Более горячими являются звезды. «Холодное Солнце с горячей фотосферой

А другая крайность, это звезды во много крат холоднее Солнца, так называемые - красные звезды. Недавно астрофизикам посчастливилось ответить на вопрос - какая же звезда самая холодная. Это звезда CFBDS0059 с температурой 350 (триста пятьдесят!) градусов по шкале Цельсия!

Невероятно, но факт, что поверхность этой недо- звезды холоднее, чем поверхность Венеры. Оказывается астрономы могут ответить на вопрос, как такое может быть. Однако, даже звезды красные карлики имеют температуру 2.000 – 3.000 градусов. Ну что ж, получается, что могут существовать более холодные, а значит и более тусклые звезды. Такие звезды называются коричневыми карликами. Но, если честно, то это все таки не совсем звезды, в классическом их понимании. Это скорее особый класс небесных тел.

Четкую грань между звездами и планетами провести, ой как непросто! Коричневые карлики - это особый класс объектов, являющийся промежуточным звеном между звездами и планетами. Молодые коричневые карлики являются - звездами. Старые коричневые карлики являются планетами группы Юпитера и других планет гигантов.

По теории строения и жизни звезд считается, что нижним пределом массы для звезд считается - 80 масс Юпитера, потому что, при меньшей массе не смогут начаться, а начавшись долго идти, термоядерные реакции, которые являются основой существования любой звезды. Эта термоядерная реакция снабжает звезды энергией. Однако, по заверениям ученых, коричневые карлики сжигают не обычный водород, а тяжелый водород - дейтерий. Его хватает очень не надолго, и поэтому какое-то время звезда благополучно горит, но потом начинает быстро остывать, превращаясь по видимому в планету, класса Юпитера.

Для возникновения коричневого карлика достаточно всего лишь ничего - 13 масс Юпитера. Астрономам было известно о существовании двух видов коричневых карликов – L и Т классов. L карлики более горячие, чем их собратья - Т карлики. Выяснено, что открытая холодная звезда принадлежит к совершенно новому, ранее существовавшему только в бумажной теории - Y классу.

Звезда CFBDS0059 имеет массу от 15 до 30 масс Юпитера и находится от нас на довольно смешном, по меркам Вселенной, расстоянии - 40-ка световых лет. Особенностью этой холодной звезды (коричневого карлика Y-класса) является то, что из-за своей низкой температуры Y-карлик CFBDS0059 чрезвычайно тусклый и излучает в основном свет в инфракрасной области спектра.

В любительский, а тем более и в самодельный, телескоп этот малый и крайне холодный (для звезды) объект увидеть невозможно. Учеными при открытии использовались крупные телескопы с диаметром зеркал от 8-ми до 10-ти метров. В спектре новоткрытого коричневого карлика обнаружены спектральные линии поглощения метана, что в общей картине с другими данными убедило астрономов, что открыта звезда, а не планета, с рекордно низкой температурой на ее поверхности. Итак, открыта Темная и Холодная звезда - коричневый карлик Y-класса, с температурой на поверхности всего лишь 350 градусов по шкале Цельсия!

Вокруг нас столько всего странного, занятного и интересного, а кто-то ещё умудряется скучать.

Прекрасный и удивительный космос


Космос прекрасен и весьма удивителен. Планеты вращаются вокруг звезд, которые умирают и снова гаснут, а все в галактике вращается вокруг сверхмассивной черной дыры, медленно засасывающей все, что подойдет слишком близко. Но иногда космос подбрасывает настолько странные вещи, что вы скрутите свой разум в крендель, пытаясь понять это…

Туманность Красный Квадрат

Объекты в космосе по большей части весьма округлые. Планеты, звезды, галактики и форма орбит — все напоминает круг. Но туманность Красный Квадрат, облако газа интересной формы, хм, квадратная. Разумеется, астрономы весьма и весьма удивились, поскольку объекты в космосе не должны быть квадратными.

На самом деле, это не совсем квадрат. Если вы внимательно посмотрите на изображение, вы заметите, что в поперечнике форма образована двумя конусами в точке соприкосновения. Но опять же, в ночном небе не так много конусов.

Туманность в форме песочных часов светится весьма ярко, поскольку в самом ее центре находится яркая звезда — там, где соприкасаются конусы. Вполне возможно, что эта звезда взорвалась и стала сверхновой, в результате чего кольца у основания конусов стали светиться интенсивнее.

Столкновения галактик

В космосе все постоянно движется — по орбите, вокруг своей оси или просто мчится через пространство. По этой причине — и благодаря невероятной силе притяжения — галактики сталкиваются постоянно. Возможно, вас это не удивит — достаточно посмотреть на Луну и понять, что космос любит удерживать мелкие вещи возле крупных. Когда две галактики, содержащие миллиарды звезд, сталкиваются, наступает локальная катастрофа, да?

На самом деле, в столкновениях галактик вероятность того, что две звезды столкнутся, практически равна нулю. Дело в том, что помимо того, что космос сам по себе велик (и галактики тоже), он также сам по себе довольно пустой. Поэтому его и называют «космическим пространством». Хотя наши галактики и смотрятся твердыми на расстоянии, не забывайте, что ближайшая к нам звезда находится на расстоянии 4,2 световых лет от нас. Это очень далеко.

Столпы Творения

Как однажды написал Дуглас Адамс, «космос большой. На самом деле большой. Вы даже представить не можете, насколько умопомрачительно он большой». Мы все знаем, что единицей измерения, которой измеряют расстояния в космосе, является световой год, но мало кто задумывается о том, что это означает. Световой год — это настолько большое расстояние, что свет — нечто, что движется быстрее всего во Вселенной — проходит это расстояние только за год.

Это означает, что когда мы смотрим на объекты в космосе, которые действительно далеки, вроде Столпов Творения (образования в туманности Орла), мы смотрим назад во времени. Как так получается? Свет из туманности Орла достигает Земли за 7000 лет и мы видим ее такой, какой она была 7000 лет назад, поскольку то, что мы видим — это отраженный свет.

Последствия этого заглядывания в прошлое весьма странные. К примеру, астрономы считают, что Столпы Творения были уничтожены сверхновой около 6000 лет назад. То есть этих Столпов уже просто не существует. Но мы их видим.

Проблема горизонта

Космос — сплошная загадка, куда ни глянь. Например, если мы посмотрим в точку на востоке нашего неба и измерим радиационный фон, а затем проделаем то же самое в точке на западе, которая будет отделена от первой 28 миллиардами световых лет, мы увидим, что фоновое излучение в обеих точках одинаковой температуры.

Это кажется невозможным, потому что ничто не может двигаться быстрее света, и даже свету понадобилось бы слишком много времени, чтобы пролететь от одной точки к другой. Как мог микроволновой фон стабилизироваться почти однородно по всей вселенной?

Это может объяснить теория инфляции, которая предполагает, что вселенная растянулась на большие расстояния сразу после Большого Взрыва. Согласно этой теории, не Вселенная образовалась путем растягивания своих краев, а само пространство-время растянулось, как жвачка, в доли секунды.

В это бесконечное короткое время в этом космосе нанометр покрывал несколько световых лет. Это не противоречит закону о том, что ничто не может двигаться быстрее скорости света, потому что ничто и не двигалось. Оно просто расширялось.

Представьте себе первоначальную вселенную как один пиксель в программе для редактирования изображений. Теперь масштабируйте изображение с коэффициентом в 10 миллиардов. Поскольку вся точка состоит из того же материала, ее свойства — и температура в том числе — однородны.

Как черная дыра вас убьет

Черные дыры настолько массивны, что материал начинает вести себя странно в непосредственной близости к ним. Можно представить, что быть втянутым в черную дыру — значит провести остаток вечности (или истратить оставшийся воздух), безнадежно крича в туннеле пустоты. Но не переживайте, чудовищная гравитация лишит вас этой безнадежности.

Сила гравитации тем сильнее, чем ближе вы к ее источнику, а когда источник представляет собой такое мощное тело, величины могут серьезно меняться даже на коротких дистанциях — скажем, высота человека.

Если вы упадете в черную дыру ногами вперед, сила гравитации, воздействующая на ваши ноги, будет настолько сильной, что вы увидите, как ваше тело вытягивается в спагетти из линий атомов, которые затягиваются в самый центр дыры. Мало ли, вдруг эта информация будет для вас полезной, когда вы захотите нырнуть в чрево черной дыры.

Клетки мозга и Вселенная

Недавно физики создали имитацию начала вселенной, которая началась с Большого Взрыва и последовательности событий, которые привели к тому, что мы видим сегодня. Ярко-желтый кластер плотно упакованных галактик в центре и «сеть» менее плотных галактик, звезд, темной материи и прочего-прочего.

Модель крупномасштабной структуры космоса

В то же время студент из Университета Брандиса исследовал взаимосвязь нейронов в мозге, разглядывая тонкие пластинки мозга мыши под микроскопом. Изображение, которое он получил, содержит желтые нейроны, связанные красной «сетью» соединений. Ничего не напоминает?

Нейроны головного мозга

Два изображения, хотя и сильно отличаются своими масштабами (нанометры и световые года), поразительно похожи. Что это, обычный случай фрактальной рекурсии в природе, или вселенная действительно представляет собой клетку мозга внутри другой огромной вселенной?

Недостающие барионы

Согласно теории Большого Взрыва, количество материи во вселенной в конечном итоге создаст достаточное гравитационное притяжение, чтобы замедлить расширение вселенной до полной остановки.

Однако барионная материя (то, что мы видим — звезды, планеты, галактики и туманности) составляет лишь от 1 до 10 процентов от всей материи, которая должна быть. Теоретики сбалансировали уравнение гипотетической темной материей (которую мы не можем наблюдать), чтобы спасти ситуацию.

Каждая теория, которая пытается объяснить странное отсутствие барионов, остается ни с чем. Самая распространенная теория гласит, что пропавшая материя состоит из межгалактической среды (дисперсный газ и атомы, плавающие в пустотах между галактиками), но даже с учетом этого у нас остается масса пропавших барионов.

Пока у нас нет ни малейшего представления о том, где находится большая часть материи, которая должна быть на самом деле.

Холодные звезды

В том, что звезды горячие, никто не сомневается. Это так же логично, как и то, что снег белый, а дважды два — четыре. При посещении звезды мы бы больше переживали о том, как не сгореть, а не о том, как бы не замерзнуть — в большинстве случаев.

Коричневые карлики — это звезды , которые весьма холодны по стандартам звезд. Не так давно астрономы обнаружили тип звезд под названием Y-карлики, которые представляют собой самый холодный подвид звезд в семействе коричневых карликов.

Y-карлики холоднее, чем человеческое тело. При температуре в 27 градусов по Цельсию, можно спокойно пощупать такого коричневого карлика, прикоснуться к нему, если только его невероятная гравитация не превратит вас в кашу.

Эти звезды чертовски трудно обнаружить, поскольку они не выделяют практически никакого видимого света, поэтому искать их можно только в инфракрасном спектре. Ходят даже слухи, что коричневые и Y-карлики — это и есть та самая «темная материя», которая исчезла из нашей Вселенной.

Проблема солнечной короны

Чем дальше объект от источника тепла, тем он холоднее. Вот почему странно то, что температура поверхности Солнца составляет около 2760 градусов по Цельсию, а его корона (что-то типа его атмосферы) в 200 раз жарче.

Даже если могут быть какие-нибудь процессы, которые объясняют разницу температур, ни один из них не может объяснить настолько большую разницу.

Ученые полагают, что это как-то связано с небольшими вкраплениями магнитного поля, которые появляются, исчезают и передвигаются по поверхности Солнца. Поскольку магнитные линии не могут пересекаться друг с другом, вкрапления перестраиваются каждый раз, когда подходят слишком близко, и этот процесс нагревает корону.

Хотя это объяснение может показаться аккуратным, оно далеко не изящно. Эксперты не могут сойтись во мнении о том, как долго живут эти вкрапления, не говоря уж о процессах, посредством которых они могли бы нагревать корону. Даже если ответ на вопрос кроется в этом, никто не знает, что заставляет эти случайные вкрапления магнетизма вообще появляться.

Черная дыра Эридана

Hubble Deep Space Field — это снимок, полученный телескопом Хаббла, на котором запечатлены тысячи удаленных галактик. Однако, когда мы смотрим в «пустой» космос в области созвездия Эридан, мы ничего не видим. Вообще. Просто черную пустоту, растянувшуюся на миллиарды световых лет.

Почти любые «пустоты» в ночном небе возвращают снимки галактик, хоть и размытых, но существующих. У нас есть несколько методов, которые помогают определить то, что может быть темной материей, но и они оставляют нас с пустыми руками, когда мы смотрим в пустоту Эридана.

Одна спорная теория говорит о том, что пустота содержит сверхмассивную черную дыру, вокруг которой вращаются все ближайшие галактические скопления, и это высокоскоростное вращение совмещается с «иллюзией» расширяющейся вселенной. Другая теория говорит о том, что вся материя когда-нибудь склеится вместе, образовав галактические скопления, а между скоплениями со временем образуются дрейфующие пустоты.

Но это не объясняет вторую пустоту, обнаруженную астрономами в южном ночном небе, которая на этот раз примерно 3,5 миллиарда световых лет в ширину. Она настолько широка, что ее с трудом может объяснить даже теория Большого Взрыва, поскольку Вселенная не существовала настолько долго, чтобы такая огромная пустота успела сформироваться путем обычного галактического дрейфа.

«Холодное Солнце с горячей фотосферой

Механизм гравитации»

Все народы, во все времена с благодарностью обращались к Солнцу - к вечному бесплатному дарителю тепла и света. Великий М.В. Ломоносов, рассуждая о Солнце, назвал его «горящим вечно Океаном - там вихри пламенны крутятся…». Но как работает это Солнце? За счет чего миллиарды лет создается звездой, вокруг которой вечный холод Вселенной, такая колоссальная энергия? Причем, только в нашей Галактике миллиарды звезд, а во Вселенной миллиарды галактик.

Известно, что 450 лет назад великий астроном, физик Иоганн Кеплер считал, что «звезды вморожены в неподвижную твердь из льда»! Известный астроном, ученый В. Гершель (1738 - 1822) в 1795 г. создал теорию строения Солнца, которая пользовалась широким признанием более века. Согласно этой теории «само Солнце - холодное, твердое, темное тело, окруженное двумя облачными слоями, из которых, фотосфера, крайне раскален и ярок. Внутренний слой облаков, как своеобразный экран, защищает центральное ядро от действия жара». Теория холодного Солнца с горячей фотосферой в дальнейшем могла успешно развиваться и постепенно утверждаться за счет последующих неоспоримых доказательств и открытий.

И одним из первых, кто сделал шаг в этом направлении, был Д.И. Менделеев. В своей работе («Попытка химического понимания мирового эфира», 1905 г.) он сообщал: « Задачу тяготения и задачи всей энергетики нельзя представить реально решенными без реального понимания эфира, как мировой среды, передающей энергию на расстояния. Реального же понимания эфира нельзя достичь, игнорируя его химизм и не считая его элементарным веществом». «Элемент “у” (Короний), однако, необходим для того, чтобы умственно подобраться к тому наиглавнейшему, а потому и наиболее быстро движущемуся элементу “х”, который можно считать эфиром. Мне бы хотелось предварительно назвать его “Ньютонием” — в честь Ньютона...»

В журнале «Основы химии.(VIII издание, СПб.,1906г.) Д.И. Менделеев (1834 - 1907) публикует свою выдающуюся таблицу: «Периодическая система элементов по группам и рядам». Учитывая фундаментализм микрочастиц «мирового эфира» в построении элементов вещества, Менделеев ввел в свою таблицу в нулевую группу две микрочастицы «мирового эфира», заполняющие все межзвездное пространство, Короний и Ньютоний, которые непосредственно участвуют в процессах создания элементов вещества и в выполнении «задачи тяготения». Но после смерти Д.И. Менделеева фундаментальные микрочастицы Короний и Ньютоний из таблицы убрали. Тем самым, была утрачена связь тончайшего микромира межзвездного пространства с окружающим макромиром, созданный из элементов вещества. «Если температура системы, находящейся в равновесии, изменяется, то, при повышении температуры - равновесие смещается в сторону процесса, идущего с поглощением тепла, а при понижении температуры - в сторону процесса, идущего с выделением тепла ».

Согласно закона Вант-Гоффа (1852 - 1911) : т.к. Солнце, выделяет тепло на поверхности Т = 6000К, тогда внутри Солнца должен идти процесс понижения температуры. Следовательно, внутри Солнца - холод! В 1895-х годах был сформулирован закон Вант-Гоффа о равновесии при изменении температуры:

В первые десятилетия ХХ века, трудами выдающихся ученых, были открыты составные части атома: электрон, протон, нейтрон. Но для научного мира все еще оставался не ясным вопрос о таинственном источнике энергии Солнца. В 1920-х годах ядерная физика была еще молода, делала только первые робкие шаги. И тут английский астроном Артур Эддингтон (А.S. Eddington) (1882 - 1944) предложил модель: Солнце - это газовый шар, где температура в центре настолько высока, что за счет высвобождаемой ядерной энергии, обеспечивается свечение Солнца. В термоядерной реакции четыре протона(ядра водорода) соединяются и образуют ядро атома гелия с выделением тепловой энергии. Ядро атома гелия, как известно, состоит из двух протонов и двух нейтронов. Физики-атомщики возражали против гипотезы Эддингтона, т.к. соединить ядра водорода очень трудно, т.к. это положительно заряженные протоны, которые отталкиваются друг от друга,. В 1920-х годах эта проблема была неразрешимой, но через десятилетия, с открытием сильного ядерного взаимодействия, посчитали, что трудности можно преодолеть. Если протоны сталкивать с большими скоростями, они могут сблизиться настолько, что сильное ядерное взаимодействие будет возможно, и, несмотря на электростатическое отталкивание, протоны сформируют ядро гелия. Температура в центре Солнца - 15 мил. градусов достаточна высока, чтобы ядра водорода достигли высоких скоростей, при которых и возможно их слияние, как утверждал Эддингтон.

Прошел почти век, затрачены миллиардные валютные средства, но создать земной реактор, где при высокой температуре должен происходить синтез ядер водорода в ядро гелия, так и не удалось. Основная причина - игнорирование термодинамических процессов в окружающей природе, где беспрерывно идет холодный термоядерный процесс.

Необходимо вернуться к теории В. Гершеля - «холодному Солнцу с горячей фотосферой», к закону температурного равновесия Вант-Гоффа, к микрочастицам межзвездного пространства, предсказанных Д.И. Менделеевым, - Короний и Ньютоний, участвующих в создании атомов элементов вещества. Межзвездное пространство Галактики, представляющая собой равновесную температурную систему с температурой ТR = 2,7К, заполнено миллиардами горячих звезд, которые вращаются вокруг центра Галактики. Значит, в Галактике существует резкий температурный перепад - и это создает силу перехода микрочастиц межзвездного пространства к центру холода; движения, сжатия микрочастиц и повышения температуры. Формирование из микрочастиц протонов, атомов элементов вещества, звезд. Солнце, как и любая звезда - это идеальная тепловая машина, беспрерывно излучающая тепло в межзвездное пространство Галактики. Но температура межзвездного пространства ТR = 2,7К постоянна. Следовательно, сколько тепла Солнце отдает холодному межзвездному пространству, столько тепла Солнце получает уже в свой холодильник из межзвездного пространства. Весь этот замкнутый цикл теплового процесса идет по второму закону термодинамики - переход тепла в холодную область. Температурный режим работы Солнца идет по схеме работы холодильника: отношение температуры поверхности Солнца Тпс = 6000К к температуре Солнечной системы Тсс, куда выбрасывается солнечная плазма, должно быть равно отношению температуры Солнечной системы Тсс, к температуре межзвездного пространства ТR = 2,7К, куда, в конечном итоге отбрасывается солнечное тепло.

Получаем формулу: Тпс / Тсс,= Тсс / ТR ; Т 2сс = Тпс ТR ; Температура Солнечной системы: Тсс = 127,28К

Раз Солнце излучатель тепла через фотосферу, то оно должно иметь в центре холодильник с температурой Тхс, так как излучать тепло Солнце не может без постоянной подпитки теплом - космическими температурными частицами, которые должны беспрерывно заходить в холодильник центра ядра Солнца.

По формуле, которая примет вид: Тсс / Т R = Т R / Тхс, можно определить Tхс - температуру холодильника в центре Солнца, который дает возможность задействовать обратный тепловой процесс: сколько отдает Солнце тепла в TR = 2,7К - в межзвездное пространство Галактики через температурное выходное поле Tсс = 127,28К, столько должно Солнце получить тепла в холодильник Тхс из межзвездного космического пространства. Определяем температуру холодильника в центре Солнца: Tхс = ТR 2 / Тсс Tхс = (2,7К) 2 / 127,28К = 0,057275К = ~ 0,05728К

Температурный вход тепла космоса в холодный центр Солнца и температурный выход тепла с поверхности Солнца в космическое пространство, через выходное температурное поле Тсс = 127,28К, представлен на схеме:

В холодильнике микрочастицы Т = 2,7К разрываются, на микрочастицы с температурой равной микрочастицам холодильника Т = 0,05727К с поглощением тепла. Давление в холодильнике повышается и «лишние» микрочастицы выбрасываются из холодильника и становятся основой уже холодильника частицы, которая, с помощью космических микрочастиц, увеличивает свою массу до протона, нейтрона, атома в графитовых туннелях внутреннего, центрального, и внешнего ядер Солнца. Без холодного центра в частице создание, формирование протона, атома, клетки - не возможно. Таким образом, внутри Солнца идет холодный термоядерный процесс.

Природа творит однотипные конструкции: жизнь в клетке и частице зарождается с микрочастиц. Появляются атом вещества; процесс создания атома идет без повышения температуры за счет поступления космических микрочастиц в холодильник частицы.

Выход энергии Солнца идет через протонную ударную волну. Внутреннее ядро имеет температуру протонной ударной волны Т = 2,7К; центральное ядро - Т = 127,28К; внешнее ядро - Т = 6000К.

По формуле равенства макро и микромира Mvn = mрСk , где M - масса протонной ударной волны Солнца;

v - скорость протона в ударной протонной волне с температурой Т = 6000К. n = g = 47,14 м/с2 - ускорение выброса частиц из протонной ударной волны; mр - масса протона;

k = S/sр - коэффициент отношений: площади сферы протонной ударной волны Солнца S = 4 π R2 к площади протона sр = π r2 .

Определяем радиус протонной ударной волны: R = 6,89 .108м.

Так как протонная ударная волна с температурой Т = 6000К создается у поверхности внешнего ядра, поэтому, радиус ядра фактически равен радиусу протонной ударной волны. Объем внешнего ядра по протонной ударной волне равен V = 13,7 .1026 м3

Радиус Солнца был определен по фотосфере и составляет Rс = 6,95 .108м. Тогда объем Солнца равен V = 14,06 .1026 м3 Получается, что 97,45% от всего объема Солнца - это холодное тело.

Как уже не раз бывало в истории - необходимо восстановить истину уникального явления природы, которое идет по закону сохранения энергии: с каким перепадом температур тепло передается из межзвездного пространства в холодный центр звезды, с таким же перепадом температур звезда излучает тепло в межзвездное пространство.

Действие механизма гравитации на Солнце - это беспрерывный процесс, который происходит за счет давления микрочастиц (на тела, частицы) при их термодинамическом переходе из “теплого” межзвездного пространства с температурой ТR = 2,7К в холодную область центра Солнца Тхс = 0,05728К - холодильник, выходное поле фундаментального ядра.

Гравитация на Солнце равна: gгр = ТR / Tхс = 2,7К / 0,05728К = 47,14 На Земле температура холодильника равна Tхз = 0,275К и гравитация на Земле составляет: gгр = ТR / Tхз = 2,7К / 0,275К = 9,81 Выброс солнечной плазмы - солнечных частиц Т = 6000К: в температурное поле Земли Тз = 26,5К - идет с коэффициентом g = 226 ; в температурное поле Тα = 21,89К - между Марсом и Юпитером g = 274 . Средняя температура короны Солнца: Т = 6000К.274 =1,65 .106К Чтобы отбросить планеты-гиганты, температура короны Солнца: Т= ~ 2 мил.град. С какой силой Fотд Солнце отбрасывает планеты своими частицами, с такой же силой Fтяг планеты рвутся к холодному центру Солнца: Fотд = Fтяг

У Солнца, протона, нейтрона, атома, есть центры холода, куда заходят магнитно- силовыми линиями космические микрочастицы с температурой Т = 2,47. 10-12 К - Ньютоны, которые объединяют весь звездный мир Галактики, все атомы в единое термодинамическое пространство.

Исследование ультрафиолетового излучения Солнца.(Интернет - фото)

/Фото космического аппарата «ЕSSA - 7»(США) 23.11.1968г./Исследование ультрафиолетового излучения Солнца.(Интернет - фото)

У Солнца нет ядра с температурой в 15 мил. градусов - это мощное рентгеновское излучение,(см. таблицу А). На поверхности Солнца, где Т = 6000К, обязательно высветилось бы темное ядро. Но его нет, см. рис 1 - 8а.

Известно, что агрессивное ультрафиолетовое излучение идет от разреженной плазмы короны Солнца и задерживается атмосферой Земли.

Но что произойдет, если рентгеновское излучение раскаленного ядра будет беспрепятственно проникать к поверхности планеты? - все будет выжжено: растительный и живой мир будет полностью отсутствовать на Земле. Между прочим, был получен снимок Земли из космоса, где в центре высвечивается темным пятном твердое ядро Земли.

Земля из космоса со стороны Северного полюса.

/Фото космического аппарата «ЕSSA - 7»(США) 23.11.1968г./

Отношение диаметра Земли к диаметру темного диска d в центре полюса, по размерам с фото: Dз / d = 5,3 . Эта величина равна отношению реального диаметра Земли Dз к диаметру твердого ядра dя в центре планеты:

Dз / dя = 12,74. 103 км / 2,4. 103 км = 5,3.

Следовательно, темный диск - это твердое ядро Земли с протонной ударной волной Т= 6000К - земное солнце, на светлом температурном фоне Т = 260К поверхности Земли.

Надо восстановить историческую справедливость и дать человеку истинные знания о теории строения Солнца. А не заставлять всех плясать, как аборигенов, вокруг горящего костра - раскаленного ядра Солнца до 15 мил. градусов, которого никогда не было в природе. Необходимо перетряхнуть, срочно удалить все, что ненужно и дать человеку возможность познать всю глубину мироздания окружающей природы.

Солнце - это наше богатство, это счастье, улыбки, радость первым солнечным лучам. И было бы справедливо в каждой школе, в каждом городе провести праздник - карнавал под девизом: «Здравствуй Солнце!» . Этот праздник - откроет новую эру знаний о Солнце и навсегда закроет страницу несправедливости к главнейшему источнику тепла и света Земле.

Используемая литература:

1. Александров Е. В поисках пятой силы. Ж. «Наука и жизнь» №1, 1988г. 2. Бадьин Ю. Ударно-волновая термодинамика. Механизм гравитации. Изд. «Экология +» С-Петербург - Тольятти, 2009г. 3. Бадьин Ю. Солнце - холодное тело с горячей фотосферой. Механизм гравитации. Изд. «Экология +» С-Петербург - Тольятти, 2015г. 4. Бялко А. Наша планета - Земля. Изд. «Наука». Москва, 1983г. 5. Вайнберг С. Открытие субатомных частиц, Изд. «Мир», Москва 1986г. 6. Воронцов-Вельяминов Б. Астрономия. Изд. «Дрофа», Москва, 2001г. 7. Глинка Н. Общая химия. Госхимиздат. Москва, 1956г. 8. Жарков В. Внутреннее строение Земли и планет. Изд. Наука, Москва, 1983г. 9. Климишин И. Открытие Вселенной. Изд. «Наука», Москва, 1987г. 10. Куликов К., Сидоренков Н. Планета Земля. Изд. «Наука», Москва, 1977г. 11. Нарликар Д. Гравитация без формул. Изд. «Мир». Москва, 1985г. 12. Родионов В. Место и роль мирового эфира в истинной таблице Д.И. Менделеева. Ж. Русского физического общества(ЖРФМ, 2001, 1-12, стр. 37-51) 13 . Фейнман Р. Характер физических законов. Изд. «Наука», Москва, 1987г.

Член-корреспондент МАНЭБ Ю. М. Бадьин, собственный корреспондент "Семь Вёрст"

Адрес: 445028 , г. Тольятти, а/я 1078 .

Тел. сот. 8 917 133 43 16.

Судьба звезд

Звезды, как и люди – рождаются, живут и умирают… И у каждой, можно сказать, своя судьба. Одни проходят свой жизненный путь без эксцессов, благочинно угасая красным гигантом, другие взрываются сверхновыми. Известно, что на поверхности звезды очень жарко. А бывают ли холодные звёзды? Оказывается, бывают! Звезды – источник тепла и света во Вселенной.

Температура чашки кофе

Бывают голубые гиганты, очень горячие и яркие, а бывают красные гиганты - остывающие и умирающие звёзды. До недавнего времени считалось, что красный гигант и есть самая холодная звезда. Но после изобретения сверхчувствительных телескопов открытия посыпались, как из рога изобилия.

Выяснилось, например, что видов звезд гораздо больше, чем считали учёные. И температура у них может быть намного меньше, чем предполагали. Как оказалось, температура самой холодной из известных на сегодняшний день ученым звёзд +98 о С. Это же температура чашки утреннего кофе! Выяснилось, что такие объекты во множестве есть во Вселенной - им дали название «коричневые карлики».

В недрах звезды

Для того, чтобы в недрах звезды вспыхнул котёл термоядерных реакций, ей нужна масса и температура, достаточные для возникновения и поддержания реакции термоядерного синтеза. Если же звезда веса не добрала, то и тепла не будет, вернее, будет, но совсем чуть-чуть. Удивительно, что такие «несуразные» объекты астрономы все равно относят к звёздам.

В совзвездии Волопаса

До недавнего времени считали, что самая холодная звезда имеет температуру +287 о С. Теперь появился новый рекордсмен. Однако в стане учёных нет единодушия: например, Майкл Ли из Гавайского университета считает, что отныне можно относить «коричневых карликов» к холодным планетам, ведь по его прогнозам в атмосфере новооткрытой звезды может находиться водяной пар…

Открыли новый объект астрономы из Гавайской обсерватории. Находится эта «звезда» в созвездии Волопаса, сравнительно недалеко, по космическим меркам, от Земли - на расстоянии в 75 световых лет, и носит гордое, хотя и неудобоваримое, название CFBDSIR 1458 10ab.

Во Вселенной триллионы звезд. Большинство из них мы даже не видим, а те, что доступны нашему глазу, могут быть яркими или очень тусклыми, в зависимости от размера и прочих свойств. Что мы знаем о них? Какая звезда самая маленькая? Какая самая горячая?

Звезды и их разновидности

Наша Вселенная переполнена интересными объектами: планетами, звездами, туманностями, астероидами, кометами. Звезды представляют собой массивные шары из газов. Равновесие им помогает удерживать сила собственной гравитации. Как и все космические тела, они перемещаются в пространстве, но из-за большого расстояния это трудно заметить.

Внутри звезд происходят термоядерные реакции, благодаря чему они излучают энергию и свет. Их яркость значительно колеблется и измеряется в звездых величинах. В астрономии каждой величине соответствует определенный номер, а чем он меньше, тем меньше яркость звезды. Самая маленькая звезда по величине называется карликом, также существуют нормальные звезды, гиганты и сверхгиганты.

Кроме яркости, они имеют и температуру, благодаря которой, звезды излучают различный спектр. Наиболее горячие имеют синий цвет, затем (в порядке убывания) следуют голубые, белые, желтые, оранжевые и красные. Звезды, которые не укладываются ни в один из этих параметров, называются пекулярными.

Самые горячие звезды

Когда речь идет о температуре звезд, в виду имеются поверхностные характеристики их атмосфер. Внутреннюю температуру можно узнать только при помощи вычислений. Насколько звезда горячая можно судить по её цвету или спектральному классу, который обычно обозначается буквами O, B, A, F, G, K, M. Каждый из них подразделяется на десять подклассов, которые обозначаются цифрами от 0 до 9.

Класс О относится к наиболее горячим. Их температура колеблется от 50 до 100 тысяч градусов Цельсия. Однако недавно ученые окрестили самой горячей звездой туманность Бабочки, температура которой достигает 200 тысяч градусов.

Другими горячими звездами являются голубые свергиганты, например, Ригель Ориона, Альфа Жирафа, Гамма Холодные звезды являются карликами класса М. Самой холодной во Вселенной считается WISE J085510.83-071442. Температура звезды доходит до -48 градусов.

Карликовые звезды

Карлик - прямая противоположность сверхигантов, самая маленькая звезда по величине. Они имеют небольшие размеры и светимость, могут быть даже меньше Земли. Карлики составляют 90 % звезд нашей галактики. Они значительно меньше Солнца, однако, превосходят по Невооруженным глазом их практически невозможно разглядеть на ночном небе.

Наименьшими считаются красные карлики. Они имеют скромную массу и по сравнению с другими звездами являются холодными. Их спектральный класс обозначается буквами М и К. Температура может достигать от 1 500 до 1 800 градусов Цельсия.

Звезда 61 в созвездии Лебедя - самая маленькая звезда из тех, что можно заметить без профессиональной оптики. Она излучает тусклый свет и находится на расстоянии 11,5 световых лет. Чуть больше по размеру является оранжевый карлик Расположена на расстоянии десяти световых лет.

Ближе всего к нам находится Проксима в человек смог бы добраться до неё только через 18 тысяч лет. Это красный карлик, который в 1,5 раз больше Юпитера. От Солнца она расположена всего в 4,2 световых года. Светило окружено и другими мелкими звездами, однако они не изучены из-за небольшой яркости.

Какая из звезд самая маленькая?

Нам знакомы далеко не все звезды. Только в галактике Млечный Путь их насчитывается сотни миллиардов. Конечно, ученые изучили только малую их часть. Известная на сегодняшний день самая маленькая звезда во Вселенной носит название OGLE-TR-122b.

Она относится к двойной то есть связана гравитационным полем с другой звездой. Их взаимное вращение вокруг масс друг друга составляет семь с половиной суток. Система открыта в 2005 году в ходе Оптического гравитационно-линзового эксперимента, от английской аббревиатуры которого она и была названа.

Самая маленькая звезда является красным карликом в в южном полушарии неба. Её радиус составляет 0,12 от солнечного, а масса 0,09. По массе она превосходит Юпитер в сто раз, а по плотности больше Солнца в 50 раз.

Обнаружение этой звездной системы подтвердило теорию ученых о том, что звезда может ненамного превышать размеры средней планеты, если её масса будет хотя бы в десять раз меньше солнечной. Скорее всего во Вселенной существуют и более мелкие звезды, но современная техника не позволяет их увидеть.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...