Активация ретикулярной формации. Ретикулярная формация: строение, структура, аминергические нейроны

  • Спинной мозг Спинной мозг: его развитие, сегментарность, топография, внутреннее строение. Локализация проводящих путей в белом веществе. Кровоснабжение спинного мозга.
  • Оболочки и пространства
  • Развитие головного мозга Развитие головного мозга: мозговые пузыри и их производные. Критика «теории» расизма в учении о мозге.
  • Серое и белое вещество головного мозга Серое и белое на вещество на срезах полушарий мозга (базальные ядра, расположение и функциональное значение нервных пучков во внутренней капсуле).
  • Верхнелатеральная поверхность полушарий Борозды, извилины верхнелатеральной поверхности полушарий большого мозга.
  • Медиальная и базальная поверхности полушарий Борозды и извилины медиальной и базальной поверхностей полушарий большого мозга.
  • Комиссуральные и проекционные волокна Комиссуральные и проекционные волокна полушарий головного мозга (мозолистое тело, свод, спайки, внутренняя капсула).
  • Боковые желудочки мозга Боковые желудочки мозга, их стенки. Сосудистые сплетения. Пути оттока спинномозговой жидкости.
  • Обонятельный мозг
  • Промежуточный мозг Промежуточный мозг – отделы, внутреннее строение, третий желудочек.
  • Средний мозг Средний мозг, его части, их внутреннее строение. Топография проводящих путей в среднем мозге.
  • Задний мозг Задний мозг, его части, внутреннее строение. Ядра заднего мозга.
  • Мозжечок
  • Мозжечок Мозжечок, его строение, ядра мозжечка, ножки мозжечка, их волоконный состав.
  • Продолговатый мозг Продолговатый мозг. Внешнее и внутреннее строение, топография ядер черепных нервов.
  • Ромбовидная ямка Ромбовидная ямка, её рельеф, проекция на нееядер черепных нервов.
  • IV желудочек головного мозга Четвертый желудочек головного мозга, его стенки, пути оттока спинномозговой жидкости.
  • Экстероцептивные проводящие пути Проводящие пути экстероцептивных видов чувствительности (болевой, температурной, осязания и давления).
  • Проприоцептивные проводящие пути Проводящие пути проприоцептивной чувствительности мозжечкового и коркового направления.
  • Медиальная петля Медиальная петля, состав волокон, положение на срезах мозга.
  • Двигательные проводящие пути Двигательные проводящие пирамидные и экстрапирамидные пути.
  • Ретикулярная формация Ретикулярная формация головного мозга и её функциональное значение.
  • Оболочки и пространства мозга Оболочки головного и спинного мозга, их строение. Субдуральное и субарахноидальное пространства.
  • Кровоснабжение головного мозга Кровеносные сосуды головного мозга. Артериальный круг. Отток венозной крови.
  • Введение в периферическую неврологию
  • Спинальные нервы Спинномозговой нерв и его ветви. Формирование сплетений спинномозговых нервов. Задние ветви спинномозговых нервов и области их распределения.
  • Шейное сплетение Шейное сплетение, его топография, ветви, области иннервации.
  • Плечевое сплетение
  • Подключичная часть плечевого сплетения Ветви подключичной части плечевого сплетения. Иннервация кожи верхней конечности.
  • Межреберные нервы
  • Поясничное сплетение
  • Крестцовое сплетение
  • Копчиковое сплетение
  • Седалищный нерв Седалищный нерв, его ветви. Иннервация кожи нижней конечности.
  • Черепные нервы I, II пара черепных нервов. Проводящий путь зрительного анализатора.
  • Глазодвигательный, блоковый, отводящий нервы III, IV, VI пары черепных нервов, области иннервации. Пути зрачкового рефлекса.
  • Тройничный нерв V пара черепных нервов, ее ветви, топография и области иннервации.
  • Лицевой нерв Лицевой нерв, его топография, ветви и области иннервации.
  • Преддверно-улитковый нерв VIII пара черепных нервов и топография ее ядер. Проводящие пути органов слуха и равновесия.
  • Вестибулярный проводящий путь
  • Слуховой проводящий путь
  • Языкоглоточный нерв IX пара черепных нервов, их ядра, топография и области иннервации.
  • Блуждающий нерв Блуждающий нерв, его ядра, их топография; ветви и области иннервации.
  • Прибавочный и подъязычный нервы
  • Вегетативная (автономная) нервная система Вегетативная часть нервной системы, ее деление и характеристика отделов.
  • Парасимпатическая часть внс Парасимпатический отдел нервной вегетативной системы. Общая характеристика, узлы, распределение ветвей, краниальная и сакральная части.
  • Парасимпатические узлы головы
  • Симпатическая часть внс Симпатический отдел нервной вегетативной системы, общая характеристика.
  • Шейный симпатикус Шейный отдел симпатического ствола: топография, узлы, ветви, области, иннервируемые ими.
  • Грудной симпатикус Грудной отдел симпатического ствола, его топография, узлы и ветви.
  • Поясничный и крестцовый симпатикус Поясничный и крестцовый отделы симпатического ствола, их топография, узлы и ветви.
  • Введение в эстезиологию
  • Органы чувств и учение и. П. Павлова Характеристика органов чувств в свете Павловского учения об анализаторах.
  • Орган слуха и равновесия Орган слуха и равновесия: общий план строения и функциональные особенности.
  • Возрастная изменчивость
  • Наружное ухо Наружное ухо, его части, строение, кровоснабжение, иннервация.
  • Среднее ухо Анатомия среднего уха (барабанная полость, слуховые косточки, слуховая труба, ячейки сосцевидного отростка); кровоснабжение, иннервация.
  • Внутреннее ухо Внутреннее ухо: костный и перепончатый лабиринты. Спиральный (кортиев) орган. Проводящий путь слухового анализатора.
  • Орган зрения Орган зрения: общий план строения. Глазное яблоко и его вспомогательный аппарат.
  • Преломляющие среды глазного яблока Преломляющие среды глазного яблока: роговица, жидкость камер глаза, хрусталик, стекловидное тело.
  • Сосудистая оболочка глаза Сосудистая оболочка глаза, ее части. Механизм аккомодации.
  • Сетчатая оболочка глаза Сетчатая оболочка глаза. Проводящий путь зрительного анализатора.
  • Вспомогательный аппарат глазного яблока Вспомогательный аппарат глазного яблока: мышцы, веки, слезный аппарат, конъюнктива, их сосуды и нервы.
  • Органы вкуса и обоняния Органы вкуса и обоняния. Их топография, строение, кровоснабжение, иннервация.
  • Кожа и ее производные Анатомия кожи и ее производных. Молочная железа: топография, строение, кровоснабжение, иннервация.
  • Анатомическая неврология и эстезиология
  • ретикуло-ретикулярные связи. Но в сети выделяются и скопления нейронов – ядра ретикулярной формации.

    Крупные, средние и мелкие нейроны сосредотачиваются в ядрах ретикулярной формации: субталамическом, красном, черной субстанции, мостовом, ретикулярных ядрах продолговатого мозга и др. Более сотни ядер, располагающихся в срединной, медиальной и латеральной группе. В срединных и медиальных ядрах находятся крупные нервные клетки, а в латеральных - средние и мелкие нейроны. Аксоны крупных нейронов часто образуют бифуркации, разделяясь на два отростка. Причем один отросток имеет восходящее направление вплоть до клеток коры, другой - нисходящее - к нейронам мозгового ствола, мозжечка, спинного мозга. Благодаря такому делению возникаютретикуло-петальные связи с вышележащими нейронами иретикуло-фугальные – с ниже расположенными нервными клетками. Мелкие и средние клетки являются, в основном, ассоциативными нейронами.

    На них замыкаются чувствительные волокна от афферентных клеток коры большого мозга, гипоталамуса, мозжечка, спинного мозга (спино-ретикулярный тракт). В свою очередь отростки ретикулярных нейронов вступают во множественные контакты, очевидно, со всеми нейронами головного и спинного мозга.

    Клетки ретикулярной формации входят в состав всех жизненно важных нервных центров - дыхательного, сердечно-сосудистого, пищеварительного и многих других, связанных с необходимыми физиологическими отправлениями: созреванием и выходом половых клеток, мочеиспусканием, дефекацией, теплорегуляцией, стереотипными движениями. Ретикулярные нейроны имеют связи с ядрами пирамидных и экстрапирамидных, висцеральных проводящих путей.

    Ретикулярные центры с нисходящим направлением импульсов для органов дыхательной, сердечно-сосудистой и пищеварительной системы работают через симпатический отдел. Восходящая часть ретикулярной формации активирует корковые нейроны, и ее окончания диффузно разбросаны по всей коре.

    В функциональном отношении ретикулярную формацию рассматривают:

      как своеобразный “генератор энергии”, способный активизировать и поддерживать в рабочем состоянии все остальные нейроны (П.К. Анохин);

      как регулятор функционального состояния нейронов (угнетение, активация, выключение);

      как сложный рефлекторный центр, принимающий участие в контроле мышечного тонуса и стереотипных движений;

      как центральную энцефалическую систему, отвечающую за работу всего мозга;

      как биоэнергетическую систему всего организма;

      как центр, определяющий и регулирующий волю человека.

    Благодаря особенностям строения своих нейронов (бифуркация отростков, восходящие и нисходящие аксоны, многочисленные синапсы и др.) ретикулярная формация обеспечивает:

      сохранность автоматизма дыхания и сердечных сокращений, температурного постоянства, глотания, мочеиспускания, дефекации, благодаря интегративной работе по объединению нейронов в различных отделах мозга и обеспечению вегетативной регуляции за счёт координации эфферентных и афферентных сигналов в соответствующих центрах мозгового ствола

      процессы восприятия и формирование эмоций, воли, памяти, внимания и обучения, благодаря регулирующим потокам сенсорных импульсов в кору и подкорковые структуры играет роль своеобразного вентильного механизма, определяющего уровень сознания;

      активность и тонус мышц всех видов;

      активность и тонус клеток коры: различные степени бодрствования и сна, усталости и подъема сил и эмоций.

      контроль рефлекторной деятельности путём стимуляции или торможения мотонейронов передних рогов серого вещества спинного мозга и двигательных ядер черепных нервов ствола мозга.

    В медиальной части продолговатого мозга расположен ингибиторный центр, стимуляция которого понижает тонус скелетных мышц, угнетает рефлексы и препятствует прохождению к мотонейронам любых импульсов со стороны коры большого мозга и ядер экстрапирамидной системы. Напротив, ретикулярная формация моста и среднего мозга активирует нервные клетки периферических двигательных центров.

    Участие в эмоциональном восприятии чувствительных сигналов путём увеличения или уменьшения поступления афферентных импульсов к лимбической системе. Регулируя медиаторный обмен нейронов, или модулируя активность их рецепторов с помощью определённых лекарственных препаратов или немедикаментозных средств, можно, в случае необходимости, продлить состояние бодрствования и активизировать деятельность коры больших полушарий или наоборот - добиться сна.

  • СОСТАВ, СТРОЕНИЕ И ФУНКЦИИ РЕТИКУЛЯРНОЙ ФОРМАЦИИ

    Ретикулярная формация (РФ; лат. fopmatio reticularis, reticulum - сетка) является интегративным, самостоятельным структурно-физиологическим образованием ЦНС. Восходящие влияния РФ на кору большого мозга повышают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на функциональное состояние всех сенсорных областей мозга. Она начинается в шейной части спинного мозга между боковыми и задними рогами. В продолговатом мозге значительно увеличивается и располагается между ядрами черепно-мозговых нервов.

    РФ (лат. rete - сеть, reticulum - сетка) представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных на всем протяжении ствола мозга (продолговатый мозг, мост, средний и промежуточный мозг) и в центральных отделах спинного мозга. Это важный пункт на пути восходящей неспецифической соматосенсорной системы. Соматовисцеральные афференты идут в составе спиноретикулярного тракта (переднебоковой канатик), а также, возможно, в составе проприоспинальных (полисинаптических) путей и соответствующих путей от ядра спинального тройничного тракта. К ретикулярной формации приходят также пути от всех других афферентных черепно-мозговых нервов, т.е. практически от всех органов чувств. Дополнительная афферентация поступает от многих других отделов головного мозга - от моторных и сенсорных областей коры, от таламуса и гипоталамуса. Имеется также множество эфферентных связей - нисходящие к спинному мозгу, и восходящие через неспецифические таламические ядра к коре головного мозга, гипоталамусу и лимбической системе.

    Таким образом, ретикулярная формация получает информацию от всех органов чувств, внутренних и других органов, оценивает ее, фильтрует и передает в лимбическую систему и кору большого мозга. Она регулирует уровень возбудимости и тонуса различных отделов центральной нервной системы, включая кору большого мозга, играет важную роль в сознании, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма.

    К основным структурам РФ относят латеральное и парамедианное ретикулярное ядра, ретикулярное ядро покрышки моста, ретикулярное гигантоклеточное ядро, ретикулярное мелкоклеточное ядро, ретикулярное вентральное и латеральное ядра, голубое пятно (locus ceruleus) и ядра тройничного нерва (каудальное, интерполярное, оральное ядра), нижнее и медиальное вестибулярные ядра, медиальная часть бокового ядра, ядра шва, ядро одиночного пути, комиссуральное ядро, ядро Эдингера-Вестфаля и дорсальное ядро блуждающего нерва, ретикулярноеядро таламуса, слюноотделительные ядра, дыхательный и сосудодвигательный центры продолговатого мозга. Таким образом, к РФ относятся центры, отвечающие за наиболее важные витальные функции. Поражение дыхательного и вазомоторного центров приводит к немедленной смерти. Прочие центры РФ также играют важную роль в организме. Также РФ рассматривают как центр организации центрального ответа на стрессовые воздействия.

    ОБЩИЕ ВОПРОСЫ ПОРАЖЕНИЯ РЕТИКУЛЯРНОЙ ФОРМАЦИИ

    Поражение центров РФ при различной патологии нервной системы имеет свои особенности. Вследствие стволового расположения патологических очагов и близости жизненно важных центров, клиническая картина при появлении более или менее крупного очага в РФ практически всегда отличается большой тяжестью. С другой стороны, именно ретикулярность, сетчатость ее строения иногда позволяет компенсировать повреждение за счет густой сети коллатералей. Изолированное выпадение функции отдельных ядер ретикулярной формации встречается в клинике достаточно редко. Крупный очаг в области ретикулярной формации, как правило, дает картину нескольких синдромов. Эти синдромы отражают поражение восходящей активирующей системы.

    Нарколепсия/катаплексия, также называемая синдромом Желино (Gelineau"s syndrome), является своеобразным расстройством. Пациент с нарколепсией испытывает внезапную неудержимую тягу ко сну, который продолжается от нескольких минут до нескольких часов. Катаплексия - состояние слабости и полного паралича, провоцируемое эмоциональными воздействиями. Эти два симптома могут как сочетаться у одного и того же пациента, так и встречаться по отдельности. Иногда встречается автоматическое поведение, когда после приступа нарколепсии или катаплексии некоторое время происходит деятельность в полубессознательном состоянии. Катаплексия по интенсивности может варьировать от чувства слабости до полного коллапса, когда пациент падает и не может пошевелиться. Довольно часто положительные эмоции, например смех или чувство победы, удовлетворения, провоцируют приступы катаплексии.

    Синдром периодической спячки (или летаргический синдром) заключается в развитии приступов сна продолжительностью до нескольких суток. Развитие летаргического синдрома описано при остром диссеминированном энцефаломиелите у детей, герпетическом энцефалите, а также ряде энцефалитов другой этиологии. Энцефалит Экономо одним из основных клинических проявлений имеет летаргический синдром. При синдроме Клейне-Левина развивается неудержимая гиперфагия, гиперсексуальность и гиперсомния. Этот синдром относительно редок (на настоящий момент имеется описание около 200 случаев).

    Несмотря на то, что поражение отдельных ядер ретикулярной формации в клинических условиях встречается относительно редко, имеется ряд сообщений на эту тему. Поражение ядер шва приводит к развитию активного бодрствования. В экспериментальных условиях животное с разрушенными ядрами шва может умереть от явлений истощения. В клинике чаще всего поражение ядер шва, то есть центров серотонинергической системы, приводит к развитию миоклоний. Очаг в промежуточном ядре шва дает опсоклонус с беспорядочными движениями глаз. Общими для поражения ядер шва являются эмоциональные нарушения, связанные с дефицитом серотонина - насильственный смех и плач. Эти нарушения описаны для поражения бледного шара, медиального и дорсального ядер шва (в эксперименте показано особое сродство вируса герпеса с несколькими структурами ретикулярной формации, в частности с ядрами шва).

    Разрушение гигантоклеточного ретикулярного ядра в экспериментальных условиях приводит в основном к поведенческим расстройствам, связанным с тревожностью и эмоциональными нарушениями. Нарушения когнитивных процессов при этом не происходит. Это наблюдение важно с точки зрения ранее выдвигавшихся исходя из сугубо нейроанатомических наблюдений соображений о влиянии ретикулярной формации на когнитивные процессы в основном через изменение эмоционального фона и уровня сознания. В клинических условиях поражение продолговатого мозга, в котором расположено гигантоклеточное ретикулярное ядро, ведет к развитию выраженной очаговой симптоматики. Поскольку ретикулярная формация продолговатого мозга расположена вокруг двойного ядра блуждающего нерва (nucleus ambiquus), чаще всего симптомы поражения гигантоклеточного ретикулярного ядра входят составной частью в альтернирующий синдром Валленберга-Захарченко. Также описывается так называемый ретикулярный миоклонус.

    Поражение голубого пятна в экспериментальных условиях приводит к уменьшению времени бодрствования и немедленному и постоянному подавлению парадоксальной фазы сна. Наблюдается выраженная гипертония мышц и тремор с атонией жевательных мышц. Впоследствии у животных развиваются псевдогаллюцинации. Через 1 - 2 месяца после разрушения голубого пятна животные погибают при явлениях общего истощения. В клинических условиях синдром голубого пятна встречается редко. Тем не менее, описан симптомокомплекс, связанный с полной гибелью нейронов голубого пятна после перенесенного острого энцефалита. Приводятся данные о возникновении нерегулярного дыхательного ритма с неспособностью координации движений дыхательных мышц, мышц лица и гортани с актом дыхания, что постоянно приводило к механической обструкции дыхательных путей, глазодвигательным нарушениям, окулогирным кризам и тяжелым нарушениям сна. Частичная гибель нейронов голубого пятна у пациентов ассоциируется с деменцией.

    Поражение ядра Эдингера-Вестфаля дает синдром Аргайла Робертсона - расширение зрачков и отсутствие прямой и содружественной реакции на свет при сохранной или повышенной реакции на конвергенцию и аккомодацию. Описано появление данного синдрома при синдроме Баннварта, имеются подробные его описания при эпидемическом энцефалите. Несколько реже встречается обратный, или извращенный синдром Аргайла Робертсона: при исчезновении реакции зрачков на конвергенцию и аккомодацию реакция на свет сохранена. Этот симптомокомплекс характерен для энцефалита Экономо. При поражении ретикулярного ядра тройничного нерва у пациента наблюдается выпадение чувствительности вокруг носа и рта. При очаговом процессе в области нижних отделов ядер тройничного нерва имеет место анестезия боковых областей лица.

    Таким образом, нарушение функции различных центров РФ играет важную роль среди поражений ствола, которое приводит к развитию характерной симптоматики: нарколепсии/катаплексии, опсоклонуса/миоклонуса, центральных нарушений дыхания и артериального давления. Локализация очагов в ретикулярной формации, как правило, приводит к выраженному неврологическому дефициту и часто заканчивается летальным исходом. Это требует от невролога повышенного внимания при возникновении вышеописанного симптомокомплекса либо его компонентов, поскольку центральные нарушения дыхания и кровообращения могут привести к внезапной смерти пациента.

    Сугубо клиническая диагностика поражения ретикулярной формации периодически встречает затруднения, в частности, определить нарушения сна у пациента в коме не представляется возможным. МРТ головного мозга также может не выявлять мелкие очаги в стволовых структурах. Это определяет повышение интереса к методикам функциональной диагностики. Наиболее перспективной методикой в изучении функции ретикулярной формации у человека является транскраниальная магнитная стимуляция в сочетании с комплексом вызванных потенциалов головного мозга (акустическими, зрительными и соматосенсорными).

    Ретикулярная формация ствола мозга представляет собой комплекс нейронов, имеющих обширные связи с разными нервными центрами, друг с другом и корой полушарий. Она пролегает в ростральном направлении к таламусу. Рассмотрим далее ее особенности.

    Функции ретикулярной формации

    В задачи комплекса входит обработка сенсорной информации. Кроме этого, ретикулярная формация обеспечивает активизирующее воздействие на кору, осуществляя контроль деятельности спинного мозга. За счет этого регулируются тонус скелетных мышц, работа вегетативной и половой систем человека.

    Механизм действия

    Впервые он был выявлен Р. Гранитом. Ученый установил, что может влиять на активность γ-мотонейронов. Вследствие этого γ-эфференты (их аксоны) провоцируют сокращение веретен мускулатуры и, соответственно, повышение афферентной импульсации мышечных рецепторов. Поступающие в спинной мозг сигналы провоцируют возбуждение α-мотонейронов. Это и обуславливает тонус мускулатуры. Было установлено, что в реализации этой функции участвуют нейроны формации моста и продолговатого мозга. Их поведение диаметрально противоположно. Последние провоцируют активацию α-мотонейронов в мышцах-сгибателях и, соответственно, тормозят их в разгибателях. Нейроны моста действуют наоборот. Ретикулярная формация связана с мозжечком и корой, от которой поступает информация. Это позволяет сделать вывод, что она выступает в качестве коллектора неспецифического сенсорного потока, который, возможно, участвует в регуляции активности мускулатуры. Однако в настоящее время еще не выяснена необходимость формации, дублирующей задачи нейронов в красном и вестибулярных ядрах.

    Структура

    Ретикулярная формация образуется рассеянными клетками. Некоторые из них считаются жизненно важными образованиями. В частности, можно выделить центры:

    1. Дыхательный и сосудодвигательный. Они располагаются в продолговатом мозге.
    2. Координации взора. Он находится в среднем мозге.
    3. Голода, насыщения и терморегуляции. Они располагаются в промежуточном мозге.

    В качестве ключевого тракта выступает ретикулоспинальный. Он проходит к нейронам в двигательных ядрах передних спинномозговых рогов и черепных нервов по стволу и к вставочным элементам нервной вегетативной системы. От них пролегают таламо-корковые волокна. Они обеспечивают активацию коры, которая необходима для восприятия специфических раздражителей. Эти таламо-корковые волокна заканчиваются во всех корковых слоях.

    Научные наблюдения

    В ходе исследований было выявлено, что ретикулярная формация обладает активизирующим воздействием на кору. Этот нейронный комплекс выступает в качестве своеобразного "энергетического центра". Без него нервные клетки коры, разные ее отделы, а также весь мозг в целом не смогут выполнять все свои многообразные сложные задачи. Комплекс нейронов непосредственно участвует в процессе регулирования сна и бодрствования. Результаты экспериментов позволили объяснить некоторые наблюдения хирургов. Так, в процессе операций на мозге могут быть сделаны разрезы в коре полушарий, удалена часть ткани. При этом пациент сознания не потеряет. Однако, если скальпелем будет задета , человек впадет в глубокий сон.

    Специфика работы

    Сегодня достаточно хорошо изучены специфические нервные каналы, по которым от органов чувств передается информация в мозг. Именно так кора узнает о характере раздражителя, действующего на организм. В соответствии с этим она посылает разные импульсы к системам и органам. Исследования показали, что от всех волокон, направленных от периферии к коре, отходят ответвления. Они заканчиваются на поверхности клеток формации. Внешнее раздражение любого характера оказывает на нее возбуждающее действие. В этот момент происходит своего рода "зарядка энергией". Выступая как мозговой центр, формация определяет степень работоспособности коры. Активизируя все отделы, она обеспечивает точный синтез и анализ многообразия информации, которая поступает в кору из внешнего мира.

    Реакция на вещества организма

    Ретикулярная формация чувствительна не только к нервным сигналам, но и к растворенным в крови соединениям. В частности, речь о сахаре, гормонах, углекислоте, кислороде. Особое значение среди этих веществ имеет адреналин. При эмоциональном перенапряжении - при гневе, страхе, состоянии аффекта, ярости - отмечается продолжительное возбуждение формации. Его поддерживает адреналин, усиленно выделяющийся в кровь. Активность комплекса во многом определяют и другие химические соединения. В первую очередь это углекислый газ и кислород. К примеру, если у человека во сне затруднено дыхание, то СО 2 начинает накапливаться в крови. Углекислота активизирует ретикулярную формацию, вследствие чего человек просыпается.

    Заключение

    Клинические исследования и экспериментальные данные, полученные в физиологических лабораториях, показали, что ретикулярная формация прямо связана с возникновением эмоций. Итоги изучения ее строения и задач, которые она реализует, широко применяются в психо- и нейрофармакологии. Было установлено, что вялость, апатия, сонливость или раздражительность, бессонница могут обуславливаться расстройством в работе ретикулярной формации. Этот нейронный комплекс также выполняет определенную роль в процессе возникновения многих патологий ЦНС.

    Ретикулярная формация - совокупность нейронов отростки которых образуют своеобразную сеть в пределах центральной нервной системы.Ретикулярная формация открыта Дейтерсом, изучалась В. Бехтеревым, обнаружена в стволе мозга и спинном мозге. Основную роль выполняет ретикулярная формация ствола мозга. Ретикулярная формация занимает центральную часть на уровне продолговатого мозга, варолиевого моста, среднего и промежуточного мозга. Нейроны ретикулярной формации - клетки разнообразной формы, они имеют длинные ветвящиеся аксоны и длинные неветвящиеся дендриты. Дендриты образуют синапсы на нервных клетках. Некоторые дендриты выходят за пределы ствола мозга и доходят до поясничного отдела спинного мозга - они образуют нисходящий ретикулоспинальный путь.
    Ретикулярная формация имеет связи с различными отделами центральной нервной системы: в ретикулярную формацию поступают импульсы от различных афферентных нейронов. Они поступают по коллатералям других проводящих путей. Ретикулярная формация не имеет непосредственных контактов с афферентной системой; ретикулярная формация имеет 2-х сторонние связи с нейронами спинного мозга - в основном с мотонейронами; с образованиями ствола мозга (с промежуточным и средним мозгом); с мозжечком, с подкорковыми ядрами (базальными ганглиями), с корой больших полушарий.
    В ретикулярной формации ствола мозга различают 2 отдела:

    растральный - ретикулярная формация на уровне промежуточного мозга;

    каудальный - ретикулярная формация продолговатого мозга, моста и среднего мозга.

    Изучены 48 пар ядер ретикулярной формации.

    Функции ретикулярной формации изучены в 40-е гг. XX века Мэгуном и Моруции. Они проводили опыты на кошках, помещая электроды в различные ядра ретикулярной формации.

    Ретикулярная формация обладает нисходящим и восходящим влиянием.

    Нисходящее влияние - на нейроны спинного мозга. Оно (влияние) может быть активирующим и тормозным.

    Восходящее влияние - на нейроны коры головного мозга - тоже тормозное и активизирующее. За счет особенности своих нейронов ретикулярная формация способна изменять функциональное состояние нейронов центральной нервной системы.

    Особенности нейронов ретикулярной формации:

    постоянная спонтанная электрическая активность - обеспечивается гуморальным влиянием и влиянием вышележащих отделов центральной нервной системы. Эта активность не имеет рефлекторного происхождения;

    явление конвергенции - к ретикулярной формации идут импульсы по коллатералям различных проводящих путей. Сходясь к телам одних и тех же нейронов импульсы теряют свою специфичность; импульсы, поступая к нейронам ретикулярной формации, изменяют ее функциональную активность - если нейроны обладают выраженной электрической активностью, то под влиянием афферентных импульсов электрическая активность уменьшается и наоборот, т. е. модулируется активность нейронов ретикулярной формации; у нейронов ретикулярной формации низкий порог раздражения и, как следствие, высокая возбудимость; у нейронов ретикулярной формации высокая чувствительность к действию гуморальных факторов: биологически активных веществ, гормонов (адреналина), избытку СО2, недостатку О2 и т. д.;



    в состав ретикулярной формации входят нейроны с различными медиаторами: адренэргические, холин-, серотонин-, дофаминэргические.

    Ретикулярная формация ствола мозга рассматривается как один из важных интегративных аппаратов мозга. К собственно интегративных функций ретикулярной формации относятся:
    1) контроль над состояниями сна и бодрствования,
    2) мышечный (фазный и тонический) контроль;
    3) обработка информационных сигналов окружающей и внутренней среды организма, которые поступают по разным каналам.
    Ретикулярная формация объединяет различные участки ствола мозга (ретикулярную формацию продолговатого мозга, варолиева моста и среднего мозга). В функциональном отношении в ретикулярной формации разных отделов мозга есть много общего, поэтому целесообразно рассматривать ее как единую структуру. Ретикулярная формация представляет собой диффузное накопление клеток разного вида и величины, которые разделены многими волокнами. Кроме этого, в середине ретикулярной формации выделяют около 40 ядер и пидьядер. Нейроны ретикулярной формации имеют широко разветвленные дендриты и продолговатые аксоны, часть которых делится Т-образно (один отросток направлен вниз, образуя ретикулярной-спинальный путь, а второй - в верхние отделы головного мозга).
    В ретикулярной формации сходится большое количество афферентных путей из других мозговых структур: из коры большого мозга - коллатерали кортико-спинальных (пирамидных) путей, из мозжечка и других структур, а также коллатеральные волокна, которые подходят через ствол мозга, волокна сенсорных систем (зрительные, слуховые и т.д.). Все они заканчиваются синапсами на нейронах ретикулярной формации. Так, благодаря такой организации ретикулярная формация приспособлена к объединению влияний из различных структур мозга и способна влиять на них, то есть выполнять интегративные функции в деятельности ЦНС, определяя в значительной мере общий уровень ее активности.
    Свойства ретикулярных нейронов. Нейроны ретикулярной формации способны к устойчивой фоновой импульсной активности. Большинство из них постоянно генерирует разряды частотой 5-10 Гц. Причиной такой постоянной фоновой активности ретикулярных нейронов являются: во-первых, массивная конвергенция различных афферентных влияний (от рецепторов кожных, мышечных, висцеральных, глаза, уши и др.)., А также воздействий из мозжечка, коры большого мозга, вестибулярных ядер и других мозговых структур на один и тот же ретикулярный нейрон. При этом зачастую в ответ на это возникает возбуждение. Во-вторых, активность ретикулярного нейрона может быть изменена гуморальными факторами (адреналин, ацетилхолин, напряжение С02 в крови, гипоксия и др.).. Эти непрерывные импульсы и химические вещества, содержащиеся в крови, поддерживают деполяризацию мембран ретикулярных нейронов, их способность к устойчивой импульсной активности. В связи с этим ретикулярная формация тоже оказывает на другие мозговые структуры постоянный тонический влияние.
    Характерной особенностью ретикулярной формации также высокая чувствительность ее нейронов в различных физиологически активных веществ. Благодаря этому деятельность ретикулярных нейронов может быть сравнительно легко блокирована фармакологическими препаратами, которые связываются с циторецепторамы мембран этих нейронов. Особенно активными в этом отношении соединения барбитуровой кислоты (барбитураты), аминазин и другие лекарственные препараты, которые широко применяются в медицинской практике.
    Характер неспецифических влияний ретикулярной формации. Ретикулярная формация ствола мозга участвует в регуляции вегетативных функций организма. Однако еще в 1946 г. американский нейрофизиолог Н. W. Megoun и его сотрудники обнаружили, что ретикулярная формация имеет непосредственное отношение к регуляции соматической рефлекторной деятельности. Было доказано, что ретикулярная формация оказывает диффузный неспецифический, нисходящий и восходящий влияние на другие мозговые структуры.
    Нисходящее влияние.

    Восходящий влияние. Исследования Н. W. Megoun, G. Moruzzi (1949) показали, что раздражение ретикулярной формации (заднего, среднего и промежуточного мозга) сказывается на деятельности высших отделов головного мозга, в частности коры большого мозга, обеспечивая переход ее в активный (неепання) состояние. Это положение подтверждается данными многочисленных экспериментальных исследований и клинических наблюдений. Так, если животное находится в состоянии сна, то прямое раздражение ретикулярной формации (особенно варолиева моста) через введенные в эти структуры электроды вызывает поведенческую реакцию пробуждения животного. При этом на ЭЭГ возникает характерное изображение - изменение альфа-ритма бета-ритмом, т.е. фиксируется реакция десинхронизации или активизации. Указанная реакция не ограничивается определенным участком коры большого мозга, а охватывает большие ее массивы, т.е. носит генерализованный характер. При разрушении ретикулярной формации или выключении ее восходящих связей с корой большого мозга животное впадает в соноподибний состояние, не реагирует на световые и обонятельные раздражители, фактически не вступает в контакт с внешним миром. То есть конечный мозг прекращает активно функционировать.
    Таким образом, ретикулярная формация ствола головного мозга выполняет функции восходящей активирующей системы мозга, которая поддерживает на высоком уровне возбудимость нейронов коры большого мозга.
    Кроме ретикулярной формации ствола мозга, в восходящую активирующую систему головного мозга входят также неспецифические ядра таламуса (дим. с. 89), задний гипоталамус, лимбических структуры. Являясь важным интегративным центром, ретикулярная формация, в свою очередь, является частью более глобальных интеграционных систем мозга, которые включают гипоталамо-лимбических и неокортикальных структуры. Именно во взаимодействии с ними и формируется целесообразна поведение, направленное на приспособление организма к меняющимся условиям внешней и внутренней среды.
    Одним из основных проявлений повреждения ретикулярных структур у человека есть потеря сознания. Она бывает при черепно-мозговых травмах, нарушении мозгового кровообращения, опухолях и инфекционных процессах в стволе мозга. Длительность состояния обморока зависит от характера и выраженности нарушений функции ретикулярной активизирующего системы и колеблется от нескольких секунд до многих месяцев. Дисфункция восходящих ретикулярных влияний проявляется тоже потерей бодрости, постоянной патологической сонливостью или частыми приступами засыпания (пароксизмальная гиперсомия), беспокойным ночным сном. Наблюдаются также нарушения (чаще повышении) мышечного тонуса, различные вегетативные изменения, эмоционально-психические расстройства и др.



    45. Физиология мозжечка. Влияние мозжечка на двигательные функции организма. Симптомы поражения мозжечка. Влияние мозжечка на вегетативные функции организма .

    Мозжечок - отдел головного мозга позвоночных, отвечающий за координацию движений, регуляцию равновесия и мышечного тонуса.

    Мозжечок представляет собой мозговой центр, который имеет в высшей степени важное значение для координации и регуляции двигательной активности и поддержания позы. Мозжечок работает главным образом рефлекторно, поддерживая равновесие тела и его ориентацию в пространстве. Также он играет важную роль (особенно у млекопитающих) в локомоции (перемещении в пространстве).

    Соответственно главными функциями мозжечка являются:

    1. координация движений

    2. регуляция равновесия

    3. регуляция мышечного тонуса

    4. мышечная память

    Симптоматика поражения.

    Для поражения мозжечка характерны расстройства статики и координации движений, а также мышечная гипотония. Данная триада характерна как для человека, так и других позвоночных. При этом симптомы поражения мозжечка наиболее детально описаны для человека, так как имеют непосредственное прикладное значение в медицине.

    Поражение мозжечка, прежде всего его червя (архи- и палеоцеребеллума) , ведёт обычно к нарушению статики тела - способности поддержания стабильного положения его центра тяжести, обеспечивающего устойчивость. При расстройстве указанной функции возникает статическая атаксия –нарушение движений проявляющееся в расстройстве их координации. Больной становится неустойчивым, поэтому в положении стоя он стремится широко расставить ноги, сбалансировать руками. Особенно чётко статическая атаксия проявляется в позе Ромберга. Больному предлагается встать, плотно сдвинув ступни, слегка поднять голову и вытянуть вперёд руки. При наличии мозжечковых расстройств больной в этой позе оказывается неустойчивым, тело его раскачивается. Больной может упасть. В случае поражения червя мозжечка больной обычно раскачивается из стороны в сторону и чаще падает назад, при патологии полушария мозжечка его клонит преимущественно в сторону патологического очага. Если расстройство статики выражено умеренно, его легче выявить у больного в так называемой усложнённой или сенсибилизированной позе Ромберга . При этом больному предлагается поставить ступни на одну линию с тем, чтобы носок одной ступни упирался в пятку другой. Оценка устойчивости та же, что и в обычной позе Ромберга.

    В норме, когда человек стоит, мышцы его ног напряжены (реакция опоры ), при угрозе падения в сторону нога его на этой стороне перемещается в том же направлении, а другая нога отрывается от пола (реакция прыжка ). При поражении мозжечка, главным образом его червя, у больного нарушаются реакции опоры и прыжка. Нарушение реакции опоры проявляется неустойчивостью больного в положении стоя, особенно если ноги его при этом близко сдвинуты. Нарушение реакции прыжка приводит к тому, что, если врач, встав позади больного и подстраховывая его, толкает больного в ту или иную сторону, то последний падает при небольшом толчке (симптом толкания ).

    Походка у больного с мозжечковой патологией весьма характерна и носит название «мозжечковой». Больной в связи с неустойчивостью тела идёт неуверенно, широко расставляя ноги, при этом его «бросает» из стороны в сторону, а при поражении полушария мозжечка отклоняется при ходьбе от заданного направления в сторону патологического очага. Особенно отчётлива неустойчивость при поворотах. Во время ходьбы туловище человека избыточно выпрямлено (симптом Тома ). Походка больного с поражением мозжечка во многом напоминает походку пьяного человека.

    Если статическая атаксия оказывается резко выраженной, то больные полностью теряют способность владеть своим телом и не могут не только ходить и стоять, но даже сидеть.

    Преимущественное поражение полушарий мозжечка (неоцеребеллума) ведёт к расстройству его противоинерционных влияний и, в частности, к возникновению динамической атаксии. Она проявляется неловкостью движений конечностей, которая оказывается особенно выраженной при движениях, требующих точности. Для выявления динамической атаксии проводится ряд координационных проб.

    Проба на диадохокинез - больному предлагается закрыть глаза, вытянуть вперёд руки и быстро, ритмично супинировать и пронировать (вращать кнаружи и внутрь) кисти рук. В случае поражения полушария мозжечка движения кисти на стороне патологического процесса оказываются более размашистыми, в результате эта кисть начинает отставать. Тогда говорят о наличии адиадохокинеза.

    Пальце-носовая проба - больной с закрытыми глазами отводит руку, а затем указательным пальцем пытается попасть в кончик своего носа. В случае мозжечковой патологии рука на стороне патологического очага совершает избыточное по объёму движение, в результате чего больной промахивается. Также выявляется характерный для мозжечковой патологии интенционный тремор (дрожание пальцев), выраженность которого нарастает по мере приближения пальца к цели.

    Пяточно-коленная проба - больной, лежащий на спине с закрытыми глазами, поднимает высоко ногу и пытается пяткой попасть в колено другой ноги. При мозжечковой патологии отмечается промахивание, особенно при выполнении пробы гомолатеральной (на той же стороне) поражённому полушарию мозжечка ногой. Если всё-таки пятка достигает колена, то предлагается провести ею, слегка касаясь голени, по гребню большеберцовой кости вниз к голеностопному суставу. При этом в случае мозжечковой патологии пятка всё время соскальзывает то в одну, то в другую сторону.

    Указательная (пальце-пальцевая) проба - больному предлагается попасть указательным пальцем в кончик направленного на него пальца исследующего. В случае мозжечковой патологии отмечается мимопопадание. Палец больного при этом обычно отклоняется в сторону поражённого полушария мозжечка.

    Симптом Тома-Жументи - захватывая предмет, больной несоразмерно широко раздвигает пальцы.

    «Проба с чашей» - больной, держащий в руке стакан с водой, расплёскивает воду.

    Нистагм - подёргивание глазных яблок при взгляде в стороны или вверх. При поражении мозжечка нистагм рассматривается как результат интенционного дрожания глазных яблок. При этом плоскость нистагма совпадает с плоскостью произвольных движений глаз - при взгляде в стороны нистагм горизонтальный, при взгляде вверх - вертикальный.

    Расстройство речи - возникает в результате нарушения координации работы мышц, составляющих речедвигательный аппарат. Речь делается замедленной (брадилалия), теряется её плавность. Она приобретает взрывчатый, скандированный характер (ударения расставляются не по смыслу, а через равномерные интервалы).

    Изменения почерка - почерк больного становится неровным, буквы исковерканными, чрезмерно крупными (мегалография ).

    Симптом Стюарта-Холмса (симптом отсутствия обратного толчка) - исследующий просит больного сгибать супинированное предплечье и в то же время, взяв его руку за запястье, оказывает сопротивление этому движению. Если исследующий при этом неожиданно отпустит руку больного, то больной не сможет вовремя притормозить дальнейшее сгибание руки, и она, сгибаясь по инерции, с силой ударит его в грудь.

    Пронаторный феномен - больному предлагается удерживать вытянутые вперёд руки ладонями вверх. При этом на стороне поражённого полушария мозжечка происходит спонтанная пронация (поворот ладони внутрь и книзу).

    Симптом Гоффа-Шильдера - если больной держит руки вытянутыми вперёд, то на стороне патологического очага рука отводится кнаружи.

    Феномен Дойникова (изменение постуральных рефлексов) - сидящему больному предлагается кисти с разведёнными пальцами положить на свои бёдра вверх ладонями и закрыть глаза. В случае мозжечковой патологии на стороне патологического очага отмечается спонтанное сгибание пальцев и пронация кисти.

    Проба Шильдера - больному предлагают вытянуть руки вперёд, закрыть глаза, поднять одну руку кверху и опустить её до уровня другой руки, а затем сделать наоборот. При поражении мозжечка больной опустит руку ниже вытянутой.

    Мышечная гипотония выявляется при пассивных движениях, производимых исследующим в различных суставах конечностей больного. Поражение червя мозжечка ведёт обычно к диффузной гипотонии мышц, тогда как при поражении полушария мозжечка снижение мышечного тонуса отмечается на стороне патологического очага.

    Маятникообразные рефлексы обусловлены также гипотонией. При исследовании коленного рефлекса в положении сидя со свободно свисающими с кушетки ногами после удара молоточком наблюдается несколько «качательных» движений голени.

    Асинергии - выпадение физиологических синергичных (содружественных) движений при сложных двигательных актах.

    Наиболее распространены следующие пробы на асинергию:

    Больному, стоящему со сдвинутыми ногами, предлагают перегнуться назад. В норме одновременно с запрокидыванием головы ноги синергично сгибаются в коленных суставах, что позволяет сохранить устойчивость тела. При мозжечковой патологии содружественное движение в коленных суставах отсутствует и, запрокидывая голову назад, больной сразу же теряет равновесие и падает в том же направлении.

    Больному, стоящему со сдвинутыми ногами, предлагается опереться на ладони врача, который затем неожиданно их убирает. При наличии у больного мозжечковой асинергии он падает вперёд (симптом Ожеховского ). В норме же происходит лёгкое отклонение корпуса назад или же человек сохраняет неподвижность.

    Больному, лежащему на спине на твёрдой постели без подушки, с ногами, раздвинутыми на ширину надплечий, предлагают скрестить руки на груди и затем сесть. Ввиду отсутствия содружественных сокращений ягодичных мышц больной с мозжечковой патологией не может фиксировать ноги и таз к площади опоры, в результате сесть ему не удаётся, при этом ноги больного, отрываясь от постели, поднимаются вверх (асинергия по Бабинскому).

    Влияние мозжечка на вегетативные функции. Мозжечок оказывает угнетающее и стимулирующее влияние на работу сердечно­сосудистой, дыхательной, пищеварительной и других систем организма. В результате двойственного влияния мозжечок стабилизи­рует, оптимизирует функции систем организма.

    Сердечно-сосудистая система реагирует на раздражение мозжечка либо усилением (например, прессорные рефлексы), либо снижением этой реакции. Направленность реакции зависит от фона, на котором она вызывается. При раздражении мозжечка высокое кровяное давление снижается, а исходное низкое - повышается. Раздражение мозжечка на фоне учащенного дыхания (гиперпноэ) снижает частоту дыхания. При этом одностороннее раздражение мозжечка вызывает на своей стороне снижение, а на противоположной - повышение тонуса дыхательных мышц.

    Удаление или повреждение мозжечка приводит к уменьшению тонуса мускулатуры кишечника, из-за низкого тонуса нарушается эвакуация содержимого желудка и кишечника. Нарушается также нормальная динамика секреции и всасывания в желудке и кишеч­нике.

    Обменные процессы при повреждении мозжечка идут более интенсивно, гипергликемическая реакция (увеличение количества глюкозы в крови) на введение глюкозы в кровь или на прием ее с пищей возрастает и сохраняется дольше, чем в норме, ухудшается аппетит, наблюдается исхудание, замедляется заживление ран, волокна скелетных мышц подвергаются жировому перерождению.

    При повреждении мозжечка нарушается генеративная функция, что проявляется в нарушении последовательности процессов родовой деятельности. При возбуждении или повреждении мозжечка мышечные сокращения, сосудистый тонус, обмен веществ и т. д. реагируют так же, как при активации или повреждении симпатического отдела вегетативной нервной системы.

    Таким образом, мозжечок принимает участие в различных видах деятельности организма: моторной, соматической, вегетативной, сенсорной, интегративной и т. д. Однако эти функции мозжечок реализует через другие структуры центральной нервной системы. Мозжечок выполняет функцию оптимизации отношений между различными отделами нервной системы, что реализуется, с одной стороны, активацией отдельных центров, с другой - удержанием этой активности в определенных рамках возбуждения, лабильности и т. д. После частичного повреждения мозжечка могут сохраняться все функции организма, но сами функции, порядок их реализации, количественное соответствие потребностям трофики организма на­рушаются.

    Таким образом, мозжечок играет первостепенную роль в регуляции позы и движений. Многие движения могут оптимально осуществляться только при участии мозжечка. В то же время он не принадлежит к числу жизненно важных органов, поскольку у людей, рожденных без мозжечка, отсутствуют серьезные двигательные нарушения. Мозжечок состоит из двух полушарий и имеет кору из серого вещества. В коре находятся клетки с многочисленными дендритами, получающие импульсы из многих источников, связанных с мышечной деятельностью: проприоцепторовсухожилий, суставов и мышц, а также от моторных центров коры. Поэтому мозжечок интегрирует информацию и координирует работу всех мышц, участвующих в движении или сохранении позы. При повреждении мозжечка движения становятся резкими, а не плавными. Мозжечок абсолютно необходим для координации быстрых движений таких, как бег, набор текста на клавиатуре, разговор.

    Все функции мозжечка осуществляются без участия коры больших полушарий, т.е. бессознательно. Однако на ранних этапах онтогенеза или научения они могут включать элементы тренировки. В это время кора управляет мозжечком, и необходимы определенные волевые усилия для реализации двигательных актов. Например, это имеет место при обучении езде на велосипеде, плаванию и т.д. После же выработки и закрепления двигательных актов мозжечок берет на себя функцию контроля соответствующих рефлексов.

    43. Нисходящие влияния ретикулярной формации. Её участие в регуляции мышечного тонуса.

    Нисходящие влияния. В Р. ф. различают области, которые оказывают тормозящие и облегчающие влияния на двигательные реакцииспинного мозга.

    При раздражении ретикулярной формации заднего мозга (особенно гигантоклеточной ядра продолговатого мозга и ретикулярного ядра моста, где принимают лочаток ретикулоспинальному пути), возникает торможение всех спинальных двигательных центров (сгибательных и разгибательных). Это торможение очень глубокое и продолжительное. Такое положение в естественных условиях может наблюдаться при глубоком сне.
    Наряду с диффузными тормозящими влияниями, при раздражении определенных участков ретикулярной формации выявляется диффузный
    влияние, которое облегчает деятельность спинальной двигательной системы.
    Ретикулярная формация играет важную роль в регуляции деятельности мышечных веретен, изменяя частоту разрядов, поступающие гамма-эфферентными волокнами к мышцам. Таким образом модулируется обратная импульсация в них.

    Резюме: биологической основой внимания является ориентировочный рефлекс.

    И.П.Павлов описал ориентировочный рефлекс как безусловный рефлекс, выступающий основой непроизвольного внимания. Сами же процессы внимания в его системе объясняются, прежде всего, за счет взаимодействия возбуждения и торможения, протекающих в коре больших полушарий мозга. Когда человек внимателен к чему-либо, это означает, что у него в коре головного мозга возникает очаг возбуждения. В это же время все остальные участки мозга находятся в состоянии торможения. Поэтому человек, сосредоточенный на чем-либо одном, может ничего другого в этот момент не замечать. Но эти представления о мозговых взаимоотношениях имеют слишком абстрактный вид. Чтобы в этом убедиться, стоит сравнить этот подход с подходом А.Р.Лурия.

    Учение А.Р.Лурия. В учении А.Р.Лурия о мозговой локализации высших психических функций человека дана структурно-функциональная модель мозга, в которой каждая высшая психическая функция выполняется за счет совместной работы трех мозговых блоков (Лурия А.Р. Основы нейропсихологии. М., 1973). Первый блок (блок регуляции уровня общей и избирательной активации мозга) образован неспецифическими структурами ретикулярной формации ствола мозга, структурами среднего мозга, диэнцефальных отделов ствола, лимбической системы, медиобазальными отделами коры лобных и височных долей мозга. Второй блок (блок приема, переработки и хранения модально-специфической информации) образован основными анализаторными системами (зрительной, слуховой, кожно-кинестетической), корковые зоны которых расположены в задних отделах больших полушарий. Третий блок (блок программирования, регуляции и контроля за протеканием психической функции, обеспечивающий формирование мотивов деятельности и контроль за результатами деятельности посредством большого числа двусторонних связей с корковыми и подкорковыми структурами) образован моторными, премоторными и префронтальными отделами коры больших полушарий. При этом важна последовательность работы этих структур: на первом этапе происходит побуждение к деятельности, основой которой выступает, в том числе, активизация ретикулярной формации.

    Роль ретикулярной формации. Способность настораживаться, реагируя иногда на очень незначительное изменение в окружающей среде, обеспечивается расположенными в больших полушариях мозга сетями нервных путей, соединяющих ретикулярную формацию (совокупность структур головного мозга, регулирующих уровень возбудимости) с разными участками коры больших полушарий. Нервные импульсы, идущие по этой сети, возникают вместе с сигналами от органов чувств и возбуждают кору, приводя ее в состояние готовности реагировать на ожидаемые в дальнейшем раздражения. Таким образом, ретикулярная формация с ее восходящими и нисходящими волокнами вместе с органами чувств обуславливает появление ориентировочного (или ориентировочно-исследовательский) рефлекса, являясь первичной физиологической основой внимания.



    Еще в 1935 г. Ф.Бремер провел сравнение электроэнцефалограмм при двух типах перерезки ствола мозга: а) на уровне шейных позвонков (препарат, называемый «encephale isole» - нижние отделы ствола) и б) на уровне моста (препарат «cerveau isole» - верхние отделы ствола). В первом случае записи биоэлектрической активности не отличались от ЭЭГ нормальных животных, тогда как во втором случае в ЭЭГ постоянно присутствовали медленные волны большой амплитуды, характерные для состояния сна. В препаратах, называемых «cerveau isole», коры достигают только зрительные и обонятельные афферентные раздражения, поскольку сигналы, передаваемые другими черепномозговыми нервами (в частности, слуховым и тройничным), оказываются перерезанными. Отсюда Ф.Бремер сделал вывод, что, когда центральная нервная система лишается большей части стимуляции, исходящей из внешнего мира, наступает сон; соответственно поддержание состояния бодрствования является результатом активирующего воздействия, оказываемого ощущениями. Как показал затем Д.Линдсли, в этих случаях сигналы, вызываемые сенсорными раздражителями, продолжают доходить до коры, но электрические ответы коры на эти сигналы становятся лишь кратковременными и не вызывают стойких изменений. Это показало, что для возникновения стойких процессов возбуждения, характеризующих состояние бодрствования, одного притока сенсорных импульсов недостаточно, необходимо поддерживающее влияние активирующей ретикулярной системы.

    Эти представления о процессах общей активации получили дальнейшее развитие в работах Г.Моруцци и Г.Мэгуна (Moruzzi G., Magoun H.W. Brain stem reticular formation and activation of the EEG // EEG and Clinical Neurophysiology. 1949, 1 - «Ретикулярная формация мозгового ствола и реакция активации в ЭЭГ»). Они провели эксперименты на основе электростимуляции мозга, выявившие функции неспецифической системы мозга – ретикулярной формации ствола мозга, относимой, наряду с лимбической системой, к «модулирующим» системам мозга. Основной функцией этих систем является регуляция функциональных состояний организма. Исследователи не выключали, а раздражали восходящую ретикулярную формацию имплантированными в нее электродами, показали, что такое раздражение ретикулярной формации приводит к пробуждению животного, а дальнейшее усиление этих раздражений - к возникновению выраженных эффективных реакций животного. Оказалось, что при раздражении ее электрическим током, происходит реакция активации, а при удалении этой структуры наступает кома. Эти структуры фактически ответственны за поддержание состояния бодрствования, причем степень их активности сама отчасти зависит от сенсорных влияний. Однако вопреки тому, что предполагал Бремер, активирующее влияние сенсорики проявляется не в форме прямой активации мозговой коры специфическими сигналами; она воздействует прежде всего на ретикулярную формацию, активность которой в свою очередь регулирует функциональное состояние коры, двигательных и вегетативных центров. Было установлено, что кортикальный сон препаратов «cerveau isole» Бремера вызывался не перерезкой специфических сенсорных путей к коре, а устранением влияний, оказываемых на нее ретикулярной формацией.

    Также в опытах Д.Линдсли было выявлено, что раздражение стволовых ядер восходящей активирующей ретикулярной формации существенно понижает пороги чувствительности (иначе говоря, обостряют чувствительность) животного и позволяет осуществлять тонкие дифференцировки (например, дифференцировку изображения конуса от изображения треугольника), которые ранее были недоступны животному.

    Нейроанатомия ретикулярной формации. Первоначально считалось, что к неспецифической системе мозга, которая выполняет задачу диффузной и генерализованной активации коры больших полушарий, относятся лишь сетевидные образования ствола мозга. Сейчас принято, что восходящая неспецифическая активирующая система занимает место от продолговатого мозга до зрительного бугра (таламуса).

    Ретикулярная (от лат. слова reticulum – сеточка) формация состоит из многочисленных, не имеющих чётких границ групп нейронов. Подобное скопление нервных клеток по своему принципу организации напоминает нервные сети кишечнополостных. Их длинные и сильно ветвящиеся отростки формируют сети вокруг серого вещества спинного мозга и в дорсальной части ствола мозга. Впервые описана в середине XIX века, а название этой структуре дал О.Дейтерс. В ретикулярной формации ствола мозга выделяют свыше 100 ядер, которые на протяжении от спинного мозга до промежуточного мозга объединяются в три основные группы. 1) Срединная группа ядер концентрируется вокруг средней линии, в основном, в области шва моста и продолговатого мозга (ядра шва), которые образованы волокнами чувствительных проводящих путей, идущих от спинного мозга, ядер тройничного нерва и формирующих перекрест вдоль средней линии. 2) Медиальная группа ядер расположена по сторонам от предыдущей: к ней относятся медиальное крупноклеточное ядро, голубоватое место, нейроны центрального серого вещества среднего мозга и др. 3) Латеральная группа ядер находится латеральнее медиальной и включает латеральное ретикулярное ядро, парабрахиальные ядра и др.

    Нейроны ретикулярной формации имеют различную величину: в срединных и медиальных ядрах находятся крупные нервные клетки, которые формируют длинные афферентные и эфферентные проводящие пути, а в латеральных - средние и мелкие нейроны, которые являются, в основном, ассоциативными нейронами.

    Большинство нейронов ретикулярной формации в качестве передатчика нервного импульса используют пептиды (энкефалины, нейротензин и т.д.), но также широко представлены и моноамины. Ядра шва содержат серотонинергические нейроны, а голубоватого места – норадренергические.

    Связи ретикулярной формации подразделяются на афферентные и эфферентные. На ее нейронах заканчиваются афферентные волокна: от спинного мозга, следующие по ответвлениям всех чувствительных проводящих путей, а также по спиноретикулярному тракту, от ядер черепных нервов в составе коллатералей ядерно-корковых, слухового и зрительных путей, от мозжечка в составе мозжечково-ретикулярного пути, от ядер таламуса, субталамуса и гипоталамуса, полосатого тела, структур лимбической системы, различных участков коры большого мозга, в том числе и по ответвлениям корково-спинномозговых и корково-ядерных путей. Нейроны ретикулярной формации имеют длинные тонкие эфферентные отростки, делящиеся на восходящую и нисходящую ветви, которые направляются к различным отделам головного и спинного мозга: моторным нейронам передних рогов спинного мозга и двигательным ядрам черепных нервов ствола мозга в составе ретикуло-ядерных и ретикуло-мозжечковых путей, мозжечку, красному ядру, чёрному веществу и ядрам пластинки крыши спинного мозга, ретикулярным ядрам таламуса, ядрам гипоталамуса, опосредованно, через ядра промежуточного мозга к полосатому телу, лимбической системе и новой коре.

    С помощью ретикулярной формации двигательные и вегетативные ядра ствола мозга объединяются в функциональные центры, регулирующие многие сложные формы поведения: циркуляторную, дыхательную, кашлевую, глотательную, рвотную и др. Ретикулярная формация обеспечивает: 1) Поддержание состояния бодрствования. Увеличивая или уменьшая приток сенсорной информации к коре больших полушарий и подкорковым структурам, ретикулярная формация играет роль регулятора уровня сознания (цикл сон/бодрствование). Регулируя медиаторный обмен нейронов ретикулярной формации или модулируя активность их рецепторов с помощью определённых лекарственных препаратов, можно активизировать деятельность коры больших полушарий или наоборот - добиться сна. Например, кофеин, содержащийся в кофе или чае, стимулирует нервные клетки ретикулярной формации. Наоборот, среди психотропных средств (от греч. psyche - душа + tropos - направление) есть так называемые нейролептики, которые, блокируя ретикулярную формацию мозга и снижая скорость проведения возбуждения, действуют успокаивающим образом (подавляют бред, галлюцинации, чувство страха, агрессивность, психомоторное возбуждение). 2) Контроль рефлекторной деятельности путём стимуляции или торможения мотонейронов передних рогов серого вещества спинного мозга и двигательных ядер черепных нервов ствола мозга. 3) Объединение группы нейронов различных отделов головного и спинного мозга, благодаря чему возможно выполнение сложных рефлекторных актов: глотания, жевания, кашля, рвоты и т.д. 4) Обеспечение вегетативной регуляции за счёт координации эфферентных и афферентных сигналов в соответствующих центрах ствола мозга. Так, сосудодвигательный и дыхательный центры объединяют группы нейронов, ответственных за регуляцию дыхания и кровообращения. 5) Участие в эмоциональном восприятии чувствительных сигналов путём увеличения или уменьшения поступления афферентных импульсов к лимбической системе.

    Избирательный характер протекания психических процессов, что характерно для внимания, обеспечивается лишь бодрственным состоянием коры с оптимальным уровнем возбудимости. Этот бодрственный уровень достигается за счет работы механизмов связи верхнего ствола с корой головного мозга и, прежде всего, с работой восходящей активирующей ретикулярной формацией. Именно эта восходящая активирующая ретикулярная формация доносит до коры, сохраняя ее в состоянии бодрствования, импульсы, связанные с обменными процессами организма, влечениями, с экстерорецепторами, доводящими информацию из внешнего мира. Сначала этот поток идет в верхние отделы ствола и ядра зрительного бугра, а затем – в кору головного мозга.

    Обеспечение оптимального тонуса и бодрственного состояния коры осуществляется, однако, не только восходящей активирующей ретикулярной формацией. С ней тесно связан и аппарат нисходящей системы, волокна которой начинаются в коре головного мозга (прежде всего в медиальных и медиобазальных отделах лобных и височных долей) и направляются как к ядрам ствола, так и к двигательным ядрам спинного мозга. Работа нисходящей ретикулярной формации очень важна тем, что с ее помощью до ядер мозгового ствола доводятся те формы возбуждения, которые первоначально возникают в коре головного мозга и являются продуктом высших форм сознательной деятельности человека с ее сложными познавательными процессами и сложными программами прижизненно формируемых действий.

    Взаимодействие обеих составных частей активирующей ретикулярной системы и обеспечивает сложнейшие формы саморегуляции активных состояний мозга, меняя их под воздействием как элементарных (биологических), так и сложных (социальных по происхождению) форм стимуляции.



    Последние материалы раздела:

    Важность Патриотического Воспитания Через Детские Песни
    Важность Патриотического Воспитания Через Детские Песни

    Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

    Изменение вида звездного неба в течение суток
    Изменение вида звездного неба в течение суток

    Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

    Развитие критического мышления: технологии и методики
    Развитие критического мышления: технологии и методики

    Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...