Алгебраический метод решения. Алгебраические методы синтеза

При решении задач на построение алгебраическим методом:

1) составляют уравнение или систему уравнений по условию задачи;

2) решают полученное уравнение или систему и находят нужное неизвестное;

3) осуществляют геометрическое построение по полученной формуле.

Прежде чем переходить к примерам, разберем основные задачи, применяемые при алгебраическом методе (нумерация является продолжением нумерации основных задач). Укажем только решение этих задач, а обоснование предоставляется читателю.

Задача 13. Даны отрезки а и b. Построить отрезок

Решение . Строим прямой угол с вершиной О (рис.25). На его сторонах откладываем отрезки ОА=a и ОВ=b . Тогда отрезок АВ является искомым.

Задача 14. Даны отрезки а и b. Построить отрезок

Решение . Строим прямой угол с вершиной в точке О (рис.26). На одной из его сторон откладываем отрезок ОВ=b . Проводим окружность с центром в точке В и радиуса a . Она пересечет вторую сторону угла в точке А. Отрезок ОА является искомым.

Задача 15. Даны отрезки а и b. Построить отрезок

Решение . На отрезке АВ=a+b , как на диаметре строим окружность. Пусть C такая точка на АВ, что АС=a . В точке С восстанавливаем перпендикуляр к АВ. Он пересечет окружность в точке Д. Отрезок СД искомый (рис.27). Он называется средним геометрическим отрезков a и b .

Задача 16. Даны отрезки а , b и с. Построить отрезок

Решение . Строим произвольный угол с вершиной в точке О (рис.28). На одной из его сторон откладываем последовательно отрезки ОА=a и АС=c , а на второй ОВ=b . Через точку С проводим прямую, параллельную АВ. Она пересечет вторую сторону угла в точке Д. Отрезок ВД искомый. Его называют четвертым пропорциональным отрезком.

ПРИМЕР 20. Даны отрезки a,b и с. Построить отрезок

Построение .

1) строим отрезок ;

a,a,1;

3) строим отрезок

ПРИМЕР 14. Даны отрезки a и b. Построить отрезок

Построение .

1) строим отрезок , как катет прямоугольного треугольника с гипотенузой 2b и вторым катетом b ;

2) строим отрезок , как четвертый пропорциональный отрезков a,a,1;

3) строим отрезок

ПРИМЕР 24. Даны окружность и точка А вне ее. Из этой точки провести секущую так, чтобы она делилась окружностью пополам.

Анализ . Зная положение точки относительно круга, можно построить касательную, длина которой известна и пусть она равна a . Пусть АС – секущая и В – ее середина, АВ=ВС=x . По формуле зависимости секущей и касательной, проведенной из одной точки, имеем . Отсюда Полученный отрезок представляет собой половину гипотенузы равнобедренного прямоугольного треугольника с катетом a (рис.29).


Построение . Найдем длину касательной, проведенной из точки А к данной окружности. Затем построим равнобедренный прямоугольный треугольник с катетом a и его гипотенузу разделим пополам. Получим отрезок x . Построим окружность с центром в точке А и радиусом, равным x . Она пересечет данную окружность в точке В. Построим луч АВ, он и даст нам искомую секущую.

Доказательство следует из построения.

Анализ . Количество решений задачи зависит от длины отрезка АО, где О – центр данной окружности. Пусть АО пересечет данную окружность в точке С и R – радиус данной окружности.

1) Если x+Rто задача имеет два решения;

2) Если x+R=AO, то задача имеет одно решение;

3) Если x+R>AO, то задача не имеет решения.

Одна из основных целей при обучении математике – научить школьников правильно и хорошо решать задачи.

Учитель математики должен в совершенстве владеть рассмотренными нами основными общими методами решения математических задач и постепенно вооружать ими своих учеников. Без этого невозможен успех в обучении математике.

Известный американский математик Дж. Пойа, посвятил проблеме поиска решения задачи специальное исследование (Дж. Пойа Как решать задачу. Учпедгиз, 1961). Особое внимание в этом труде он уделяет анализу и синтезу при поиске решения.

В конце книги он приводит таблицу, которой следует придерживаться при отыскании решения задачи. Приведем ее краткий вариант.

1. Понять предложенную задачу.

Что гласит задача? Что дано? Что нужно найти? Определено ли неизвестное данными задачи? Или они недостаточны, или же чрезмерны?

2. Найти путь от неизвестного к данным, если нужно, рассмотреть промежуточные задачи («анализ»). Составить план решения.

Сформулировать отношения между неизвестным и данными. Преобразовать (или ввести новое) неизвестное, сближая его с данными. Преобразовать данные, получив новые элементы, более близкие к искомому. Вспомнить решение аналогичной задачи. Все ли данные использованы? Нельзя ли сформулировать задачу иначе? Обобщить. Рассмотреть частные случаи.

3. Реализовать найденную идею решения («синтез»).

Обосновать правильность каждого шага.

4. Решение проверить и оценить критически.

Правдоподобен ли результат? Почему? При возможности сделать проверку. Нельзя ли решить иначе, более прямым путем?

При изучении и восприятии задачи, каждый ученик должен знать и постоянно соблюдать разумное и обязательное правило : не приступать к решению задачи или поиску пути ее решения до тех пор, пока не убедился, что текст задачи полностью изучен и ясно понят, что осмыслены все данные и требования задачи, осознан характер функциональных зависимостей между входящими в задачу величинами, искомой и известными. Подобные методические правила постигаются учащимися в процессе практического их применения. Задачу со сложным текстом рекомендуется внимательно читать несколько раз. При фронтальной работе с классом учитель с помощью вопросов проверяет детальность и точность, полноту и сознательность восприятия задачи каждым учеником.

Главным этапом процесса решения задачи является поиск пути решения. Здесь наиболее эффективны различные аналитические методы и приемы, которыми школьники должны постепенно овладевать. Для этой цели потребуется постоянное внимание и усилия со стороны учителя, поскольку учащиеся обычно склонны сразу применять синтетический метод, мало пригодный для отыскания неизвестного пути решения задачи. Если же трудности встретятся и при аналитическом поиске, то ученик может попытаться вести свой поиск и по встречному, синтетическому направлению с целью сближения тех и других результатов.

Облегчению поиска пути служит наглядное , предметно реальное представление условия задачи, описанных в ней процессов, различное использование графических средств, схем с умело расставленными данными, применение вспомогательных и частных эвристических приемов.

Одной из важнейших целей, стоящих перед решением задач в курсе математики, является обучение школьников решать задачи самостоятельно. Для достижения этой цели необходимо учить поискам пути решения задачи. Опытный учитель не спешит сообщить ученикам решение задачи, а попытается вместе с учениками отыскать путь ее решения. При этом школьники приобретут определенный опыт как в решении, так и в его поиске.

Чертеж геометрической фигуры к решаемой задаче должен быть правильным, полностью соответствовать как условию задачи, так и следствиям из него. Можно рекомендовать следующее правило: чертеж делать после того, как имеется уже четкое представление о заданной фигуре, о связях между ее элементами, вытекающими из условия задачи. Конечно, сразу нарисовать правильный и точный чертеж не всегда удается, поэтому нужно учить учеников делать хорошие чертежи, постепенно используя условия задачи, отражая их на чертеже и переделывать чертеж, если данные задачи не точно на нем отражены. Также следует приучать школьников переделывать чертеж, если в процессе решения открылись новые данные, которые отсутствуют на чертеже

Учащиеся должны знать, что во избежание ошибок чертеж должен быть правильным, однако все, что используется в решении, кроме того, что известно по условию задачи, должно быть доказано логически с использованием теории предмета.

Еще одним из требований к учителю, является то, что нужно обучать учащихся поиску нескольких различных способов решения задачи (если они существуют). Это позволит развить в большем объеме логику мышления, позволят школьнику увидеть связь различных разделов математики, ее единство, научит поиску рациональных способов решения.

Учителю также необходимо постоянно совершенствоваться в плане решения задач. Не стоит останавливаться на задачах из учебника. Необходимо постоянно читать методическую литературу, статьи в методических журналах, посвященные методам решения задач. Учителю также нужно стремиться к созданию своего «банка задач», где будут собраны интересные с его точки зрения задачи, которые позволят разнообразить процесс обучения, развить интерес к предмету, а также помогут занять тех учащихся на уроке, которые уже научились решать типовые задачи.

Интеграция алгебраических и геометрических методов в решении задач

Одной из актуальных проблем школьного математического образования на современном этапе является проблема интеграции математических знаний, формирования целостных представлений учащихся о математике как науке. Особенно важно решение данной проблемы для основной школы, где изучаются две математические дисциплины: алгебра и геометрия.

Понятие «интеграция» [лат. integratio - восстановление, восполнение; integer - целый] трактуется как восстановление, объединение в целое каких-либо частей, элементов; как состояние связанности в целое отдельных дифференцированных частей, а также как процесс, ведущий к такому состоянию. В обучении интеграцию часто понимают как взаимовлияние, взаимопроникновение и взаимосвязь содержания различных учебных дисциплин.

Так как в обучении математике основным видом деятельности учащихся является решение задач, то целесообразно интеграцию алгебры и геометрии осуществлять по линии их методов. Алгебраический метод (по отношению к элементарной математике) трактуется как метод, заключающийся в употреблении букв и буквенных выражений, над которыми по определенным правилам производятся преобразования. Его называют еще методом буквенных вычислений.

Геометрический метод характеризуют как метод, идущий от наглядных представлений. Существенными признаками этого понятия являются геометрические (наглядные) представления и законы геометрии, в которых отражены свойства геометрических фигур.

Если за основу классификации алгебраических и геометрических методов принять систему знаний, на которых основан метод, то получим следующие методы.

1. Алгебраические: метод тождественных преобразований; метод уравнений и неравенств; функциональный метод; векторный метод; координатный метод.

2. Геометрические (ограничимся планиметрией): метод длин; метод треугольников; метод параллельных прямых; метод соотношений между сторонами и углами треугольника; метод четырехугольников; метод площадей; метод подобия треугольников; тригонометрический метод (метод, основанный на соотношениях между сторонами и углами треугольника, выраженными через тригонометрические функции); метод геометрических преобразований; графический метод (хотя данный метод изучается в курсе алгебры, но он основан на использовании геометрических представлений функций и связанных с ними законов геометрии).

Будем считать, что каждый метод состоит из определенных приемов, а каждый прием - из действий. Под интеграцией алгебраического и геометрического методов будем понимать процесс сочетания данных методов или связи их приемов в один метод.

В области обучения решению задач интеграция методов предполагает параллельное (на одном уроке) решение задачи разными методами (алгебраическими и геометрическими) или решение алгебраической задачи геометрическим методом, а геометрической задачи - алгебраическим методом. Средством интеграции могут служить специальные блоки задач, в которые входят как алгебраические, так и геометрические задачи. Приведем примеры.

7 класс

Здесь можно использовать текстовые задачи из курса алгебры и геометрические задачи, решаемые методом уравнений.

Задача 1 . В одном элеваторе было зерна в два раза больше, чем в другом. Из первого элеватора вывезли 750 т зерна, во второй элеватор привезли 350 т, после чего в обоих элеваторах зерна стало поровну. Сколько зерна было первоначально в каждом элеваторе?

Для решения этой задачи используем метод уравнений и неравенств из алгебры и метод длин из геометрии, основанный на свойствах длины отрезка.

Алгебраический метод . Пусть x т зерна было первоначально во втором элеваторе, тогда 2x т зерна было первоначально в первом элеваторе; (2x – 750) т зерна осталось в первом элеваторе, а (x + 350) т зерна стало во втором элеваторе. Так как в обоих элеваторах зерна стало поровну, то можно составить уравнение

2x – 750 = x + 350, откуда x = 1100, 2x = 2 · 1100 = 2200.

Ответ: 2200 т зерна было в первом элеваторе и 1100 т - во втором.

Геометрический метод. Решаем данную задачу с помощью линейной диаграммы. Линейная диаграмма - это, обычно, отрезок или несколько отрезков, длины которых соответствуют численным значениям рассматриваемой величины. Задачу решаем по этапам.

1-й этап. Построение линейной диаграммы. После прочтения текста задачи ученики обсуждают следующие вопросы (возможна помощь учителя).

1. Сколько ситуаций рассматривается в задаче?

[Две: первоначальная и конечная.]

2. С какой ситуации следует начать построение линейной диаграммы?

[Можно начать построение с первой ситуации и от нее перейти ко второй, а можно
сначала построить линейную диаграмму конечной ситуации и перейти от нее к
первоначальной. Рассмотрим первый вариант построения линейной диаграммы.]

3. Что представляет собой линейная диаграмма первоначальной ситуации?

[Два отрезка, один из которых в два раза больше другого. Первый отрезок изображает
количество зерна в первом элеваторе, а второй - во втором элеваторе.]

После этого учащиеся строят диаграмму первоначальной ситуации. Затем обсуждение продолжается.

4. Как перейти на диаграмме от первой ситуации ко второй?

[Надо из первого отрезка вычесть отрезок, условно изображающий 750 т, а
ко второму отрезку прибавить отрезок, изображающий 350 т.]

5. Эти отрезки берутся произвольно?

[Нет, следует учитывать, что вновь полученные отрезки должны
быть равны, так как на обоих элеваторах зерна стало поровну.]

Выполнив действия с отрезками, учащиеся получают диаграмму конечной ситуации. Первый этап работы над задачей заканчивается обозначением отрезков и оформлением записей на чертеже.

2-й этап. Решение получившейся геометрической задачи. Построенная линейная диаграмма превращает алгебраическую задачу в геометрическую, решение которой основано на использовании свойств длины отрезка, а именно:

1) равные отрезки имеют равные длины; меньший отрезок имеет меньшую длину;
2) если точка делит отрезок на два отрезка, то длина всего отрезка равна сумме длин этих двух отрезков.

Решение учащиеся записывают на геометрическом языке, используя обозначения отрезков, а результат переводят на естественный язык. В данном случае этот перевод осуществляется автоматически за счет переноса терминологии (3-й этап). Вначале следует делать подробную запись решения с указанием того, что изображает каждый отрезок. Постепенно можно переходить к краткой записи, так как некоторые факты видны на рисунке.

Приведем подробную запись решения задачи 1.

Решение. 1-й этап. Пусть отрезок AB изображает количество зерна в первом элеваторе (рис. 1), тогда отрезок будет изображать количество зерна во втором элеваторе.

AB = 2CD - первоначальное распределение зерна между элеваторами. Из первого элеватора вывезли 750 т зерна, а во второй элеватор привезли 350 т, поэтому вычтем из отрезка AB отрезок BK, условно изображающий 750 т, а к отрезку CD прибавим отрезок DE, изображающий 350 т.

2-й этап. Способ I. CD = AF = FB (по построению),

FB = FK + KB = 350 + 750 = 1100, значит, CD = 1100, AB = 1100 · 2 = 2200.

3-й этап. Ответ: в первом элеваторе было 2200 т зерна, во втором 1100 т.

Учащиеся могут сделать краткую запись решения задачи, например, она может быть такой.

Решение. AB = 2CD - первоначальное распределение зерна между двумя элеваторами; BK = 750, DE = 350.

AK = CE - конечное распределение зерна между элеваторами.

CD = AF = FB (по построению), FB = 350 + 750 = 1100, тогда

CD = 1100, AB = 1100 · 2 = 2200.

Ответ: 2200 т, 1100 т.

Линейная диаграмма позволяет составить различные уравнения к задаче, которые учащиеся не могут записать без чертежа, то есть появляется возможность решить задачу алгебраически разными способами. Приведем некоторые из них.

Способ II. Пусть AK = CE = x, тогда, так как AB = 2CD, получим x + 750 = 2(x – 350),

откуда x = 1450, CD = 1450 – 350 = 1100, AB = 1100 · 2 = 2200.

Ответ: 2200 т, 1100 т.

Способ III. Пусть CD = x, тогда AB = 2x. Так как AK = CE, то имеем 2x – 750 = x + 350

(такое же уравнение получается при решении задачи без диаграммы.)

Линейная диаграмма позволяет не только решить задачу без уравнения, но часто ответ можно «усмотреть» прямо на чертеже.

Задача 2 . На одном садовом участке в пять раз больше кустов малины, чем на другом. После того как с первого участка пересадили на второй 22 куста, то на обоих участках кустов малины стало поровну. Сколько кустов малины было на каждом участке?

Решение. 1-й этап. Пусть отрезок AB изображает количество кустов малины на первом участке, а отрезок CD - количество кустов малины на втором участке (рис. 2). AB и 5CD - первоначальное распределение кустов малины между участками.

Так как на обоих участках кустов малины стало поровну, то разделим отрезок BE пополам (BF = FE) и из отрезка AB вычтем отрезок BF, а к отрезку CD прибавим отрезок DK (DK = BF). AF = CK - конечное распределение кустов малины между участками.

2-й этап. По условию с первого участка пересадили на второй 22 куста, значит, BF = 22 = 2CD, тогда CD = 11, AB = 5CD = 5 · 11 = 55.

Ответ: на первом участке было 55 кустов малины, на втором 11 кустов.

Одно из преимуществ использования геометрического метода при решении рассмотренных задач состоит в наглядности. Построение линейной диаграммы и переход от одного ее состояния к другому позволяет учащимся лучше воспринимать ситуации, описанные в задаче и, следовательно, помогает найти пути ее решения. Иногда ответ почти очевиден на чертеже, это дает возможность использовать линейную диаграмму для проверки решения задачи, которое выполнено алгебраическим методом без чертежа.

На мотивационном этапе формирования геометрического метода целесообразно предлагать решить задачу двумя методами: алгебраическим и геометрическим. Задачу следует подбирать таким образом, чтобы ее решение с помощью линейной диаграммы было более рациональным по сравнению с решением без чертежа. Приведем пример решения одной из таких задач.

Задача 3 . В первом баке в четыре раза больше жидкости, чем во втором. Когда из первого бака перелили 10 л жидкости во второй, оказалось, что во втором баке стало того, что осталось в первом. Сколько литров жидкости было в каждом баке первоначально?

Решение. Алгебраический метод . Приводим к уравнению

где x л - первоначальное количество жидкости во втором баке.

Решая это уравнение, находим x = 10, тогда

4x = 4 · 10 = 40.

Итак, в первом баке было 40 л, а во втором 10 л.

Геометрический метод . Построим линейную диаграмму первоначального распределения жидкости между двумя баками. Пусть отрезок AB изображает количество жидкости (л) в первом баке (рис. 3), тогда отрезок CD будет изображать количество жидкости (л) во втором баке (построение можно начинать с отрезка CD). AB = 4CD - первоначальное распределение жидкости между двумя баками.

Процесс переливания жидкости из одного бака в другой отобразим как вычитание некоторого отрезка из отрезка AB и прибавление его к отрезку CD. Чтобы узнать длину отрезка, который следует вычесть из отрезка AB, необходимо заметить следующее: в первом и во втором баках было 5 частей жидкости, причем в первом баке было 4 части, а во втором 1 часть.

После переливания общее количество жидкости (5 частей) не изменилось, но во втором баке стало 2 части, а в первом 3 части. Значит, из отрезка AB надо вычесть отрезок BE (BE = CD), а к отрезку CD прибавить отрезок DK (DK = BE), тогда , что соответствует переливанию жидкости. Поэтому BE = 10, тогда

AB = 40, CD = BE = 10.

Итак, в первом баке было 40 л жидкости, а во втором 10 л.

После решения задачи следует сравнить с учащимися оба метода решения, выявить преимущества и недостатки каждого из них.

Необходимо заметить, что с помощью линейных диаграмм решаются задачи, в которых даны отношения значений величин (меньше, больше, на, в, столько же) и рассматривается одна или несколько ситуаций.

Текстовые задачи, в которых одна из величин представляет собой произведение двух других, позволяют интегрировать метод площадей, основанный на свойствах площади, и метод уравнений и неравенств. Приведем примеры.

Задача 4 . Бригада лесорубов ежедневно перевыполняла норму на 16 м 3 , поэтому недельную норму (шесть рабочих дней) она выполнила за четыре дня. Сколько кубометров леса заготовляла бригада в день?

Решение. Алгебраический метод . Приходим к уравнению

где x м 3 - дневная норма бригады по плану.

Геометрический метод . Так как в задаче рассматривается произведение двух величин (A = pn), то для наглядности представим его в виде двумерной диаграммы. Двумерная диаграмма - это площадь одного или нескольких прямоугольников, стороны которых изображают численные значения рассматриваемых величин (p и n), а площадь прямоугольника изображает их произведение (S = A).

Решение задачи, также как и в случае линейной (одномерной) диаграммы, проходит в три этапа:

1) построение двумерной диаграммы, то есть перевод задачи на язык отрезков и площадей фигур;
2) решение получившейся геометрической задачи путем составления уравнения на основе использования свойств площади многоугольных фигур;
3) перевод полученного ответа с геометрического языка на естественный язык.

1-й этап. Реализуется в ходе анализа текста задачи. Учащиеся отвечают на следующие вопросы.

1. Можно ли построить двумерную диаграмму по условию задачи?

[Можно, так как одна из величин (недельная норма бригады) равна
произведению двух других: дневная норма бригады и количества дней.]

2. Что представляет собой двумерная диаграмма?

[Прямоугольник, одна из сторон которого определяет
дневную норму бригады, а другая - количество дней.]

3. Сколько прямоугольников надо построить?

[Два, их площади будут определять недельную норму бригады
по плану и фактически выполненную работу за четыре дня.]

4. Что можно сказать о площадях этих прямоугольников?

[Они равны, так как выполненная за четыре
дня работа равна недельной норме.]

Затем учащиеся с помощью учителя выполняют построение. Основание и высота первого прямоугольника берутся произвольно, второй прямоугольник равновелик первому, причем их основания представляют собой отрезки, лежащие на одном луче, с общим началом (рис. 4). Первый этап завершается обозначением прямоугольников и оформлением записей на чертеже.

В начале обучения геометрическому методу ведется подробная запись того, что обозначает длина, ширина и площадь каждого прямоугольника, то есть задача переводится на геометрический язык.

2-й этап. Этап начинается с рассмотрения площадей образовавшихся прямоугольников и установления соотношений между ними (равенства, неравенства). Перед учащимися ставится вопрос: назовите прямоугольники с равными площадями. Ведется соответствующая запись:

S ABCD = S AMNK = S, S 1 = S 2 , так как S 1 + S 3 = S 2 + S 3 .

Среди учащихся могут быть и такие, которые выполнят чертеж с большой неточностью, то есть на чертеже прямоугольники BMNE и KECD будут явно не равновелики. Следует обратить на это их внимание и заметить, что линии KB и CN должны быть параллельны.

Используя условие S 1 = S 2 , составляется уравнение. Приведем примерную запись решения задачи 4 геометрическим методом.

Решение. Пусть S ABCD определяет недельную норму бригады лесорубов. AB - производительность (м 3) бригады в день по плану; AD - количество дней; S AMNK - объем работы, выполненный бригадой за четыре дня.

S AMNK = S ABCD = S;

S 1 = S 2 , так как S 1 + S 3 = S 2 + S 3 .

S 1 = 2KE, S 2 = 16 · 4 = 64,

значит 2KE = 64, тогда KE = 32.

AB = KE = 32, AM = AB + BM = 32 + 16 = 48.

Ответ: бригада заготовляла в день 48 м 3 леса.

С помощью двумерной диаграммы и геометрических соотношений, в частности равновеликости прямоугольников ABCD и AMNK, можно составить другое уравнение. Если AB = x, то получаем

(такое же уравнение получается при решении задачи без чертежа).

Задача 5 . Заказ по выпуску машин завод должен был выполнить за 15 дней. Но уже за два дня до срока завод не только выполнил план, но и выпустил сверх плана еще шесть машин, так как ежедневно выпускал по две машины сверх плана. Сколько машин должен был выпустить завод по плану?

Особенность решения этой задачи геометрическим методом, по сравнению с решением предыдущей задачи, состоит в том, что площади S 1 и S 2 (см. рис. 4) не равны, так как по условию завод не только выполнил план, но и выпустил сверх плана еще шесть машин. Это учащиеся должны иметь в виду как при построении чертежа, так и при составлении уравнения.

Решение. Пусть AB изображает производительность завода в день по плану (рис. 5). AD - срок выполнения заказа по плану. Тогда S ABCD определяет весь заказ по выпуску машин, AM изображает количество машин, которые выпускал завод ежедневно, AP - срок выполнения заказа, а S AMNP соответствует количеству машин, которые завод выпустил за 13 дней.

По условию завод выпустил сверх плана шесть машин, поэтому имеем

S 1 + S 3 + 6 = S 3 + S 2 или S 1 + 6 = S 2 ,

но S 2 = 2 · 13 = 26, следовательно S 1 + 6 = 26, откуда S 1 = 20. С другой стороны, S 1 = 2AB, поэтому 2AB = 20, тогда AB = 10, S ABCD = AB · 15 = 10 · 15 = 150.

Ответ: завод должен был выпустить по плану 150 машин.

Средством интеграции методов в 7-м классе могут служить и геометрические задачи. Приведем примеры.

Задача 6 . Точка A делит отрезок CD пополам, а точка B - на неравные части. Докажите, что площадь прямоугольника с измерениями CB и BD равна разности площадей квадратов со сторонами AD и AB

Решение. Пусть CD = x, BD = y. Тогда

Поэтому для решения задачи следует доказать тождество

Как видим, в решении данной задачи задействованы метод площадей и метод тождественных преобразований.

Задача 7 . AP = PQ = QR = RB = BC, AB = AC (рис. 7). Найдите угол A.

Решение. Пусть Р A = x, тогда Р 1 = Р A = x. Р 2 = 2x (как внешний угол треугольника APQ), Р 4 = Р 2 = 2x.

Р 3 = 180° – (Р 2 + Р 4) = 180° – 4x,

Р 5 = 180° – (Р 1 + Р 3) = 3x,

Р 6 = Р 5 = 3x. Р 7 = Р B – Р 6, но

поэтому

Так как Р 8 = Р C, то Р C + Р 8 + Р 7 = 2Р C + Р 7 = 180°, или

Решая это уравнение, получаем, что x = 20°.

Ответ: Р A = 20°.

При решении этой задачи использовались метод треугольников и метод уравнений и неравенств. Аналогичные задачи имеются в учебниках геометрии.

Оценки по курсу находятся

Система выставления оценок по курсу

Экзамен

Программа курса

Повторение некоторых разделов дискретной математики

  1. Булевы функции, их запись, изображения на булевом кубе
  2. Дизъюнктивные нормальные формы (ДНФ): сокращённые, тупиковые, кратчайшие
  3. Алгоритмы построения ДНФ: метод Нельсона, метод Блейка, критерий поглощения

Алгоритмы, основанные на вычислении оценок (АВО)

  1. Тестовые алгоритмы
  2. Алгоритмы с представительными наборами
  3. Алгоритмы вычисления оценок (АВО), обобщения АВО, эффективные формулы для оценок

Алгебраический подход к решению задач классификации

Дискретные (логические) процедуры распознавания

  1. Постановка задачи распознавания по прецедентам. Сущность дискретного (логического) подхода к задачам распознавания. Общие принципы построения дискретных (логических) процедур распознавания в случае целочисленных данных. Понятие корректного элементарного классификатора. Модели дискретных (логических) алгоритмов распознавания, основанные на построении корректных элементарных классификаторов.
  2. Построение элементарных классификаторов в тестовых алгоритмах распознавания и алгоритмах голосования по представительным наборам на основе поиска покрытий булевых матриц. Построение элементарных классификаторов в алгоритмах голосования по представительным наборам на основе преобразования нормальных форм логических функций (на примере бинарных признаков). Задача дуализации. Основные подходы к оценке эффективности алгоритмов дуализации.
  3. Алгебро-логический подход к построению корректных процедур распознавания на базе произвольных (не обязательно корректных) элементарных классификаторов. Понятие (монотонного) корректного набора элементарных классификаторов. Общая схема работы логического корректора. Подходы к снижению вычислительной сложности на этапе обучения логического корректора. Практические модели логических корректоров.
  4. Методы повышения эффективности дискретных (логических) процедур распознавания. Оценка информативности признаков, значений признаков, выделение шумящих признаков и обучающих объектов, не являющихся типичными для своего класса.

Модели данных и метрические методы обработки данных

Логико-статистические модели в распознавании

  1. Трёхкомпонентное разложение ошибки. Bias-Variance дилемма. Разложение ошибки для выпуклых комбинаций предикторов. Несократимые комбинации. Разложение ошибки для компоненты сдвига и вариационной компоненты обобщённой ошибки.
  2. Методы верификации закономерностей, основанные на перестановочных тестах. Метод оптимальных достоверных разбиений.
  3. Метод континуального голосования в модели АВО.
  4. Метод статистически взвешенных синдромов.

Литература

  1. Дискретная математика и математические вопросы кибернетики / Под ред. С.В. Яблонского и О.Б. Лупанова. – М.: Наука, 1974. – 312с (глава про ДНФ)
  2. Яблонский С.В. Введение в дискретную математику. 4-е издание, стереотипное - М.: Высшая школа, 2003. - 484 с (в конце книги - в приложение про ДНФ).
  3. Дьяконов A.Г. . - МАКСПресс, 2010. (9 глава).
  4. Дьяконов А.Г. Алгебраические замыкания модели АВО, операторы разметки и теория систем эквивалентностей . Москва, 2009. (параграфы 1.1-1.2)
  5. Дюкова Е.В. Дискретные (логические) процедуры распознавания: принципы конструирования, сложность реализации и основные модели // Учебное пособие для студентов Математических факультетов педвузов. М: МПГУ 2003 г. 30 с.
  6. Сенько О.В., Докукин А.А. Оптимальные выпуклые корректирующие процедуры в задачах высокой размерности. ЖВМиМФ, Т. 51, №9 с.1751-1760, 2011
  7. Senko O.V., Dokukin A.A. Optimal forecasting based on convex correcting procedures. in New trends in classification and data mining, (2010), Sofia,Bulgaria:ITHEA
  8. Senko O.V., Kuznetsova A.V. The Optimal Valid Partitioning Procedures // “InterStat”, Statistics in Inter- net. 2006.
  9. Сенько О.В. Алгоритм голосования по множеству операторов вычисления оценок континуальной мощности. В сб. Вопросы кибернетики. Москва, 1989.
  10. Senko O., Kuznetsova A. A recognition method based on collective decision making using systems of regularities of various types // Pattern Recognition and Image Analysis, MAIK Nauka/Interperiodica. Vol. 20, No. 2, 2010, pp. 152-162.

Алгебраический метод

Алгебраический метод решения задач на построении - один из важнейших методов теории конструктивных задач. Именно с помощью этого метода решаются вопросы, связанные с разрешимостью задач тем или иным набором инструментов.

Кроме того, это один из самых мощных методов, позволяющий решать многие задачи, решение которых обычными способами затруднительно. Метод прекрасно демонстрирует тесную взаимосвязь алгебры и геометрии.

Но, к сожалению, в школьном курсе геометрии алгебраическому методу практически не уделяется внимания, хотя с методической точки зрения изучение этого метода не представляет особых сложностей.

Суть метода состоит в следующем:

а) задача сводится к построению некоторого отрезка;

б) используя известные геометрические соотношения между искомыми и данными, составляют уравнение (систему уравнений), связывающее искомые и данные;

в) решая уравнение или систему уравнений, выражают формулой длину искомого отрезка через длины данных;

г) по формуле строится искомый отрезок (если это возможно);

д) с помощью найденного отрезка строится искомая фигура.

Подготовительную работу составляет изучение основных формул и способов построения, где также отрабатываются некоторые элементы схемы решения задач алгебраическим методом, и усваивается сама идея такого подхода к решению задач на построение.

В школьном курсе геометрии обычно рассматривают построения циркулем и линейкой отрезков, заданных следующими некоторыми простейшими формулами :

1) х = а + b (рис. 8).

2) х = а -- b(а > b) (рис. 9).

Рис. 8

3) х = nа , где n -- натуральное число. Сводится к построению 1). На рис. 10 построен отрезок х , такой, что х = 6а .


Рис. 10

4) х = .

Строим луч, выходящий из какого-либо конца О данного отрезка а под произвольным углом к нему. Откладываем на этом луче n раз произвольный отрезок b , так что OB = nb (см. рис. 11). Соединяем точку В со вторым концом А отрезка а . Через точку В 1 , определяемую условием 1 = b , проводим прямую, параллельную АВ , и отмечаем точку A 1 , в которой она пересечет отрезок а .

5) х = а (n и m -- данные натуральные числа).

Разделим отрезок а на m равных частей и увеличим полученный отрезок в п раз.

6) х = (построение отрезка, четвертого пропорционального трем данным отрезкам).

Запишем условие в виде пропорции с: а = b: х . Пусть (рис. 12) ОА = а , ОС = с , так что члены одного из отношений отложены на одном луче, исходящем из точки О . На другом луче, исходящем из той же точки, откладываем известный член другого отношения ОB = b . Через точку А проводим прямую, параллельную ВС , и отмечаем точку X ее пересечения с прямой ОВ . Отрезок ОХ искомый, то есть ОХ = х .


Рис. 12

Можно воспользоваться построением 6), полагая b = а.

8) х = (построение среднего пропорционального двух данных отрезков).

Строим отрезки АС = а , ВС = b , так что АВ = а + b . На АВ как на диаметре строим полуокружность (см. рис. 13). В точке С восставим перпендикуляр к АВ и отметим точку D его пересечения с окружностью. Тогда х = CD .

9) х = Отрезок x строится как гипотенуза прямоугольного треугольника с катетами а и b (см. рис. 14).

10) х = (a > b). Отрезок x строится как катет прямоугольного треугольника с гипотенузой а и катетом b .

К рассмотренным построениям можно свести построение отрезков, заданных более сложными формулами.

Желательно постепенное изучение этих формул, когда каждая из них разбирается при рассмотрении теории, необходимой для осуществления соответствующего построения.

На этом месте целесообразно также введение простейших задач на алгебраический метод (например, задача о восстановлении отрезков по их сумме и разности) с тем, чтобы формулы рассматривались во взаимосвязи. В дальнейшем, перед серьезным изучением метода, формулы следует повторить.

В Приложении 4 приведена задача на алгебраический метод: “Из вершин данного треугольника как из центров описать три окружности, касающиеся попарно внешним образом”.

Вывод. Описанные методы рекомендуется использовать для решения геометрических задач на построение. При этом необходимо обращать внимание в том числе и на развитие инициативы учащихся, привитие им вкуса и навыков к решению конструктивных задач.

Было бы неправильно думать, что методы решения задач на построение могут служить основой для классификации самих задач. Существенным, а не случайным следует признавать то обстоятельство, что целый ряд задач на построение может одинаково успешно решаться различными методами. С другой стороны, существуют задачи, которые решаются просто комбинацией основных построений без явного применения какого-либо метода.

С методической точки зрения наиболее приемлемым является применение при обучении решению задач на построение следующего принципа. Необходимо осуществлять последовательный подбор задач в соответствии с целями курса геометрии и постепенное ознакомление учащихся с методами решения задач на построение.

В свою очередь, необходимо ознакомить учащихся с самими методами и научить определять, каким из них можно решить предложенную задачу. Для этого, прежде всего, учащихся необходимо научить выделять наиболее характерные признаки задач, решаемых тем или иным методом. Эти признаки определяются самим содержанием метода.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...