ, 1 а. е. м. = 931501,59 кэВ = 1,492443 х 10 -7 кДж).
Изменение энергии, к-рым сопровождается ядерная , может в 10 6 раз и более превышать энергию, выделяющуюся или поглощающуюся при хим. р-циях. Поэтому при ядерной становится заметным изменение масс взаимодействующих ядер: выделяемая или поглощаемая энергия равна разности сумм масс частиц до и после ядерной . Возможность выделения огромных кол-в энергии при осуществлении ядерных лежит в основе ядерной (см. ). Исследование соотношений между энергиями частиц, участвующих в ядерных , а также соотношений между углами, под к-рыми происходит разлет образующихся частиц, составляет раздел ядерной физики - кинематику ядерных р-ций.

Выходы ядерных , т. е. отношение числа ядерных к числу частиц, упавших на единицу площади (1 см 2) мишени, обычно не превышают 10 -6 -10 -3 . Для тонких мишеней (упрощенно тонкой можно назвать мишень, при прохождении через к-рую поток бомбардирующих частиц заметно не ослабевает) выход ядерной пропорционален числу частиц, попадающих на 1 см 2 пов-сти мишени, числу ядер, содержащихся в 1 см 2 мишени, а также значению эффективного сечения ядерной . Даже при использовании такого мощного источника налетающих частиц, каким является ядерный реактор, в течение 1 ч удается, как правило, получить при осуществлении ядерных под действием не более неск. мг , содержащих новые ядра. Обычно же масса в-ва, полученного в той или иной ядерной , значительно меньше.

Бомбардирующие частицы. Для осуществления ядерных используют n, р, дейтроны d, тритоны t, частицы, тяжелые (12 С, 22 Ne, 40 Аr и др.), е икванты. Источниками (см. )при проведении ядерных служат: смеси металлич. Be и подходящегоизлучателя, напр. 226 Ra (т. наз. ампульные источники), нейтронные генераторы, ядерные реакторы. Т. к. в большинстве случаев ядерных выше для с малыми энергиями (тепловые ), то перед тем, как направить поток на мишень, их обычно замедляют, используя , и др. материалы. В случае медленных осн. процесс почти для всех ядер - радиационный захват - ядерная типа т. к. кулоновский барьер ядра препятствует вылету ичастиц. Под действием протекают цепные р-ции .
В случае использования в качестве бомбардирующих частиц , дейтронов и др., несущих положит. заряд, бомбардирующую частицу ускоряют до высоких энергий (от десятков МэВ до сотен ГэВ), используя разл. ускорители. Это необходимо для того, чтобы заряженная частица могла преодолеть кулоновский потенциальный барьер и попасть в облучаемое ядро. При облучении мишеней положительно заряженными частицами наиб. выходы ядерных достигаются при использовании дейтронов. Связано это с тем, что энергия связи и в дейтроне относительно мала, и соотв., велико расстояние между и .
При использовании в качестве бомбардирующих частиц дейтронов в облучаемое ядро часто проникает только один нуклон - или , второй нуклон ядра дейтрона летит дальше, обычно в том же направлении, что и налетающий дейтрон. Высокие эффективные сечения могут достигаться при проведении ядерных между дейтронами и легкими ядрами при сравнительно низких энергиях налетающих частиц (1-10 МэВ). Поэтому ядерные с участием дейтронов можно осуществить не только при использовании ускоренных на ускорителе дейтронов, но и путем нагревания смеси взаимодействующих ядер до т-ры ок. 10 7 К. Такие ядерные называют термоядерными. В природных условиях они протекают лишь в недрах звезд. На Земле термоядерные р-ции с участием ,



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...