Уравнение пуассона для потенциала электростатического поля. Уравнение пуассона и математическая постановка задач электростатики

Теорема Гаусса применима только для тел простой конфигурации. Уравнение Пуассона – Лапласа позволяет решать гораздо более сложные задачи, эти уравнения используются во всех стационарных полях как электрических так и магнитных.

Вынесем знак «-» за знак дивергенции:

.

Заменим div иgrad на:

.

– уравнение Пуассона;

– уравнение Лапласа;

– Лапласан.

В декартовой системе координат:

– уравнение Лапласа;

– уравнение Пуассона.

Если зависит только от 1-й координаты, то задача решается 2-х кратным интегрированием по этой координате, при 2-х и более координат для решения уравнения существуют специальные методы: метод сеток, числовой метод расчёта.

Теорема единственности решения

Уравнение Пуассона – Лапласа, описывающее электрическое поле, является уравнением частных производных. Следовательно, существует множество решений независимых друг от друга.

Существует теорема единственности решения:

Из всего множества функций, удовлетворяющих уравнению Пуассона – Лапласа существует только одна удовлетворяющая граничным условиям.

К ней формулируют два следствия:

    Поле в некоторой части пространства не изменится, если по другую сторону границы раздела двух сред производится перераспределение зарядов так, чтобы граничные условия не изменились

    Эквипотенциальную поверхность можно заменить металлической, сообщив последней некоторый потенциал.

Метод зеркальных изображений

Если электрические заряды расположены вблизи границы двух разнородных сред, то вектор поля можно определить, применив искусственный метод расчета, который носит название метода зеркальных изображений.

Идея метода заключается в том, что вместо неоднородной среды рассматривается однородная среда, влияние же неоднородности учитывается введением фиктивных зарядов, записывают граничные условия основной задачи и, пользуясь ими, находят искомые векторы поля. Наиболее удобен этот метод для расчёта границы раздела двух сред правильной формы.

Расчет на границе раздела двух сред

Поле заряженной оси, расположенной вблизи проводящей плоскости

(Диэлектрик - Проводник)

Заряженная ось расположена в диэлектрике параллельно поверхности проводящей среды. Требуется определить характер поля в верхней полуплоскости (диэлектрике).

В результате электростатической индукции на поверхности проводящего тела выступают заряды. Плотность их меняется с изменением координаты x . Эти заряды влияют на поле и их влияние надо учитывать. Учесть влияние зарядов, выступивших на поверхности проводящего тела вследствие электростатической индукции, очень сложно, так как надо знать закон распределения их по поверхности проводящего тела. Данную задачу легко можно решить, используя метод зеркальных изображений. Согласно методу влияние зарядов, расположенных на поверхности проводящего тела, учитывается введением фиктивного сосредоточенного заряда, расположенного в зеркальном отражении относительно границы, при этом считается, что все пространство заполнено диэлектриком. Фиктивный заряд равен по модулю действительному и имеет противоположный знак.

Докажем это. Напряженность поля от двух зарядов
и
в любой точке поля имеет только нормальную к границе составляющую (выполнено граничное условие
). Потенциал от каждой из осей удовлетворяет уравнению Лапласа
(вывод уч. Бессонов ТОЭ стр. 42 (формула для потенциала заряженной оси подставляется в уравнение Лапласа в цилиндрической системе координат)). На основании теоремы единственности решения полученное решение является истинным.

Заряженная ось, расположена в диэлектрике параллельно поверхности проводящей среды. Требуется определить напряженность электростатического поля и потенциал в точке А.

Применим метод зеркальных изображений. А напряженность поля и потенциал в точке А найдем, используя метод наложения

;

;

;
.

для точки
:
.

Определим силу притяжения провода к проводящей поверхности:

.

Поле заряженной оси, расположенной вблизи плоской границы раздела двух диэлектриков с различными диэлектрическими проницаемостями

(Диэлектрик - Диэлектрик)

В этом случае индуцированные на границе раздела не скомпенсированные связанные заряды влияют на поле в обеих сферах, для учета их вводят два фиктивных заряда. В данной задаче надо удовлетворить двум граничным условием.

а) Если реальный провод и исследуемая точка находятся в одной среде, то поле рассчитывают от двух зарядов: действительного , все пространство заполнено диэлектриком, в котором находится исследуемая точка.

б) Если реальный провод и исследуемая точка находятся в разных средах, то поле в любой точке нижнего полупространства определяют как поле от некоторого дополнительного заряда . Все пространство заполнено диэлектриком той среды, где находится исследуемая точка.

Из условия равенства тангенциальных составляющих напряженности поля:

.

Из условия равенства нормальных составляющих вектора электрического смещения:

.

.

Решая совместно, получаем:

;

;
.

Знак будет совпадать сесли
.

Знак будет всегда как.

Заряженная ось расположена в диэлектрике параллельно поверхности другого диэлектрика. Требуется определить напряженность электростатического поля и потенциал в точке А и В. Пусть
.

Рассмотрим точку А. Она лежит в одной среде с заряженной осью. Применяем метод зеркальных отражений. Все заполняем средой с диэлектрической проницаемостью . Поле рассчитываем от двух зарядов: действительногои зеркально отраженного фиктивного заряда. Применим метод зеркальных изображений. Напряженность поля и потенциал в точке А найдем, используя метод наложения:

;

;

;
.

Примем точку с нулевым потенциалом на границе раздела под одним из проводов

.

Рассмотрим точку В. Она лежит в разных средах с заряженной осью. Применяем метод зеркальных отражений. Все заполняем средой с диэлектрической проницаемостью . Поле рассчитываем от фиктивного заряда, расположенного в той же точке, где находился реальный заряд.

;

.

Замечание: если исследуемая точка лежит на поверхности провода, то расстояние от провода до исследуемой точки равно радиусу провода.

Точечный заряд вблизи границы

Диэлектрик – Проводник и Диэлектрик – Диэлектрик

Если поле создается не заряженной осью, а точечным зарядом, то вся методика расчетов сохраняется.

Точечный заряд лежит вблизи границы диэлектрик – проводник. Найти напряженность и потенциал поля в точке А.

Я хотел бы в познавательных целях рассказать об уравнениях, которые применялись при выводе уравнения Дебая-Хюккеля. Это уравнение Пуассона и распределение Больцмана.

Уравнение Пуассона

Мы выяснили, что плазма квазинейтральна в равновесном состоянии и что под действием электрического поля от движущихся зарядов, заряженные частицы смещаются на дебаевскую длину и поле в пределах этой длины затухает. В электростатике взаимодействие заряженных частиц описывается кулоновским уравнением:

Где – величины взаимодействующих точечных зарядов, – квадрат расстояния между зарядами. Коэффициент k является константой. Если мы используем систему в электростатических единицах СГС, обозначаемых СГСЭq, то k = 1. Если используется система СИ, то , где – диэлектрическая проницаемость среды, в которой расположены заряды, – электрическая постоянная, равная 8,86 ∙ .

В физике непосредственно силой не пользуются, а вводят понятие электростатического поля распределённых зарядов и измеряют поле величиной напряженности электрического поля . Для этого в каждую точку поля мысленно помещают единичный пробный заряд и измеряют силу, с которой поле зарядов действует на пробный заряд:


Отсюда, если подставить в это уравнение силу Кулона, то получим:
Но и этим физики не ограничиваются, для того чтобы описать полноценно электрическое поле. Рассмотрим единичный заряд, помещённый в электростатическое поле. Поле выполняет работу по перемещению этого заряда на элементарное расстояние ds из точки P1 в точку P2:
Величину называют разностью потенциалов или напряжением. Напряжение измеряется в Вольтах. Знак минус говорит нам о том, что само поле выполняет работу для переноса единицы положительного заряда. Силы, перемещающие заряды являются консервативными, так как работа по замкнутому пути равна всегда нулю, независимо от того, по какому пути перемещается заряд.

Отсюда следует глубокий смысл разности потенциалов. Если зафиксировать точку Р1 и перемещать заряд в переменную точку Р2, то работа зависит только от положения второй точки Р2. Таким образом мы можем ввести понятие потенциала. Потенциал – это силовая функция, показывающая какую необходимо выполнить работу полю, чтобы переместить заряд из бесконечности в данную точку P2, где условно принимают потенциал в бесконечности равным нулю.

Чтобы понять уравнение Пуассона, необходимо разбираться в «особой» векторной математике. Я вкратце расскажу про такие понятия как градиент поля и дивергенции (подразумевается, что читатель знаком с математическим анализом)
Пусть f(x,y,z) является некоторой непрерывной дифференцируемой функцией координат. Зная её частные производные в каждой точке пространства можно построить вектор, компоненты которого x, y, z равны соответствующим частным производным:


где – единичные векторы соответствующих осей x, y, z. Значок читается «набла» и является дифференциальным оператором
Этот оператор ввёл в математику Гамильтон. С набла можно выполнять обычные математические операции, такие как обычное произведение, скалярное произведение, векторное произведение и так далее.

Теперь вернёмся к электростатическому полю E. С одной стороны изменение потенциала при переходе из одной точки в другую имеет следующий вид:


С другой стороны, согласно формуле (*)
Применяя только что введённое понятие градиент, эта формула преобразуется в:
Теперь разберёмся с таким понятием, как дивергенция поля. Рассмотрим конечный замкнутый объем V произвольной формы (см. рис. ниже). Обозначим площадь этой поверхности S. Полный поток вектора F, выходящего из этого объема по определению равно
, где da является бесконечно малым вектором, величина которого равна площади малого элемента поверхности S, а направление совпадает с наружной нормалью к этому элементу.
Возьмём этот поток вектора F поделим на объём и найдём предел при стремящейся к нулю, т.е. будем стягивать объём в бесконечно малую точку.


Мы подошли к понятию дивергенции. Обозначается дивергенция символом div и является отношением потока вектора F к объёму V, при V стремящейся к нулю.

Прежде чем показать, как получается уравнение Пуассона, важно знать закон Гаусса и теорему Гаусса. Представим себе сферу, внутри которой находится заряд q. Заряд создаёт вокруг себя электрическое поле напряжённости E. Возьмём поток вектора E


где S площадь нашей сферы равная . Следовательно
Это и есть закон Гаусса, утверждающий, что поток электрического поля E через любую замкнутую поверхность равен произведению на полный заряд, охватываемый поверхностью:
где – плотность объёмного заряда, т.е. величина электрического заряда в единице объёма, и – элементарный объём, выделенный внутри нашего замкнутого объёма.

Теорема Гаусса (полное название теорема Гаусса-Остроградского) чисто математическая теорема о дивергенции. Перепишем полный поток вектора F следующим образом:


В пределе, когда N → ∞, →0 величина в скобках становится дивергенцией и сумма переходит в объёмный интеграл:
Это и есть теорема Гаусса, и является поистине самой важной формулой полевой теории. Применим эту теорему к электростатическому полю. С одной стороны, согласно закону Гаусса
А с другой стороны, согласно теореме Гаусса (только не путайте теорему с законом Гаусса):
Комбинируя два последних уравнения, получим:
Вспомним формулу (**) и подставим сюда вместо E потенциал поля
Дивергенция градиента это новый оператор, который в математике называют оператор Лапласа, или сокращённо лапласиан. Лапласиан обозначается значком набла следующим образом и равен
Перепишем предыдущую формулу в форме лапласиана:
Наконец мы получили уравнение Пуассона. В первой статье это уравнение было немного в другой форме, с учётом диэлектрической проницаемости среды. Вспомните силу Кулона в системе СИ, там константа . Соответственно в законе Гаусса будет не , а коэффициент . Таким образом получаем уравнение Пуассона в форме представленной в предыдущей статье
Таким образом по сути уравнение Пуассона – это закон Кулона (а точнее закон Гаусса) переписанный в другой форме, в обозначениях векторного дифференциального анализа.

В мы разберём важное распределение из математической статистики - распределение Больцмана.

Теги:

  • физика
  • электростатики
Добавить метки

Уравнения Лапласа и Пуассона

Уравнение

Если ввести оператор , называемый оператором Лапласа , то уравнения (1.110) и (1.111) запишутся соответственно

и .

К исследованию уравнений Лапласа и Пуассона приводит рассмотрение задач о стационарном процессе: это задачи гидродинамики, диффузии, фильтрации, распределения температуры, электростатики и др.

Эти уравнения относятся к уравнениям эллиптического типа.

Те задачи, которые приводят к уравнениям, содержащим время, называются динамическими или нестационарными задачами математической физики; задачи, приводящие к уравнениям, не содержащим время, называются стационарными или статическими.

О постановке задачи математической физики

И ее корректности

Как было показано, уравнения математической физики имеют бесчисленное множество решений, зависящее от двух произвольных функций (речь идет об уравнениях второго порядка для функции двух переменных). Для того, чтобы из множества решений выделить определенное, характеризующее процесс, необходимо на искомую функцию наложить дополнительные условия, которые диктуются физическими соображениями. Тут можно провести аналогию с обыкновенными дифференциальными уравнениями, когда для выделения из общего решения частного, удовлетворяющего некоторым дополнительным условиям, отыскивались по этим условиям произвольные постоянные. Таковыми условиями для уравнений в частных производных являются, чаще всего, начальные и граничные условия. Граничные условия – это условия, заданные на границе рассматриваемой среды; начальные условия – условия, относящиеся к какому-нибудь моменту времени, с которого начинается изучение данного физического явления. Дополнительные условия,

так же как и само дифференциальное уравнение, должны вводиться на основе физических соображений, связанных с самим процессом. Вместе с тем дополнительные условия должны быть такими, чтобы обеспечить выделение из всего множества решений единственного решения. Число граничных и начальных условий определяется типом уравнения, а их вид – заданным исходным состоянием на границе объекта и внешней среды. Для рассматриваемых нами уравнений число начальных условий равно порядку старшей производной по времени, входящей в уравнение, а число граничных условий – порядку старшей производной по координате.

Совокупность дифференциального уравнения и дополнительных условий представляет собой математическую формулировку физической задачи и называется задачей математической физики.

Физическая задача решается по схеме:

1) реальный физический процесс (явление, объект) заменяется некоторым идеальным процессом (явлением, объектом) так, что последний значительно проще первого и вместе с тем сохраняет его основные черты (идеализация процесса);

2) выбирается величина (функция), характеризующая процесс, и используются законы, по которым он происходит;

3) на основании выбранных законов выводится дифференциальное уравнение для величины, характеризующей процесс;

4) выводятся дополнительные условия – начальные и граничные – также в соответствии с выбранными законами.

Итак, задача математической физики состоит в отыскании решений уравнений в частных производных, удовлетворяющих некоторым дополнительным условиям, скажем, граничным и начальным.

Задача математической физики считается поставленной корректно, если решение задачи, удовлетворяющее всем ее условиям, существует, единственно и устойчиво; последнее означает, что малые изменения любого из данных задачи вызывают малое изменение решения. Требование устойчивости необходимо по следующей причине. В данных любой конкретной задачи, особенно если они получены из опыта, всегда содержится некоторая погрешность, и нужно, чтобы малая погрешность в исходных данных приводила к малой неточности в решении. Это требование выражает физическую определенность поставленной задачи.

Примеры

ПРИМЕР 2.36. Выяснить, являются ли приведенные ниже равенства дифференциальными уравнениями в частных производных:

Решение. Преобразуем уравнение а)

Данное уравнение является уравнением в частных производных, так как в него входят частные производные второго порядка

и .

Уравнение б) не является уравнением в частных производных, так как в него входит только функция . Действительно, раскрывая , получим

ПРИМЕР 2.37. Выяснить, какие из следующих уравнений являются линейными (однородными или неоднородными) и какие нелинейными:

Решение. Сравнивая данные уравнения с формой (1.4), заключаем, что

Уравнение а) есть неоднородное линейное уравнение второго порядка, для которого ;

Уравнение б) нелинейное, так как оно не является линейным относительно старших частных производных;

Уравнение в) является однородным линейным уравнением третьего порядка.

ПРИМЕР 2.38. Решить уравнение .

Решение. Ясно, что искомая функция не зависит от переменной , но может быть любой функцией от : , поскольку, дифференцируя по , получим ноль, а это значит, что данное равенство выполняется. Таким образом, решение уравнения содержит одну произвольную функцию .

ПРИМЕР 2.39. Решить уравнение , где заданная функция.

Решение. Интегрируя по , восстановим искомую функцию

Где произвольная функция.

Итак, решение уравнений в примерах 2.38 и 2.39 содержат одну произвольную функцию . Такое решение называется общим. В отличие от общего решения обыкновенного дифференциального уравнения первого порядка, которое содержит одну произвольную постоянную, решение уравнения в частных производных первого порядка содержит одну произвольную функцию.

ПРИМЕР 2.40. Решить уравнение .

Решение. Перепишем уравнение так: . Положим , после чего данное уравнение принимает вид . Как было установлено в примере 2.38, общее решение последнего уравнения имеет вид: , где произвольная функция. Исходное уравнение примет вид: . Проинтегрировав полученный результат по , получим

где и произвольные дважды дифференцируемые функции.

Легко проверить, что найденная функция удовлетворяет данному уравнению.

Итак, решение уравнения в частных производных второго порядка содержит уже две произвольные функции. Такое решение называют общим.



Приведенные в качестве примеров уравнения дают основание сделать заключение: общее решение уравнения в частных производных первого порядка содержит одну произвольную функцию, а общее решение уравнения второго порядка – две произвольные функции. В этом заключается коренное отличие общего решения уравнения в частных производных от общего решения обыкновенного дифференциального уравнения, которое содержит одну и две произвольные постоянные.

В дальнейшем будет выяснено, какие дополнительные условия надо задать, чтобы с их помощью можно было выделить частное решение, т. е. функцию, удовлетворяющую как уравнению, так и дополнительным условиям.

Уравнение (10.2) устанавливает связь между потенциалом электростатического поля и напряженностью этого поля. Из этого уравнения можно получить соотношение между потенциалом и плотностью заряда. Для этого нужно образовать дивергенцию обеих частей этого уравнения и воспользоваться затем формулой (6.5):

Согласно правилам векторного анализа [см. уравнение (40]

так что уравнение (11.1) может быть записано так:

Это дифференциальное уравнение носит название уравнения Пуассона. В тех участках поля, где нет электрических зарядов

Уравнение это обращается в следующее:

Этот частный вид уравнения Пуассона носит название уравнения Лапласа.

Уравнение Пуассона дает возможность определить потенциал поля объемных зарядов, если известно расположение этих зарядов. Решение (интеграл) этого дифференциального уравнения (при определенных граничных условиях) должно, очевидно, совпадать с выведенной нами ранее формулой (8.8):

В дальнейшем мы докажем это непосредственным вычислением. Пока же отметим, что для решения некоторых задач удобнее исходить не из интеграла (8.8), а непосредственно из дифференциального уравнения (11.3).

Пример. Определить плотность термоионного тока между двумя бесконечными плоскими электродами в вакууме. Пример этот на применение уравнения Пуассона взят не из электростатики, а из учения о токе и имеет большое значение для теории катодных (усилительных) ламп.

Известно, что накаленные металлы испускают со своей поверхности в окружающее пространство поток свободных электронов. Если к двум металлическим электродам приложить определенную разность потенциалов и раскалить отрицательный электрод (катод), то непрерывно испускаемые накаленным катодом электроны будут притягиваться к поверхности положительного электрода (анода). Поток электронов, движущихся от катода к аноду, эквивалентен электрическому току. Ток этот называется термоионным.

Выберем оси декартовых координат так, чтобы начало их находилось на катоде, а ось х была перпендикулярна плоскости электродов и направлена к аноду. Примем потенциал катода равным нулю, а потенциал анода равным Из соображений симметрии явствует, что эквипотенциальные поверхности параллельны электродам, поэтому и уравнение Пуассона в пространстве между электродами принимает вид

Если обозначить через число электронов, приходящихся на единицу объема в пространстве между электродами на расстоянии х от катода, а через абсолютную величину заряда электрона, то плотность заряда на

этом расстоянии будет:

Предположим для простоты, что испускаемые катодом электроны при выходе из его поверхности не обладают никакой начальной скоростью. На пути от катода к аноду силы электрического поля будут совершать над электронами заряда работу - которая будет, очевидно, переходить в кинетическую энергию движения электронов. Обозначая через скорость электрона на расстоянии х от катода, а через потенциал на том же расстоянии, получим

где 771 - масса электрона. Наконец, плотность электрического тока, т. е. заряд, протекающий за единицу времени через перпендикулярную току (т. е. перпендикулярную оси площадку в равна, очевидно:

ибо есть число электронов, проходящих за единицу времени через эту площадку. В отличие от плотность тока есть величина постоянная, не зависящая от х, ибо по достижении стационарного состояния через любую параллельную электродам плоскость проходит, очевидно, одинаковое число электронов.

Исключим из уравнения (11.5) все неизвестные функции х, кроме Прежде всего

Но из (11.6) следует, что

стало быть,

Вводя обозначение А - получим

Как легко убедиться подстановкой, из решений этого дифференциального уравнения, которое, согласно условию задачи, обращается на катоде в нуль и, кроме того, удовлетворяет условию

Если обозначить расстояние от анода до катода через I, то при потенциал должен обращаться в Стало быть,

Таким образом, плотность термоионного тока не подчиняется закону Ома, а растет пропорционально степени 3/2 приложенного к электродам напряжения и обратно пропорционально квадрату расстояния между ними. Это отличие законов термоионного тока от законов тока в металлах обусловливается двоякого рода причинами. Во-первых, электроны в металлах соударяются с положительными ионами, образующими твердый скелет металла, и испытывают благодаря этому сопротивление своему движению, отсутствующее при движении в вакууме 1). Во-вторых, при термоионном токе в пространстве между электродами находятся лишь свободные электроны, заряд которых не компенсируется зарядом положительных ионов, как это имеет место в металлах, вследствие чего поле этого так называемого «пространственного заряда» искажает поле электродов.

Отметим, что формула (11.9) перестает быть справедливой при больших плотностях тока 2). При повышении потенциала анода наступает момент, когда все выделяемые катодом электроны немедленно же увлекаются к аноду. Дальнейшее повышение потенциала анода не может, очевидно, повести к увеличению плотности тока, которая, таким образом, достигает постоянного значения (ток насыщения).

Задача 10. Пусть означает расстояние данной точки пространства от некоторой произвольно выбранной начальной точки Показать, что скаляр

удовлетворяет уравнению Лапласа

Точка не рассматривается.

Задача 11. Бесконечная плоская пластина толщиной 2а равномерно заряжена электричеством с объемной плотностью Ось х перпендикулярна пластине, начало координат расположено в срединной плоскости, равноотстоящей от обеих поверхностей пластины. Показать, что потенциал поля внутри и вне пластины равен соответственно:

а вектор направлен вдоль оси х от срединной плоскости и численно равен:

Сравнить этот случай с предельным случаем бесконечной заряженной плоскости (§ 4).

Задача 12. Найти потенциал поля шара, равномерно заряженного по своему объему [формула (8.12)], исходя из уравнения Пуассона в сферических координатах.

Уравнения Пуассона и Лапласа являются основными уравнениями электростатики. Они вытекают из теоремы Гаусса в дифференциальной форме. Действительно, известно, что Е = - grad j . В то же время согласно теореме Гаусса

Подставим в (11.22) E из (11.7). Получим

.

Вынесем минус за знак дивергенции

.

Вместо того чтобы писать gradj, запишем его эквивалент Ñj. Вместо div напишем Ñ. Тогда

Уравнение (11.27) называется уравнением Пуассона. Частный вид уравнения Пуассона, когда ρ свб =0, называется уравнением Лапласа. Уравнение Лапласа запишется так:

Оператор называют оператором Лапласа или лапла­сианом и иногда обозначают еще символом D. Поэтому можно встретить иногда и такую форму записи уравнения Пуассона:

Раскроем в декартовой системе координат. С этой целью произведение двух множителей Ñ и запишем в развернутом виде

Произведем почленное умножение и получим

.

Таким образом, уравнение Пуассона в декартовой системе координат запишется следующим образом:

. (11.29)

Уравнение Лапласа в декартовой системе координат

. (11.30)

Приведем без вывода выражения Ñ 2 j в цилиндрической системе координат

, (11.31)

в сферической системе координат (11.32)

Уравнение Пуассона дает связь между частными производными второго порядка от j в любой точке поля и объемной плотностью свободных зарядов в этой точке поля. В то же время потенциал j в какой-либо точке поля зависит, разумеется, от всех зарядов, создающих поле, а не только от величины свободного заряда, находящегося в данной точке.

Уравнение Лапласа (1780 г.) первоначально было применено для описания потенциальных полей небесной механики и впоследствии было использовано для описания электрических полей. Уравнение Пуассона применяется к исследованию потенциальных полей (электрических и магнитных) с 1820 г.

Рассмотрим вопрос о том, как в общем виде может быть записано решение уравнения Пуассона. Пусть в объеме V есть объемные (r), поверхностные (s) и линейные (t) заряды. Эти заряды представим в виде совокупностей точечных зарядов rdV, sds, tdl; dV - элемент объема, ds -элемент заряженной поверхности, dl - элемент длины заряженной оси. Составляющая потенциала dj в некоторой точке пространства, удаленной от rdV на расстояние R , в соответствии с формулой (11.20) равна

Составляющие потенциала от поверхностного и линейного зарядов, рассматривая их как точечные, определим аналогичным образом:

Полное значение j определится как сумма (интеграл) составляющих потенциала от всех зарядов в поле:

. (11.33)

В формуле (11.33) r,s и t есть функции радиуса R . Практически формулой (11.33) пользуются редко, так как распределение s по поверхности, t по длине и r по объему сложным образом зависит от конфигурации электродов и, как правило, перед проведением расчета неизвестно. Другими словами, неизвестно, как r, s и t зависят от радиуса R .


Граничные условия

Под граничными условиями понимают условия, которым подчиняется поле на границах раздела сред с различными электрическими свойствами. При изучении раздела «переходные процессы» исключительно большое значение имел вопрос о начальных условиях и о законах коммутации. Начальные условия и законы коммутации позволяли определить постоянные интегрирования при решении задач классическим методом. В классическом методе они использовались в явном виде, в операторном методе - в скрытом. Без использования их нельзя решить ни одной задачи на переходные процессы.

Можно провести параллель между ролью граничных условий в электрическом (и в любом другом) поле и ролью начальных условий и законов коммутации при переходных процессах. При интегрировании уравнения Лапласа (или Пуассона) в решение войдут постоянные интегрирования. Их и определяют, исходя из граничных условий. Прежде чем перейти к подробному обсуждению граничных условий, рассмотрим вопрос о поле внутри проводящего тела в условиях электростатики.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...