Биологический круговорот воды. Главное понятие экологии

Вещества поступают к живым организмам из почвы, воздуха, воды. Вода испаряется из океанов, поднимается к слоям атмосферы, образуя дождь. Зеленые растения пользуются поступившей в почву водой. Поддерживая свою жизнедеятельность, они одновременно выделяют необходимый для жизни кислород. В то же время, без воздействия кислорода не могли бы происходить процессы разложения и гниения растений. Как называется этот замкнутый круг, обеспечивающий возможность жизни на Земле, и в чем состоят его особенности?

Главное понятие экологии

Биологический круговорот - это обращение химических элементов, возникшее одновременно с зарождением жизни на нашей планете, и которое происходит при участии живых организмов.

Закономерности, присущие круговороту веществ, решают основные задачи поддержания жизни на Земле. Ведь запасы питательных веществ на всей поверхности Земли не безграничны, хотя и являются огромными. Если бы эти запасы только потреблялись живыми существами, то в один момент жизнь должна была бы подойти к своему концу. Ученый Р. Вильямс писал: «Единственный метод, который позволяет ограниченному количеству иметь свойство бесконечного, - это сделать так, чтобы оно вращалось по траектории замкнутой кривой линии». Сама жизнь распорядилась так, чтобы на Земле был использован этот метод. Органические вещества создаются зелеными растениями, а незеленые подвергают его разрушению.

В биологическом круговороте каждый вид живых существ занимает свое место. Основной парадокс жизни заключается в том, что она поддерживается при помощи процессов деструкции и постоянного распада. Сложные органические соединения рано или поздно разрушаются. Этот процесс сопровождается выделением энергии, потерей свойственной живому организму информации. Огромное значение в биологическом круговороте веществ и развитии жизни играют микроорганизмы - именно с их участием любая форма жизни включается в биотический круговорот.

Звенья биоцепочки

Микроорганизмы имеют два свойства, которые позволяют им занимать столь важное место в круге жизни. Во-первых, они очень быстро могут приспосабливаться к меняющимся условиям окружающей среды. Во-вторых, для пополнения запасов энергии они могут использовать самые разнообразные вещества, а также углерод. Такими свойствами не обладает ни один из высших организмов. Они существуют лишь как надстройка над фундаментальным основанием царства микроорганизмов.

Особи и виды различных биологических классов являются звеньями круговорота веществ. Они также взаимодействуют между собой при помощи различных типов связей. Круговорот веществ планетарного масштаба включает в себя частные биологические круговороты в природе. Они осуществляются, главным образом, по пищевым цепочкам.

Опасные обитатели домашней пыли

Немалую роль в биологическом круговороте играют и сапрофиты - постоянные «жители» домашней пыли. Они питаются разнообразными веществами, которые входят в состав домашней пыли. При этом сапрофиты выделяют довольно токсичные фекалии, которые провоцируют возникновение аллергии.

Кем же являются эти невидимые для человеческого глаза создания? Сапрофиты принадлежат к семейству паукообразных. Они сопровождают человека на протяжении всей жизни. Ведь пылевые клещи питаются домашней пылью, в состав которой также входит человеческая кожа. Ученые полагают, что когда-то сапрофиты были жителями птичьих гнезд, а затем «перебрались» в жилище человека.

Пылевые клещи, играющие большую роль в биологическом обороте, имеют очень малые размеры - от 0,1 до 0,5 мм. Но они настолько активны, что всего лишь за 4 месяца один пылевой клещ может отложить порядка 300 яиц. Один грамм домашней пыли может содержать несколько тысяч клещей. Невозможно представить, сколько пылевых клещей может быть в доме, ведь считается, что за один год в человеческом жилище может накапливаться до 40 кг пыли.

Круговорот в лесу

В лесу биологический круговорот обладает наибольшей мощностью по причине проникновения корней деревьев в глубины почвы. Первым звеном в этом обороте обычно считается так называемое ризосферное звено. Ризосферой называется тонкий (от 3 до 5 мм) слой почвы вокруг дерева. Почва вокруг корней дерева (или «ризосферная почва»), как правило, очень богата корневыми выделениями и различными микроорганизмами. Ризосферное звено представляет собой своеобразные ворота между живой природой и неживой.

Звено потребления находится в корнях, которые поглощают минеральные вещества из почвы. Некоторая часть веществ смывается осадками обратно в почву, однако большей частью возврат питательных веществ осуществляется во время двух процессов - опада и отпада.

Роль опада и отпада

Опад и отпад имеют разное значение в биологическом круговороте веществ. Опад включает в себя шишки деревьев, ветки, листья, остатки от травы. Исследователи не включают в опад деревья - они относятся к категории отпада. Разложение отпада может происходить в течение десятков лет. Иногда отпад может служить материалом для питания других древесных пород - но только по достижении определенной стадии разложения. Отпад содержит много веществ, относящихся к классу зольных. Они медленно поступают в почву и используются растениями для дальнейшей жизнедеятельности.

От чего зависит опад?

Опад имеет несколько иное значение в биологическом круговороте. В течение года весь его объем переходит в слой подстилки и подвергается полному разложению. Элементы золы гораздо быстрее поступают в биотический оборот. Однако фактически опад является частью биологического оборота уже когда листья находятся на дереве. Показатель опада зависит от многих факторов: климата, погоды в текущем и предыдущем годах, количества насекомых. В лесотундре она достигает нескольких центнеров, в лесах измеряется тоннами. Самое большое количество опада в лесах приходится на весну и осень. Различается этот показатель и в зависимости от года.

Что касается органического состава хвои и листьев, то в процессе круговорота они подвергаются одинаковым изменениям. В отличие от опада, зеленые листья обычно богаты фосфором, калием, азотом. Опад же, как правило, богат кальцием. На биологический круговорот большое влияние оказывают насекомые и животные. Например, листогрызущие насекомые могут значительно ускорить его. Однако самое большое влияние на скорость круговорота оказывают животные в процессе разложения опада. Личинки и черви поедают и измельчают опад, перемешивают с верхними слоями почвы.

Фотосинтез в природе

Растения для пополнения запасов энергии умеют использовать солнечный свет. Они делают это в два этапа. На первом этапе происходит улавливание света листьями; на втором энергия используется для процесса связывания углерода и образования органических веществ. Биологи называют зеленые растения автотрофами. Они являются основой для жизни на всей планете. Автотрофы имеют огромное значение в фотосинтезе и биологическом круговороте. Энергия солнечного света превращается ими в запасенную посредством образования углеводов. Самым главным из них является сахар глюкоза. Процесс этот получил название фотосинтеза. Живые организмы других классов могут получать доступ к солнечной энергии, употребляя в пищу растения. Таким образом появляется пищевая цепь, обеспечивающая круговорот веществ.

Закономерности фотосинтеза

Несмотря на важность процесса фотосинтеза, долгое время он оставался неизученным. Лишь в начале XX века английский ученый Фредерик Блэкман поставил несколько экспериментов, при помощи которых удалось установить этот процесс. Ученый выявил и некоторые закономерности фотосинтеза: оказалось, что он запускается при слабом освещении, постепенно усиливаясь с потоками света. Однако это происходит только до определенного уровня, после которого усиление света уже не ускоряет фотосинтез. Блэкман также установил, что постепенное повышение температуры при усилении освещения способствует фотосинтезу. Повышение температуры при слабом освещении не ускоряет этот процесс, как и усиление освещения при низкой температуре.

Процесс преобразования света в углеводы

Фотосинтез начинается с процесса попадания фотонов солнечного света в молекулы хлорофилла, расположенные в листьях растений. Именно хлорофилл придает растениям зеленый цвет. Улавливание энергии происходит в два этапа, которые биологи называют Фотосистема I и Фотосистема II. Интересно, что номера этих фотосистем отражают порядок их открытия учеными. Это одна из странностей в науке, так как вначале реакции происходят во второй фотосистеме, и лишь затем - в первой.

Фотон солнечного света сталкивается с 200-400 молекулами хлорофилла, находящимися в листе. При этом энергия резко возрастает и передается молекуле хлорофилла. Этот процесс сопровождается химической реакцией: хлорофилловая молекула теряет при этом два электрона (их, в свою очередь, принимает так называемый «акцептор электронов», другая молекула). А также при столкновении фотона с хлорофиллом происходит образование воды. Цикл, при котором солнечный свет превращается в углеводы, называется циклом Калвина. Значение фотосинтеза и биологического круговорота веществ нельзя недооценить - именно благодаря этим процессам на земле имеется кислород. Получаемые человеком полезные ископаемые - торф, нефть - также являются носителями запасенной в процессе фотосинтеза энергии.

Круговорот элементов в неживой природе

Круговорот веществ в большом геологическом круговороте.

Большой геологический круговорот

Большой геологический круговорот минеральных веществ и воды протекает под действием огромного количества абиотических факторов.

Согласно теории литосферных плит, внешняя оболочка Земли состоит из нескольких очень больших блоков (плит). Эта теория предполагает существование горизонтальных перемещений мощных литосферных плит, толщиной 100 – 150 км.

При этом в пределах срединно-океанических хребтов, так называемой зоны рифтов. Происходят разрыв и раздвигание литосферных плит с образованием молодой океанической коры

Это явление называется спредингом океанического дна. Т.о., из глубин мантии поднимается поток минеральных веществ, образующий молодые кристаллические породы.

В противовес этому процессу в зоне глубоководных океанических желобов постоянно происходит надвигание одной части континентальной коры на другую, что сопровождается погружением периферийной части плиты в мантию, т.е., часть твёрдого вещества земной коры переходит в состав мантии Земли. Процесс, происходящий в океанических глубоководных желобах, назван субдукцией океанической коры.

Круговорот воды на планете действует непрерывно и повсеместно. Движущие силы круговорота воды – тепловая энергия и сила тяжести. Под влиянием тепла происходят испарение, конденсация водяных паров и другие процессы, на что расходуется около 50% энергии, поступающей от солнца. Под влиянием силы тяжести – падение капель дождя, течение рек, движение почвенных и подземных вод. Часто эти причины действуют совместно, например, на атмосферную циркуляцию воды действуют как тепловые процессы, так и сила тяжести.

Осуществляется двумя путями: водной и воздушной миграцией. К воздушным мигрантам относят: кислород, водород, азот, йод.

К водным мигрантам относят те вещества, которые мигрируют преимущественно в почвах, поверхностных и подземных водах в основном в виде молекул и ионов: натрий, магний, алюминий, кремний, фосфор, сера, хлор, калий, марганец, железо, кобальт, никель, стронций, свинец и др. Воздушные мигранты входят также в состав солей, которые мигрируют в воде. Однако воздушная миграция для них более типична.

Масса живого вещества биосферы сравнительно мала. Если её распределить по земной поверхности, то получиться слой всего в 1,5 см. В таблице 4.1 сопоставлены некоторые количественные характеристики биосферы и других геосфер Земли. Биосфера, составляя менее 10-6 массы других оболочек планеты, обладает несравненно большим разнообразием и обновляет свой состав в миллион раз быстрее.



Таблица 4.1

Сравнение биосферы с другими геосферами Земли

*Живое вещество в расчёте на живой вес

4.4.1. Функции биосферы

Благодаря биоте биосферы осуществляется преобладающая часть химических превращений на планете. Отсюда суждение В.И. Вернадского об огромной преобразующей геологической роли живого вещества. На протяжении органической эволюции живые организмы тысячекратно (для разных круговоротов от 103 до 105 раз) пропустили через себя, через свои органы, ткани, клетки, кровь всю атмосферу, весь объём Мирового океана, большую часть массы почв, огромную массу минеральных веществ. И не только пропустили, но и в соответствии со своими потребностями видоизменили земную среду.

Благодаря способности трансформировать солнечную энергию в энергию химических связей растения и другие организмы выполняют ряд фундаментальных биогеохимических функций планетарного масштаба.

Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания. Растения сыграли решающую роль в смене восстановительной среды на окислительную в геохимической эволюции планеты и в формировании газового состава современной атмосферы. Растения строго контролируют концентрации О2 и СО2, оптимальные для совокупности всех современных живых организмов.

Концентрационная функция. Пропуская через своё тело большие объёмы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию (движение химических веществ) и концентрирование химических элементов и их соединений. Это относится к биосинтезу органики, образование коралловых островов, строительство раковин и скелетов, появление толщ осадочных известняков, месторождений некоторых металлических руд, скопление железно–марганцевых конкреций, на дне океана т. д. Ранние этапы биологической эволюции проходили в водной среде. Организмы научились извлекать из разбавленного водного раствора необходимые для них вещества, многократно увеличивая их концентрацию в своём теле.

Окислительно – восстановительная функция живого вещества тесно связана с биогенной миграцией элементов и концентрированием веществ. Многие вещества в природе устойчивы и не подвергаются окислению при обычных условиях, например, молекулярный азот – один из важнейших биогенных элементов. Но живые клетки располагают настолько мощными катализаторами – ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может проходить в абиотической среде.

Информационная функция живого вещества биосферы. Именно с появлением первых примитивных живых существ на планете появилась и активная («живая») информация, отличающаяся от той «мёртвой» информации, которая является простым отражением структуры. Организмы оказались способными к получению информации путём соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и перерабатывать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором. Суммарный запас генетической информации биоты оценивается в 1015 бит. Общая мощность потока молекулярной информации, связанной с обменом веществ и энергии во всех клетках глобальной биоты достигает 1036 бит/с (Горшков и др., 1996).

4.4.2. Составляющие биологического круговорота.

Биологический круговорот осуществляется между всеми составляющими биосферы (т. е. между почвой, воздухом, водой, животными, микроорганизмами и т.д.). Он происходит при обязательном участии живых организмов.

Достигающее биосферы солнечное излучение несёт в себе энергию около 2,5*1024 Дж в год. Только 0,3% её непосредственно преобразуется в процессе фотосинтеза в энергию химических связей органических веществ, т.е. вовлекается в биологический круговорот. А 0,1 – 0,2 % солнечной энергии, падающей на Землю, оказывается заключённой в чистой первичной продукции. Дальнейшая судьба этой энергии связана с передачей органического вещества пищи по каскадам трофических цепей.

Биологический круговорот условно можно разделить на взаимосвязанные составляющие: круговорот веществ и энергетический круговорот.

4.4.3. Энергетический круговорот. Трансформация энергии в биосфере

Экосистему можно описать как совокупность живых организмов, обменивающихся непрерывно энергией, веществом, информацией. Энергию можно определить как способность производить работу. Свойства энергии, в том числе и движение энергии в экосистемах, описываются законами термодинамики.

Первый закон термодинамики или закон сохранения энергии утверждает, что энергия не исчезает и не создаётся заново, она лишь переходит из одной формы в другую.

Второй закон термодинамики утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращением энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше её энтропия.

Говоря другими словами, живое вещество получает и трансформирует энергию космоса, солнца в энергию земных процессов (химическую, механическую, тепловую, электрическую). Вовлекает эту энергию и неорганическую материю в непрерывный круговорот веществ в биосфере. Поток энергии в биосфере имеет одно направление – от Солнца через растения (автотрофы) к животным (гетеротрофы). Природные нетронутые экосистемы в устойчивом состоянии с постоянными важнейшими экологическими показателями (гомеостаз), являются наиболее упорядоченными системами, и характеризуются наименьшей энтропией.

4.4.4. Круговорот веществ в живой природе

Образование живого вещества и его разложение – две стороны единого процесса, который называется биологическим круговоротом химических элементов. Жизнь – круговорот химических элементов между организмами и средой.

Причина круговорота – ограниченность элементов, из которых строятся тела организмов. Каждый организм извлекает из окружающей среды необходимые для жизнедеятельности вещества и возвращает неиспользованные. При этом:

одни организмы потребляют минеральные вещества непосредственно из окружающей среды;

другие используют продукты, переработанные и выделенные первыми;

третьи – вторыми и т.д., пока вещества не возвратятся в окружающую среду в первоначальном состоянии.

В биосфере очевидна необходимость сосуществования различных организмов, способных использовать продукты жизнедеятельности друг друга. Мы видим практически безотходное биологическое производство.

Круговорот веществ в живых организмах условно можно свести к четырём процессам:

1.Фотосинтез. В результате фотосинтеза растения усваивают и аккумулируют солнечную энергию и синтезируют из неорганических веществ органические вещества - первичную биологическую продукцию - и кислород. Первичная биологическая продукция отличается большим разнообразием – содержит углеводы (глюкозу), крахмал, клетчатку, белки, жиры.

Схема фотосинтеза простейшего углевода (глюкозы) имеет следующую схему:

Этот процесс протекает только днём и сопровождается увеличением массы растений.

На Земле ежегодно в результате фотосинтеза образуется около 100 млрд. т. органического вещества, усваивается около 200 млрд. т. углекислого газа, выделяется примерно 145 млрд. т кислорода.

Фотосинтезу принадлежит решающая роль в обеспечении существования жизни на Земле. Его глобальное значение объясняется тем, что фотосинтез является единственным процессом, в ходе которого энергия в термодинамическом процессе согласно с минималистским принципом не рассеивается, а наоборот – накапливается.

Синтезируя необходимые для построения белков аминокислоты, растения могут существовать относительно независимо от других живых организмов. В этом проявляется автотрофность растений (самостоятельность в питании). В то же время зелёная масса растений и кислород, образующийся в процессе фотосинтеза, являются основой для поддержания жизни следующей группы живых организмов – животных, микроорганизмов. В этом проявляется гетеротрофность этой группы организмов.

2. Дыхание. Процесс обратный фотосинтезу. Происходит во всех живых клетках. При дыхании органическое вещество окисляется кислородом, в результате образуется углекислый газ, вода и выделяется энергия.

3. Пищевые (трофические) связи между автотрофными и гетеротрофными организмами. В данном случае происходит перенос энергии и вещества по звеньям пищевой цепи, которые более подробно были нами рассмотрены ранее.

4. Процесс транспирации. Один из самых важных процессов в биологическом круговороте.

Схематично его можно описать следующим образом. Растения поглощают почвенную влагу корнями. При этом в них поступают растворённые в воде минеральные вещества, которые усваиваются, а влага более или менее интенсивно испаряется в зависимости от условий среды.

4.4.5. Биогеохимические циклы

Геологический и биологический круговороты связаны – они существуют как единый процесс, рождая циркуляцию веществ, так называемые биогеохимические циклы (БГХЦ). Этот круговорот элементов обусловлен синтезом и распадом органических веществ в экосистеме (рис.4.1) В БГХЦ задействованы не все элементы биосферы, а только биогенные. Из них состоят живые организмы, эти элементы вступают в многочисленные реакции и участвуют в процессах, протекающих в живых организмах. В процентном соотношении совокупная масса живого вещества биосферы состоит из следующих основных биогенных элементов: кислорода – 70%, углерода – 18%, водорода – 10,5%, кальция – 0,5%, калия – 0,3%, азот – 0,3%, (кислород, водород, азот, углерод присутствуют во всех ландшафтах и являются основой живых организмов – 98%).

Сущность биогенной миграции химических элементов.

Таким образом, в биосфере имеют место биогенный круговорот веществ (т.е. круговорот, вызванный жизнедеятельностью организмов) и однонаправленный поток энергии. Биогенная миграция химических элементов определяется в основном двумя противоположными процессами:

1. Образование живого вещества из элементов окружающей среды за счет солнечной энергии.

2. Разрушение органических веществ, сопровождающееся выделением энергии. При этом элементы минеральных веществ многократно попадают в живые организмы, входя тем самым в состав сложных органических соединений, форм, а затем при разрушении последних снова приобретают минеральную форму.

Существуют элементы, входящие в состав живых организмов, но не относящиеся к биогенным. Такие элементы классифицируются по их весовой доле в организмах:

Макроэлементы – составляющие не менее 10-2% массы;

Микроэлементы – составляющие от 9*10-3 до 1*10-3% массы;

Ультрамикроэлементы – менее 9*10-6% массы;

Чтобы определить место биогенных элементов среди других химических элементов биосферы, рассмотрим принятую в экологии классификацию. По проявляемой активности в процессах, протекающих в биосфере, все химические элементы делят на 6 групп:

Благородные газы – гелий, неон, аргон, криптон, ксенон. Инертные газы в состав живых организмов не входят.

Благородные металлы – рутений, радий, палладий, осмий, иридий, платина, золото. Эти металлы почти не создают соединений в земной коре.

Циклические или биогенные элементы (их ещё называют миграционными). На эту группу биогенных элементов в земной коре приходится 99,7% всей массы, а на остальные 5 групп – 0,3%. Таким образом, основная масса элементов – это мигранты, которые осуществляют кругооборот в географической оболочке, а часть инертных элементов очень мала.

Рассеянные элементы, характеризующиеся преобладанием свободных атомов. Вступают в химические реакции, но их соединения редко встречаются в земной коре. Разделяются на две подгруппы. Первая – рубидий, цезий, ниобий, тантал – создают соединения в глубинах земной коры, а на поверхности их минералы разрушаются. Вторая – йод, бром – вступают в реакции лишь на поверхности.

Радиоактивные элементы – полоний, радон, радий, уран, нептуний, плутоний.

Редкоземельные элементы – иттрий, самарий, европий, тулий т.д.

Круглогодично биохимические циклы приводят в движение около 480 млрд. т. вещества.

В.И. Вернадский сформулировал три биогеохимических принципа, которые объясняют сущность биогенной миграции химических элементов:

Биогенная миграция химических элементов в биосфере всегда стремится к максимальному своему проявлению.

Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых форм жизни, идёт в направлении, усиливающем биогенную миграцию атомов.

Живое вещество находится в непрерывном химическом обмене с окружающей его средой, что является фактором, воссоздающим и поддерживающим биосферу.

Рассмотрим, как движутся в биосфере некоторые из этих элементов.

Круговорот углерода. Главным участником биотического круговорота является углерод как основа органических веществ. Преимущественно круговорот углерода происходит между живым веществом и углекислым газом атмосферы в процессе фотосинтеза. С пищей его получают травоядные, от травоядных – хищники. При дыхании, гниении углекислый газ частично возвращается в атмосферу, возврат происходит при сжигании органических полезных ископаемых.

При отсутствии возврата углерода в атмосферу, он был бы израсходован зелёными растениями за 7-8 лет. Скорость биологического оборота углерода через фотосинтез – 300 лет. Мировой океан играет большую роль в регулировании содержания СО2 в атмосфере. Если в атмосфере повышается содержание СО2, часть его растворяется в воде, вступая в реакцию с карбонатом кальция.

Круговорот кислорода.

Кислород обладает высокой химической активностью, вступает в соединения практически со всеми элементами земной коры. Встречается в основном в виде соединений. Каждый четвёртый атом живого вещества – атом кислорода. Почти весь молекулярный кислород в атмосфере возник и поддерживается на постоянном уровне благодаря деятельности зелёных растений. Кислород атмосферы, связываясь при дыхании и освобождаясь при фотосинтезе, проходит через все живые организмы за 200 лет.

Круговорот азота. Азот является составной частью всех белков. Общее отношение связанного азота, как элемента, составляющего органическое вещество, к азоту в природе равно 1:100000. Энергия химической связи в молекуле азота очень велика. Поэтому соединение азота с другими элементами – кислородом, водородом (процесс азотофиксации) – требует больших затрат энергии. Промышленная фиксация азота идёт в присутствии катализаторов при температуре -500оС и давлении –300 атм.

Как известно, атмосфера содержит более 78% молекулярного азота, но в таком состоянии он не доступен зелёным растениям. Для своего питания растения могут использовать лишь соли азотной и азотистой кислот. Каковы пути образования этих солей? Вот некоторые из них:

В биосфере фиксация азота осуществляется несколькими группами анаэробных бактерий и цианобактерий при нормальной температуре и давлении благодаря высокой эффективности биокатализа. Считается, что бактерии переводят в связанную форму приблизительно 1 млрд. т азота в год (мировой объём промышленной фиксации – около 90 млн.т).

Почвенные азотофиксирующие бактерии способны усваивать молекулярный азот из воздуха. Они обогащают почву азотистыми соединениями, поэтому их значение чрезвычайно велико.

В результате разложения азотосодержащих соединений органических веществ растительного и животного происхождения.

Под действием бактерий азот переходит в нитраты, нитриты, аммонийные соединения. В растениях соединения азота принимают участие в синтезе белковых соединений, которые в цепях питания передаются от организма к организму.

Круговорот фосфора. Ещё одним важным элементом, без которого невозможен синтез белков, является фосфор. Основные источники – изверженные породы (апатиты) и осадочные породы (фосфориты).

Неорганический фосфор вовлекается в круговорот в результате естественных процессов выщелачивания. Фосфор усваивается живыми организмами, которые при его участии синтезируют ряд органических соединений и передают на различные трофические уровни.

Закончив свой путь по трофическим цепям, органические фосфаты разлагаются микробами и превращаются в минеральные фосфаты, доступные для зелёных растений.

В процессе биологического круговорота, который обеспечивает движение вещества и энергии, нет места накоплению отходов. Продукты жизнедеятельности (т.е. отходы) каждой формы жизни являются питательной средой для других организмов.

Теоретически в биосфере всегда должен поддерживаться баланс между продуцированием биомассы и её разложением. Однако в отдельные геологические периоды сбалансированность биологического круговорота нарушалась, когда из-за определённых природных условий, катаклизмов не вся биологическая продукция усваивалась, трансформировалась. В этих случаях образовывались излишки биологической продукции, которые консервировались и откладывались в земной коре, под толщей воды, наносов, оказывались в зоне вечной мерзлоты. Так сформировались залежи каменного угля, нефти, газа, известняка. Надо отметить, что они не засоряют биосферу. В органических полезных ископаемых сконцентрировалась энергия Солнца, накопленная в процессе фотосинтеза. Сейчас, сжигая органические горючие полезные ископаемые, человек высвобождает эту энергию.

Круговороты веществ

Малые миграционные потоки химических элементов как между взаимосвязанными организмами, так и между организ­мами и окружающей их средой складываются в более крупные циклы - круговороты . Продолжительность и постоянство су­ществования жизни поддерживают именно круговороты, пото­му что без них даже в масштабах всей Земли запасы необходи­мых элементов были бы очень скоро исчерпаны.

Круговорот биологический (биотический) - явление не­прерывного, циклического, закономерного, но неравномерного во времени и пространстве перераспределения вещества, энер­гии 1 и информации в пределах экологических систем различного иерархического уровня организации - от биогеоценоза до био­сферы. Круговорот веществ в масштабах всей биосферы назы­вают большим кругом, а в пределах конкретного био­геоценоза - малым кругом биотического обмена. Часть биологического круговорота, состоящая из кругово­ротов углерода, воды, азота, фосфора, серы и других биоген­ных веществ, называют биогеохимическим круговоротом.

Некоторое количество вещества может на время выбы­вать из биологического круговорота (осаждаться на дне океа­нов, морей, выпадать в глубины земной коры и т. п.). Однако в результате протекания тектонических и геологических про­цессов (вулканической деятельности, подъема и опускания земной коры, изменения границ между сушей и водой и др.) осадочные породы вновь включаются в круговорот, назы­ваемый геологическим циклом или кругово­ротом.

Круговороты веществ от продуцентов к консументам раз­личных уровней, затем к редуцентам, а от них вновь к проду­центам замкнуты не полностью. Если бы в экосистемах су­ществовала их полная замкнутость, то не возникало бы ника­ких изменений среды жизни, не было бы почвы, известняков и прочих горных пород биогенного происхождения. Таким обра­зом, биотический круговорот можно условно изобразить в виде незамкнутого кольца. Потери вещества из-за незамкнутости круговорота мини­мальны в биосфере (самой крупной экосистеме планеты). Ин­формация в экосистемах теряется с гибелью видов и необрати­мыми генетическими перестройками.

Таким образом, каждая экосистема поддерживает свое су­ществование за счет круговорота биогенов и постоянного прито­ка солнечной энергии. Круговорот энергии в экосистемах прак­тически отсутствует, поскольку от редуцентов она (энергия) воз­вращается к консументам в мизерных количествах. Считают, что коэффициент круговорота энергии не превышает 0,24%. Энергия может накапливаться, сберегаться (т. е. преобразовы­ваться в более эффективные формы) и передаваться из одной части системы в другую, но она не может быть снова пущена в дело, как вода и минеральные вещества. Единожды пройдя от растений-продуцентов через консументы к редуцентам, энергия выносится в околоземное и космическое пространство. При дви­жении через экосистему поток энергии затрагивает в основном ее биоценоз, поэтому он подробно рассмотрен ранее.

Все вещества на планете находятся в процессе кругово­рота. Солнечная энергия вызывает на Земле два круговоро­та веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризует­ся двумя важными моментами: он осуществляется на про­тяжении всего геологического развития Земли и представ­ляет собой современный планетарный процесс, принимаю­щий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и раз­рушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и хими­ческих элементов. Значительную роль в этих процессах иг­рали и продолжают играть термические свойства поверх­ности суши и воды: поглощение и отражение солнечных лу­чей, теплопроводность и теплоемкость. Неустойчивый гид­ротермический режим поверхности Земли вместе с плане­тарной системой циркуляции атмосферы обусловливал гео­логический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и совре­менных геосфер. Со становлением биосферы в большой кру­говорот включились продукты жизнедеятельности орга­низмов. Геологический круговорот поставляет живым ор­ганизмам элементы питания и во многом определяет усло­вия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и дру­гие - участвуют в большом круговороте, проходя от глу­бинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации магмы, поступив на поверхность литосферы из глубин Зем­ли, подвергается разложению, выветриванию в области био­сферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глу­бину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис.).


Наиболее интенсивному и быстрому круговороту подвер­гаются легкоподвижные вещества - газы и природные во­ды, составляющие атмосферу и гидросферу планеты. Зна­чительно медленнее совершает круговорот материал литос­феры. В целом каждый круговорот любого химического элемента является частью общего большого круговорота ве­ществ на Земле, и все они тесно связаны между собой. Жи­вое вещество биосферы в этом круговороте выполняет ог­ромную работу по перераспределению химических элемен­тов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.

Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, гриба­ми, микроорганизмами и почвой. Суть биологического круго­ворота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических ве­ществ и их разрушения. Начальный этап возникновения ор­ганических веществ обусловлен фотосинтезом зеленых расте­ний, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, маг­ния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I по­рядка) поглощают соединения этих элементов уже в виде пи­щи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потреб­ляя пищу более сложного состава, включающую белки, жи­ры, аминокислоты и другие вещества. В процессе разруше­ния микроорганизмами (редуцентами) органических ве­ществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следую­щий виток биологического круговорота (рис. 33).


Возникновение и развитие ноосферы

Эволюция органического мира на Земле прошла несколько этапов.Первый –связан с возникновением биологического круговорота веществ в биосфере. Второй- сопровождался формированием многоклеточных организмов. Эти два этапа называют биогенезом.Третий этап связан с появлением человеческого общества, под влиянием которого в современных условиях происходит эволюция биосферы и превращение ее в сферу разума-ноосферу(от гр.-разум,-шар). Ноосфера- новое состояние биосферы, когда разумная деятельность человека становится главным фактором, обуславливающим ее развитие. Термин «»ноосфера» был введен Э. Леруа. В. И. Вернадский углубил и развил учение о ноосфере. Он писал: «Ноосфера есть новое геологическое явление на нашей планете.В ней человек становится крупной геологической силой». В. И. Вернадский выделил необходимые предпосылки для создания ноосферы:1.Человечество стало единым целым.2.Возможность мгновенного обмена информацией.3.Реальное равенство людей.4.Рост общего уровня жизни.5.Использование новых видов энергии. 6.Исключение войн из жизни общества. Создание этих предпосылок становится возможным в результате взрыва научной мысли в ХХ веке.

Тема – 6. Природа – человек: системный подход. Цель лекции: Сформировать целостное представление о системных постулатах экологии.

Основные вопросы:1.Понятие о системе и о сложных биосистемах.2.Особенности биологических систем.3.Системные постулаты: закон всеобщей связи, экологические законы Б. Коммонера, Закон больших чисел, Принцип Ле Шателье, Закон обратной связи в природе и закон константности количества живого вещества.4.Модели взаимодействий в системах «природа- человек» и « человек-экономика-биота-среда».

Экологическая система – главный объект экологии. Экология по своей сущности системна и в теоретическом облике близка к общей теории систем. Согласно общей теории систем система- это реальная или мыслимая совокупность частей, целостные свойства которой определяются взаимодействием между частями (элементами) системы. В реальной жизни,систему определяют как совокуность объектов, объединенных некоторой формой регулярного взаимодействий или взаимозависимости для выполнения заданной функции. В материальном существуют определенные иерархии-упорядоченные последовательности пространственно-временного соподчинения и усложнения систем. Все многообразия нашего мира представить в виде трех последовательно возникших иерархий. Это основная,природная, физико- химико- биологическая(Ф,Х,Б) иерархия и побочные две, возникшие на ее основе, социальная (С) и техническая (Т) иерархии. Существование последних по совокупно­сти обратных связей определенным образом влияет на основную иерархию. Объединение систем из разных иерархий приводит к «смешанным» классам систем. Так, объединение систем из физико-химической части иерархии (Ф, X - «среда») с живыми системами биологической части иерархии (Б - «биота») приводит к смешан­ному классу систем, называемых экологическими. А объединение систем из иерархий С

(«человек») и Т («техника») приводит к клас­су хозяйственных, или технико-экономических, систем.

Рис. . Иерархии материальных систем:

Ф, X - физико-химическая, Б - биологическая, С - социальная, Т - техническая

Должно быть понятно, что отображенное на схеме воздействие человеческого общества на природу, опосредованное техникой и технологиями (техногенез), относится ко всей иерархии природных систем: нижняя ветвь - к абиотической среде, верхняя - к биоте биосферы. Ниже будет рассмотрена сопряженность экологических и технико-экономических сторон этого взаимодействия.

Всем системам присущи некоторые общие свойства:

1. Каждая система имеет определенную структуру, определяе­мую формой пространственно-временных связей или взаимодейст вий между элементами системы. Структурная упорядоченность сама по себе не определяет организацию системы. Систему можно на­звать организованной, если ее существование либо необходимо для поддержания некоторой функциональной (выполняющей опреде­ленную работу) структуры, либо, напротив, зависит от деятельности такой структуры.

2. Согласно принципу необходимого разнообразия система не мо­жет состоять из идентичных элементов, лишенных индивидуально­сти. Нижний предел разнообразия - не менее двух элементов (про­тон и электрон, белок и нуклеиновая кислота, «он» и «она»), верх­ний - бесконечность. Разнообразие - важнейшая информацион­ная характеристика системы. Оно отличается от числа разновидно­стей элементов и может быть измерено.3.Свойства системы невозможно постичь лишь на основании свойств ее частей. Решающее значение имеет именно взаимодейст­вие между элементами. По отдельным деталям машины перед сбор­кой нельзя судить о ее действии. Изучая по отдельности некоторые формы грибов и водорослей, нельзя предсказать существование их симбиоза в виде лишайника. Совместное действие двух или более различных факторов на организм почти всегда отличается от суммы их раздельных эффектов. Степень несводимости свойств системы к сумме свойств отдельных элементов, из которых она состоит, опре­деляет эмерджентность системы.

4.Выделение системы делит ее мир на две части - саму систе­му и ее среду. В зависимости от наличия (отсутствия) обмена веще­ством, энергией и информацией со средой принципиально возмож­ны: изолированные системы (никакой обмен невозможен); замкну­тые системы (невозможен обмен веществом); открытые системы(возможен обмен веществом и энергией). Обмен энергии определя­ет обмен информацией. В живой природе существуют только от­крытые динамические системы, между внутренними элементами ко­торых и элементами среды осуществляются переносы вещества, энергии и информации. Любая живая система - от вируса до биосферы - представляет собой открытую динамическую систему.

5. Преобладание внутренних взаимодействий в системе над внешними и лабильность системы по отношению к внешним воз­
действиям определяют ее способность к самосохранению благодаря качествам организованности, выносливости и устойчивости. Внеш­нее воздействие на систему, превосходящее силу и гибкость еевнутренних взаимодействий, приводит к необратимым изменениям
и гибели системы. Устойчивость динамической системы поддержи­вается непрерывно выполняемой ею внешней циклической работой. Для этого необходимы поток и преобразование энергии в сие. теме. Вероятность достижения главной цели системы - самосохранения (в том числе и путем самовоспроизведения) определяется кaк ее потенциальная эффективность.

6. Действие системы во времени называют ее поведением. Вызванное внешним фактором изменение поведения обозначают как реакцию системы, а изменение реакции системы, связанное с изменением структуры и направленное на стабилизацию поведения, -.как ее приспособление, или адаптацию. Закрепление адаптивных изменений структуры и связей системы во времени, при котором ее потенциальная эффективность увеличивается, рассматривается кaк развитие, или эволюция, системы. Возникновение и существование всех материальных систем в природе обусловлено эволюцией. Динамические системы эволюционируют в направлении от более вероятной к менее вероятной организации, т.е. развитие идет по пути усложнения организации и образования подсистем в структуре системы. В природе все формы поведения систем - от элементарной реакции до глобальной эволюции - существенно нелинейны. Важной особенностью эволюции сложных систем является
неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации - раздвоением, расщеплением прежнего пути эволюции. 0т выбора того или иного продолжения пути в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира частиц, веществ, организмов, социумов или, наоборот, гибели системы. Даже для решающих систем результат выбора часто непредсказуем, а сам выбор в точке бифуркации может быть обусловлен случайным импульсом. Любая реальная система может быть представлена в виде некоторого материального подобия или знакового образа, т.е. соответственно аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть
осуществлена в виде логических (причинно-следственных) и/или математических (функциональных) отношений.По мере возрастания сложности систем у них появляются новые эмерджентные качества. При этом сохраняются качества более простых систем. Поэтому общее разнообразие качеств системы возрастает по мере ее усложнения (рис. 2.2).

Рис. 2.2. Закономерности изменений свойств иерархий систем с повышением их уровня (по Флейшману, 1982):

1 - разнообразие, 2 - устойчивость, 3 - эмерджентность, 4 - сложность, 5 - неидентичность, 6 - распространенность

В порядке возрастания активности по отношению к внешним воз­действиям качества системы могут быть упорядочены в следующей последовательности: 1 - устойчивость, 2 - надежность, обусловлен­ная информированностью о среде (помехоустойчивость), 3 - управляемость, 4 - самоорганизация. В этом ряду каждое последующее ка­чество имеет смысл при наличии предыдущего.

Пар Сложность структуры системы опреде­ляется числом п ее элементов и числом т

связей между ними. Если в какой-либо системе исследуется число частных дискретных состояний, то сложность системы С определя­ется логарифмом числа связей:

C=lgm. (2.1)

Системы условно классифицируются по сложности следующим образом: 1) системы, имеющие до тысячи состояний (О < 3), относятся к простым; 2) системы, имеющие до миллиона состояний (3 < С < 6), являют собой сложные системы; 3) системы с числом состояний свыше миллиона (С > 6) идентифицируются как очень сложные.

Все реальные природные биосистемы очень сложны. Даже в структуре единичного вируса число биологически значимых моле­кулярных состояний превышает последнее значение.

Жизнедеятельность экосистемы и круговорот веществ в ней возможны только при условии постоянного притока энергии. Основной источник энергии на Земле - солнечное излучение. Энергия Солнца переводится фотосинтезирующими организмами в энергию химических связей органических соединений. Передача энергии по пищевым цепям подчиняется второму закону термодинамики: преобразование одного вида энергии в другой идет с потерей части энергии. При этом ее перераспределение подчиняется строгой закономерности: энергия, получаемая экосистемой и усваиваемая продуцентами, рассеивается или вместе с их биомассой необратимо передается консументам первого, второго и т.д. порядков, а затем редуцентам с падением потока энергии на каждом трофическом уровне. В связи с этим круговорота энергии не бывает.

В отличие от энергии, которая используется в экосистеме только один раз, вещества используются многократно из-за того, что их потребление и превращение происходит по кругу. Этот круговорот осуществляется живыми организмами экосистемы (продуцентами, консументами, редуцентами) и называется биологическим круговоротом веществ.

Биологический круговорот веществ, или малый — поступление веществ из почвы и атмосферы в живые организмы с соответствующим изменением их химической формы, возвращение их в почву и атмосферу в процессе жизнедеятельности организмов и с посмертными остатками и повторное поступление в живые организмы после процессов деструкции и минерализации с помощью микроорганизмов. Такое понимание биологического круговорота веществ (по Н.П. Ремезову, Л.Е. Родину и Н.И. Базилевич) соответствует биогеоценотическому уровню. Точнее говорить о биологическом круговороте химических элементов, а не веществ, поскольку на разных стадиях круговорота вещества могут химически видоизменяться. По данным В.А. Ковды (1973), ежегодная величина биологического круговорота зольных элементов в системе почва-растение значительно превышает величину годового геохимического стока этих элементов в реки и моря и измеряется колоссальной цифрой 109 т/г.

Экологические системы суши и мирового океана связывают и перераспределяют солнечную энергию, углерод атмосферы, влагу, кислород, водород, фосфор, азот, серу, кальций и другие элементы. Жизнедеятельностью растительных организмов (продуцентов) и их взаимодействиями с животными (консументами), микроорганизмами (редуцентами) и неживой природой обеспечивается механизм накопления и перераспределения солнечной энергии, поступающей на Землю.

Круговорот веществ никогда не бывает полностью замкнутым. Часть органических и неорганических веществ выносится за пределы экосистемы, и в то же время их запасы могут пополняться за счет притока извне. В отдельных случаях степень повторяющегося воспроизводства некоторых циклов круговорота веществ составляет 90-98 %. Неполная замкнутость циклов в масштабах геологического времени приводит к накоплению элементов в различных природных сферах Земли. Таким образом накапливаются полезные ископаемые - уголь, нефть, газ, известняки и т.п.

2. Принципиальные особенности современного естествознания научной картины мира

Естествознание - наука о явлениях и законах природы. Современное естествознание включает многие естественно-научные отрасли: физику, химию, биологию, а также многочисленные смежные отрасли, такие, как физическая химия, биофизика, биохимия и др. Естествознание затрагивает широкий спектр вопросов о многочисленных и многосторонних проявлениях свойств природы, которую можно рассматривать как единое целое.

Современная многообразная техника - плод естествознания, которое и по сей день является основной базой для развития многочисленных перспективных направлений - от наноэлектроники до сложнейшей космической техники, и это очевидно для многих.

Философы всех времен опирались на новейшие достижения науки и, в первую очередь, естествознания. Достижения последнего столетия в физике, химии, биологии и в других науках позволили по-новому взглянуть на сложившиеся веками философские представления. Многие философские идеи рождались в недрах естествознания, а естествознание в свою очередь в начале развития носило натурфилософский характер. Про такую философию можно сказать словами немецкого философа Артура Шопенгауэра (1788-1860): «Моя философия не дала мне совершенно никаких доходов, но она избавила меня от очень многих трат».

Человек, обладающий хотя бы общими и в то же время концептуальными естественно-научными знаниями, т.е. знаниями о природе, будет производить свои действия непременно так, чтобы польза, как результат его действий, всегда сочеталась с бережным отношением к природе и с ее сохранением не только для нынешнего, но и для грядущих поколений.

Познание естественно-научной истины делает человека свободным, свободным в широком философском смысле этого слова, свободным от некомпетентных решений и действий, и наконец, свободным в выборе пути своей благородной и созидательной деятельности.

Нет смысла перечислять достижения естествознания, каждый из нас знает рожденные им технологии и пользуется ими. Передовые технологии базируются в основном на естественно-научных открытиях последних десятилетий XX в., однако, несмотря на ощутимые достижения, возникают проблемы, вызванные главным образом осознанием угрозы экологическому равновесию нашей планеты. Самые разные сторонники рыночной экономики согласятся, что свободный рынок не может защитить слонов в Африке от охотников или исторические памятники Месопотамии - от кислотных дождей и туристов. Только правительства способны устанавливать законы, стимулирующие обеспечение рынка всем тем, что нужно человеку, без разрушения среды его обитания.

Вместе с тем правительства не в силах проводить подобную политику без помощи ученых, и прежде всего ученых, владеющих современным естествознанием. Нужна связь между естествознанием и управляющими структурами в вопросах, касающихся окружающей среды, материального обеспечения и др. Без науки трудно сохранить чистоту планеты: уровень загрязнений нужно измерять, прогнозировать их последствия - только так мы можем узнать о бедах, которые необходимо предотвратить. Лишь с помощью самых современных естественно-научных и в первую очередь физических методов можно следить за толщиной и однородностью озонового слоя, защищающего человека от ультрафиолетового облучения. Только научные исследования помогут понять причины и следствия кислотных осадков и смога, сказывающихся на жизни каждого человека, дать знания, необходимые для полета человека на Луну, исследования глубин океана, найти способы избавления человека от многих тяжелых болезней.

В результате анализа популярных в 70-е годы математических моделей ученые пришли к выводу, что дальнейшее развитие экономики вскоре станет невозможным. И хотя они не привнесли новых знаний, они все-таки сыграли важную роль. Они продемонстрировали возможные последствия наметившихся сегодня тенденций развития. В свое время подобные модели действительно убедили миллионы людей, что защита природы необходима, а это немалый вклад в прогресс. Несмотря на различия в рекомендациях, все модели содержат один главный вывод: природу нельзя дальше загрязнять так, как сегодня

С естественно-научными знаниями можно связать многие проблемы на Земле. Однако проблемы эти порождаются незрелостью самой науки. Дайте ей продолжить свой курс - и человечество преодолеет сегодняшние трудности - таково мнение большинства ученых. Для других, в большей степени тех, кто лишь причисляет себя к когорте ученых, наука потеряла свою значимость.

Естествознание в значительной мере отражает потребности практиков и в то же время финансируется в зависимости от постоянно меняющихся симпатий государства и общественности.

Наука и техника - не только главный инструмент, позволяющий людям приспособиться к постоянно изменяющимся природным условиям, но и главная сила, прямо или косвенно вызывающая такие изменения.

Наряду с явными положительными чертами, присущими естествознанию, следует вести речь и о недостатках, обусловленных и природой самого знания, и непониманием на данном этапе каких-то очень важных свойств материального мира из-за ограниченности познания человека. Скажем, чистые математики сделали открытие, противоречащее представлениям мыслителей прошлого: случайные, хаотические процессы можно описать точными математическими моделями. Причем оказалось, что даже простая модель, оснащенная эффективной обратной связью, настолько чувствительна к малейшим изменениям начальных условий, что ее будущее становится непредсказуемым. Стоит ли тогда спорить о том, детерминистична ли Вселенная, если строго детерминистская модель дает результаты, не отличающиеся от вероятностных?

Цель естествознания - описать, систематизировать и объяснить совокупность природных явлений и процессов. Слово «объяснить» в методологии науки само требует объяснения. В большинстве случаев оно означает понимать. Что обычно подразумевает человек, говоря «Я понимаю»? Как правило, это означает: «Я знаю, откуда это взялось» и «Я знаю, к чему это приведет». Так образуется причинно-следственная связь: причина - явление - следствие. Расширение такой связи и образование многомерной структуры, охватывающей множество явлений, служит основой научной теории, характеризующейся четкой логической структурой и состоящей из набора принципов или аксиом и теорем со всеми возможными выводами. По такой схеме строится любая математическая дисциплина, например, Евклидова геометрия или теория множеств, которые могут служить характерными примерами научных теорий. Построение теории, конечно, предполагает создание особого научного языка, специальной терминологии, системы научных понятий, имеющих однозначный смысл и связанных между собой строгими правилами логики.

После того как теория «проверена опытом, наступает следующая стадия познания действительности, в которой устанавливаются границы истинности наших знаний или границы применимости теорий и отдельных научных утверждений. Данная стадия обусловливается объективными и субъективными факторами. Один из существенных объективных факторов - динамизм окружающего нас мира. Вспомним мудрые слова древнегреческого философа Гераклита (конец VI - начало V вв. до н.э.); «Все течет, все изменяется; в одну и ту же реку нельзя войти дважды» Подводя итог, сформулируем кратко три основных принципа научного познания действительности.

1. Причинность. Первое и достаточно емкое определение причинности содержится в высказывании Демокрита: «Ни одна вещь не возникает беспричинно, но все возникает на каком-нибудь основании и в силу необходимости».

2. Критерий истины. Естественно-научная истина проверяется (доказывается) только практикой: наблюдениями, опытами, экспериментами, производственной деятельностью: Если научная теория подтверждена практикой, то она истинна. Естественно-научные теории проверяются Экспериментом, связанным с наблюдениями, измерениями и математической обработкой получаемых результатов. Подчеркивая важность измерений, выдающийся ученый Д.И. Менделеев (1834 - 1907) писал: «Наука, началась тогда, когда люди научились мерить; точная наука немыслима без меры».

3. Относительность научного знания. Научное знание (понятия, идеи, концепции, модели, теории, выводы из них и т.п.) всегда относительно и ограничено.

Часто встречающееся утверждение: главная цель естествознания - установление законов природы, открытие скрытых истин - явно или неявно предполагает, что истина где-то уже есть и существует в готовом виде, ее надо только найти, отыскать как некое сокровище. Великий философ древности Демокрит говорил: «Истина скрыта в глубине (лежит на дне морском)». Другой объективный фактор связан с несовершенством техники эксперимента, служащей материальной базой любого опыта.

Естествознание тем или иным способом систематизирует наши наблюдения над природой. При этом не следует считать, например, теорию кривых второго порядка приближенной на том основании, что в природе в точности кривых второго порядка нет. Нельзя говорить, что неевклидова геометрия уточняет Евклидову - каждая занимает в системе моделей свое место, являясь точной в соответствии с внутренними критериями точности, и находит применение там, где необходимо. Точно так же неверно утверждать, что теория относительности уточняет классическую механику - это разные модели, имеющие, вообще говоря, и разные сферы приложения.

В современном представлении истина - правильное, адекватное отражение познающим субъектом предметов и явлений действительности, воспроизводящее их так, как они существуют вне и независимо от сознания. Как результат деятельности человеческого мышления истина объективна по содержанию, но субъективна по форме. Можно говорить об относительной истине, отражающей предмет не полностью, а в объективно обусловленных пределах. Абсолютная истина полностью исчерпывает предмет познания. Всякая относительная истина содержит элемент абсолютного знания. Абсолютная истина есть сумма относительных истин. Истина всегда конкретна.

Каким бы ни представлялось содержание истины, занимающей умы великих ученых с древних времен, и как бы ни решался сложный вопрос о предмете науки в целом и естествознании в частности, - одно очевидно: естествознание есть чрезвычайно эффективный, мощный инструмент, не только позволяющий познать окружающий мир, но и приносящий громадную пользу.

С течением времени и особенно в конце последнего столетия наблюдается изменение функции науки и в первую очередь - естествознания. Если раньше основная функция науки заключалась в описании, систематизации и объяснении исследуемых объектов, то сейчас наука становится неотъемлемой частью производственной деятельности человека, в результате чего современное производство - будь то выпуск сложнейшей космической техники, современных супер- и персональных компьютеров или высококачественной аудио- и видеоаппаратуры - приобретает наукоемкий характер. Происходит сращивание научной и производственно-технической деятельности, в итоге появляются крупные научно-производственные объединения - межотраслевые научно-технические комплексы «наука - техника - производство», в которых науке принадлежит ведущая роль. Именно в таких комплексах были созданы первые космические системы, первые атомные электростанции и многое другое, что принято считать наивысшими достижениями науки и техники.

В последнее время специалисты гуманитарных наук считают, что наука - производительная сила. При этом имеется в виду прежде всего естествознание. Хотя наука и не производит непосредственно материальную продукцию, но очевидно, что в основе производства любой продукции лежат научные разработки. Поэтому, когда говорят о науке как о производительной силе, то принимают во внимание не конечную продукцию тоге или иного производства, а ту научную информацию - своего рода продукцию, на базе которой и организуется, и реализуется производство материальных ценностей.

Учитывая такой важный показатель, как количество научной информации, можно сделать не только качественную, но и количественную оценку временного изменения данного показателя и, таким образом, определить закономерность развития науки.

Количественный анализ показывает, что темп развития науки как в целом, так и для таких отраслей естествознания, как физика, биология и т.п., а также для математики, характеризуется приростом на 5-7% в год на протяжении последних 300 лет. При анализе учитывались конкретные показатели: число научных статей, научных сотрудников и т.д. Такой темп развития науки можно охарактеризовать и по-другому. За каждые 15 лет (половина средней разницы в возрасте между родителями и детьми) объем научной продукции возрастает в е раз (е = 2,72 - основание натуральных логарифмов). Это утверждение составляет сущность закономерности экспоненциального развития науки.

Из данной закономерности вытекают следующие выводы. За каждые 60 лет научная продукция увеличивается примерно в 50 раз. За последние 30 лет такой продукции создано приблизительно в 6,4 раза больше, чем за всю историю человечества. В данной связи к многочисленным характеристикам XX в. вполне оправданно можно добавить еще одну - «век науки».

Совершенно очевидно, что в пределах рассмотренных показателей (их, конечно, нельзя считать исчерпывающими для характеристики сложной проблемы развития науки) экспоненциальное развитие науки не может продолжаться бесконечно долго, иначе за сравнительно небольшой интервал времени, в ближайшем будущем все население земного шара превратилось бы в научных сотрудников. Как отмечалось в предыдущем параграфе, даже в большом числе научных публикаций содержится сравнительно небольшое количество по-настоящему ценной научной информации. И не каждый исследователь вносит существенный вклад в подлинную науку. Дальнейшее развитие науки будет продолжаться и в будущем, но, не за счет экстенсивного роста числа научных сотрудников и числа производимых ими научных публикаций, а за счет привлечения прогрессивных методов и технологий исследования, а также повышения качества научной работы.

Сегодня, как никогда, важна развернутая работа не только и не столько по критике и переосмыслению прошлого, сколько по исследованию путей в будущее, поиску новых идей и идеалов. Помимо вопросов экономики, это, наверное, самый значительный социальный заказ отечественной науке и культуре. Прошлые идеи себя исчерпывают или исчерпали, и если мы не заполним образовавшуюся пустоту, то она будет занята еще более старыми представлениями и фундаментализмом, утвержденными уже силой и авторитетом власти. Именно в этом состоит сегодня вызов разуму, уход от которого мы наблюдаем.

3. Во всех инерциальных системах отчета движение происходит по одинаковым закономерностям – это формулировка…

а) закона всемирного тяготения; б) принципы относительности Галилея; в) законы классической механики Ньютона

При́нцип относи́тельности - фундаментальный физический принцип, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Данное определение относится к пункту «б» – принципы относительности Галилея.

4. Принципы относительности Галилея

Галилея принцип относительности, принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы. Отсюда следует, что никакими механическими опытами, проводящимися в какой-либо инерциальной системе, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно. Это положение было впервые установлено Г. Галилеем в 1636. Одинаковость законов механики для инерциальных систем Галилей иллюстрировал на примере явлений, происходящих под палубой корабля, покоящегося или движущегося равномерно и прямолинейно (относительно Земли, которую можно с достаточной степенью точности считать инерциальной системой отсчёта): «Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно… Бросая какую-нибудь вещь товарищу, вы не должны будете бросать ее с большей силой, когда он будет находиться на носу, а вы на корме, чем когда ваше взаимное положение будет обратным; капли, как и ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей» 1 .

Движение материальной точки относительно: её положение, скорость, вид траектории зависят от того, по отношению к какой системе отсчёта (телу отсчёта) это движение рассматривается. В то же время законы классической механики, т. е. соотношения, которые связывают величины, описывающие движение материальных точек и взаимодействие между ними, одинаковы во всех инерциальных системах отсчёта. Относительность механического движения и одинаковость (безотносительность) законов механики в разных инерциальных системах отсчёта и составляют содержание Галилеевского принципа относительности.

Математически Галилеевский принцип относительности выражает инвариантность (неизменность) уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы к другой - преобразований Галилея.

Пусть имеются две инерциальные системы отсчёта, одну из которых, S, условимся считать покоящейся; вторая система, S’, движется по отношению к S с постоянной скоростью u так, как показано на рисунке. Тогда преобразования Галилея для координат материальной точки в системах S и S’ будут иметь вид:

x’ = x — ut, у’ = у, z’ = z, t’ = t (1)

(штрихованные величины относятся к системе S’, нештрихованные - к S). Т. о., время в классической механике, как и расстояние между любыми фиксированными точками, считается одинаковым во всех системах отсчёта.

Из преобразований Галилея можно получить соотношения между скоростями движения точки и её ускорениями в обеих системах:

v’ = v — u, (2)

a’ = a.

В классической механике движение материальной точки определяется вторым законом Ньютона:

F = ma, (3)

Где m - масса точки, a F - равнодействующая всех приложенных к ней сил. При этом силы (и массы) являются в классической механике инвариантами, т. е. величинами, не изменяющимися при переходе от одной системы отсчёта к другой. Поэтому при преобразованиях Галилея уравнение (3) не меняется. Это и есть математическое выражение Галилеевского принципа относительности.

Галилеевский принцип относительности справедлив лишь в классической механике, в которой рассматриваются движения со скоростями, много меньшими скорости света. При скоростях, близких к скорости света, движение тел подчиняется законам релятивистской механики Эйнштейна, которые инвариантны по отношению к другим преобразованиям координат и времени - Лоренца преобразованиям
(при малых скоростях они переходят в преобразования Галилея).

5. Специальная теория относительности Эйнштейна

Специальная теория относительности базируется на двух постулатах. Первый постулат (обобщенный принцип относительности Эйнштейна) гласит: никакими физическими опытами (механическими, электромагнитными и т.д.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения (иными словами, законы природы одинаковы во всех инерциальных системах координат, т.е. системах, движущихся прямолинейно и равномерно друг относительно друга). Этот постулат вытекает из результатов знаменитого опыта Майкельсона-Морлея, измерявших скорость света в направлении движения Земли и в перпендикулярном направлении. Скорость света оказалась одинаковой во всех направлениях, независимо от факта движения источника (кстати, эти измерения отвергли идею существования мирового неподвижного эфира, колебаниями которого объясняли природу света).

Второй постулат говорит о том, что скорость света в вакууме одинакова во всех инерциальных системах координат. Этот постулат понимается (в том числе самим Эйнштейном) в смысле постоянства скорости света. Принято считать, что этот постулат также есть следствие опыта Майкельсона.

Постулаты были использованы Эйнштейном для анализа уравнений электродинамики Максвелла и следующих преобразований Лоренца, позволяющих выражать координаты и время для движущейся системы (отмечены штрихом сверху) через координаты и время для неподвижной системы (эти преобразования оставляют уравнения Максвелла неизменными):


x’ = (x – Vt)/^0,5 (м); y’ = y (м); z’ = z (м); (1)

t’ = (t – xV/c^2)/^0,5 (сек). (2)
Из этих преобразований непосредственно вытекает теорема сложения скоростей Эйнштейна:

Vc = (V1 + V2)/(1 + V1*V2/c^2) (м/сек). (3)

Обычный закон сложения (Vc = V1 + V2 ) действует только при малых скоростях.
На основе выполненного анализа Эйнштейн пришел к выводу, что факт движения системы (со скоростью V ) влияет на ее размеры, скорость течения времени и массу в соответствии с выражениями:

l = lo/^0,5 (м); (4)
delta t = delta to/^0,5 (сек); (5)
M = Mo/^0,5 (кг). (6)
Нулем отмечены величины, относящиеся к неподвижной (покоящейся) системе. Формулы (4) – (6) свидетельствуют о том, что длина движущейся системы сокращается, течение времени на ней (ход часов) замедляется, а масса возрастает. На основе формулы (5) возникла идея так называемого эффекта близнецов. Космонавт, который пролетел на корабле год (по часам корабля) со скоростью 0,9998с , возвратившись на Землю, встретит своего брата-близнеца, постаревшего на 50 лет. Соотношение (6), характеризующее эффект возрастания массы, привело Эйнштейна к формулировке его знаменитого закона (6):

E = Mс^2 (дж).

6. Общая теория относительности Эйнштейна

О́бщая тео́рия относи́тельности (ОТО) - геометрическая теория тяготения , опубликованная Альбертом Эйнштейном в - годах . В рамках этой теории, являющейся дальнейшим развитием специальной теории относительности , постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей , находящихся в пространстве-времени , а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности (ОТО) - современная теория тяготения, связывающая его с кривизной четырехмерного пространства-времени.

Таким образом, в ОТО, как и в других метрических теориях , гравитация не является силовым взаимодействием. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в пространстве материей.

ОТО в настоящее время - самая успешная гравитационная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии
перигелия
Меркурия . Затем, в , Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения , что подтвердило предсказания общей теории относительности . С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории , включая гравитационное замедление времени , гравитационное красное смещение , задержку сигнала в гравитационом поле и, пока лишь косвенно, гравитационное излучение . Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности - существования чёрных дыр .

Эйнштейн сформулировал принцип эквивалентности, утверждающий, что физические процессы в гравитационном поле неотличимы от аналогичных явлений при соответствующем ускоренном движении. Принцип эквивалентности стал основой новой теории, названной общей теорией относительности (ОТО). Возможность реализации этой идеи Эйнштейн увидел на пути обобщения принципа относительности движения, т.е. распространения его не только на скорость, но и на ускорение движущихся систем. Если не приписывать абсолютный характер ускорению, то выделенность класса инерциальных систем потеряет свой смысл и можно формулировать физические законы таким образом, чтобы они относились к любой системе координат. В этом и заключается общий принцип относительности.

С точки зрения ОТО пространство нашего мира не обладает постоянной нулевой кривизной. Кривизна его меняется от точки к точке и определяется полем тяготения, И время в разных точках течет по-разному. Поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств идеального (евклидова) пространства. Поле тяготения в каждой точке определяется значением кривизны пространства в этой точке. При этом искривление пространства-времени определяется не только полной массой вещества, из которого слагается тело, но и всеми видами энергии, присутствующими в нем, в том числе энергии всех физических полей. Так, в ОТО обобщается принцип тождества массы и энергии СТО: Е= mc 2 . Таким образом, важнейшее отличие ОТО от других физических теорий состоит в том, что она описывает тяготение как воздействие материи на свойства пространства-времени, эти свойства пространства-времени, со своей стороны, влияют на движение тел, на физические процессы в них.

В ОТО движение материальной точки в поле тяготения рассматривается как свободное «инерциальное» движение, но происходящее не в евклидовом, а в пространстве с изменяющейся кривизной. В результате движение точки уже не является прямолинейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства. Для определения кривизны пространства необходимо знать выражение для компонент фундаментального тензора (аналога потенциала в ньютоновской теории тяготения). Задача заключается в том, чтобы, зная распределения тяготеющих масс в пространстве, определить функции координат и времени (компонент фундаментального тензора); тогда можно записать уравнение геодезической линии и решить проблему движения материальной точки, проблему распространения светового луча и т.д.

Эйнштейн нашел общее уравнение гравитационного поля (которое в классическом приближении переходило в закон тяготения Ньютона) и таким образом решил проблему тяготения в общем виде. Уравнения гравитационного поля в общей теории относительности представляют собой систему из 10 уравнений. В отличие от теории тяготения Ньютона, где есть один потенциал гравитационного поля, который зависит от единственной величины - плотности массы, в теории Эйнштейна гравитационное поле описывается 10 потенциалами и может создаваться не только плотностью массы, но также потоком массы и потоком импульса.

Еще одно кардинальное отличие ОТО от предшествующих ей физических теорий состоит в отказе от ряда старых понятий и формулировке новых. Так, ОТО отказывается от понятий «сила», «потенциальная энергия», «инерциальная система»» «евклидов характер пространства-времени» и др.; В ОТО используют нежесткие (деформирующиеся) телаотсчета, поскольку в гравитационных полях не существует твердых тел и ход часов зависит от состояния этих полей. Такая система отсчета (ее называют «моллюском отсчета») может двигаться произвольным образом, и ее форма может изменяться, у используемых часов может быть сколь угодно нерегулярный ход. ОТО углубляет понятие поля, связывая воедино понятия инерции, гравитации и метрики пространства-времени, допускает возможность гравитационных волн. Гравитационные волны создаются переменным гравитационным полем, неравномерным движением масс и распространяются в пространстве со скоростью света. Гравитационные волны в земных условиях очень слабы. Есть возможность реальной фиксации гравитационного излучения, возникающего в грандиозных катастрофических процессах во Вселенной - вспышках сверхновых звезд, столкновении пульсаров и др. Но их до сих пор экспериментально обнаружить не удалось.

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный с тем, что её не удаётся переформулировать как классический предел квантовой теории из-за появления неустранимых математических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этой проблемы был предложен ряд альтернативных теорий . Современные экспериментальные данные указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.
ФОРМИРОВАНИЕ СОВРЕМЕННОЙ ФИЗИЧЕСКОЙ КАРТИНЫ МИРА ПРИНЦИПЫ И ПОНЯТИЯ ЭЙНШТЕЙНОВСКОЙ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (ТЕОРИИ ГРАВИТАЦИИ) Концепции уровней биологических структур и организации живых систем ЗАКОНЫ СОХРАНЕНИЯ

2014-11-17

Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...