Эмпирические закономерности в атомных спектрах формула бальмера. Сериальные закономерности в спектре водорода

Закономерности в атомных спектрах

Материальные тела являются источниками электромагнитного излучения, имеющего разную природу. Во второй половине XIX в. были проведены многочисленные исследования спектров излучения молекул и атомов. Оказалось, что спектры излучения молекул состоят из широко размытых полос без резких границ. Такие спектры назвали полосатыми. Спектр излучения атомов состоит из отдельных спектральных линий или групп близко расположенных линий. Поэтому спектры атомов назвали линейчатыми. Для каждого элемента существует вполне определенный излучаемый им линейчатый спектр, вид которого не зависит от способа возбуждения атома.

Самым простым и наиболее изученным является спектр атома водорода. Анализ эмпирического материала показал, что отдельные линии в спектре могут быть объединены в группы линий, которые называются сериями. В 1885 г. И.Бальмер установил, что частоты линий в видимой части спектра водорода можно представить в виде простой формулы:

( 3, 4, 5, …), (7.42.1)

где 3,29∙10 15 с -1 – постоянная Ридберга. Спектральные линии, отличающиеся различными значениями , образуют серию Бальмера. В дальнейшем в спектре атома водорода было открыто еще несколько серий:

Серия Лаймана (лежит в ультрафиолетовой части спектра):

( 2, 3, 4, …); (7.42.2)

Серия Пашена (лежит в инфракрсной части спектра):

( 4, 5, 6, …); (7.42.3)

Серия Брекета (лежит в инфракрсной части спектра):

( 5, 6, 7, …); (7.42.4)

Серия Пфунда (лежит в инфракрсной части спектра):

( 6, 7, 8, …); (7.42.5)

Серия Хэмфри (лежит в инфракрсной части спектра):

( 7, 8, 9, …). (7.42.6)

Частоты всех линий в спектре атома водорода можно описать одной формулой – обобщенной формулой Бальмера:

, (7.42.7)

где 1, 2, 3, 4 и т.д. – определяет серию (например, для серии Бальмера 2), а определяет линию в серии, принимая целочисленные значения, начиная с 1.

Из формул (7.42.1) – (7.42.7) видно, что каждая из частот в спектре атома водорода является разностью двух величин вида зависящих от целого числа. Выражения вида где 1, 2, 3, 4 и т.д. называются спектральными термами. Согласно комбинационному принципу Ритца все излучаемые частоты могут быть представлены как комбинации двух спектральных термов:

(7.42.8)

причем всегда >

Исследование спектров более сложных атомов показало, что частоты линий их излучения можно также представить в виде разности двух спектральных термов, но их формулы сложнее, чем для атома водорода.

Установленные экспериментально закономерности излучения атомов находятся в противоречии с классической электродинамикой, согласно которой электромагнитные волны излучает ускоренно движущийся заряд. Следовательно, в атомы входят электрические заряды, движущиеся с ускорением в ограниченном объеме атома. Излучая, заряд теряет энергию в виде электромагнитного излучения. Это означает, что стационарное существование атомов невозможно. Тем не менее, установленные закономерности свидетельствовали, что спектральное излучение атомов является результатом пока неизвестных процессов внутри атома.

Спектр – это набор частот (или длин волн) излучения, которое испускается данным телом. Нагретые твёрдые тела испускают сплошной спектр. Молекулы испускают полосатый спектр – определённые полосы или группы густо расположенных линий. Свободные, невзаимодействующие между собой, атомы имеют линейчатый спектр, состоящий из определённого набора частот (длин волн).

Спектр вещества является одной из его важнейших характеристик. В природе не существует двух одинаковых спектров. Этот факт лежит в основе спектрального анализа, который заключается в том, что вещества распознаются по их спектрам.

Изучение линейчатых спектров явилось ключом к пониманию строения атома. При исследовании спектров было установлено, что линии спектров испускания расположены не хаотично, а образуют определенную закономерность. Все линии имеют тенденцию группироваться, образуя серии.

Наиболее простым закономерностям подчиняется спектр атома водорода. Швейцарский физик И.Бальмер (1885 г.) показал, что длины волн в видимой области спектра атома водорода могут быть выражены формулой:

Если от длин волн перейти к частотам, то получится следующая формула:

.

Обычно эту формулу представляют в виде:

, (14)

где , - постоянная Ридберга (найдена экспериментально).

В таком виде формула (14) называется формулой Бальмера . Из выражения (14) вытекает, что спектральные линии, отличающиеся различными значениями , образуют группу или серии линий, называемую серией Бальмера.

Дальнейшие исследования показали, что в спектре водорода имеются еще серии, которые названы по фамилиям их исследовавших ученых и эти серии описываются аналогичными формулами:

Серия Лаймана:

(ультрафиолетовая область). (15)

Серия Бальмера:

(видимая область).

Серия Пашена:

(инфракрасная область).

Серия Брекета:

(инфракрасная область).

Серия Пфунда:

(инфракрасная область).

Все эти серии можно объединить общей формулой:

, (16)

Выражение (16) называется обобщённой формулой Бальмера .

При возрастании частота каждой серии стремится к предельному значению , которая называется границей серии. По аналогии, начало серии будет определяться как

.

В нормальных условиях атомы не излучают (как и в стационарном состоянии). Чтобы вызвать излучение атомов, надо увеличить их внутренню энергию. Спектры изолированных атомов носят ограниченный характер.

Причем линии в спектре атома, в том числе и атоме водорода, расположены не хаотично, а объединяются в группы, которые называются спектральными сериями. Фор-ла, опред знач-е длины волны в кажд из серии: ν=1/λ=R(1/n 2 – 1/m 2). n=n+1, n+2,.. λ=1,2,3,… (сериальная ф-ла) R=1,092*10м -1 пост-я Ридберга. В общем случае записывают 1/λ=Rz 2 (1/n 2 – 1/m 2).

Энергия фотона преш-го с уровня n на m: hv =E m -E n =(hz 2 me 4 /(4πε 0) 2 2ħ 2)(1/n 2 -1/m 2).

Серия Лаймона – ν=1/λ=R(1/1 – 1/n 2), n=2,3,4…,в УФ области.

Серия Бальмера – ν=1/λ=R(1/2 2 – 1/n 2), n=3,4,5… видимая область и близкая УФ. Серия Пашена – ν=1/λ=R(1/3 2 – 1/n 2), n=4,5,6…, инфракрасная область. Излучается в видимой и близкой УФ волнах. Все остльные серии лежат в ИК области света.

Постулаты Бора. Модель атома Бора.

Первую попытку сформулировать законы, которым подчиняется движение электронов в атоме предпринял Бор на основе представлений о том, что атом является устойчивой системой и что энергия, которую может излучать или поглощать атом, квантовая. 1) Для того, чтобы исключить 1-й недостаток модели Резенфорда, он предположил, что из всего многообразия орбит, которые вытекают из уравнения (1), в природе реализуются не все, а лишь некоторые устойчивые орбиты, которые он назвал стационарными, и, находясь на которых атом не излучает и не поглощает энергии. Стационарным орбитам отвечают устойчивые состояния атома, причем энергии, к-му обладает атом в этих состояниях, образуют дискретный ряд значений: E1, E2, E3…,En. Двигаясь по стационарной орбите электрон приобретает момент импульса, кратный приведенной постоянной кванта

h (в); m (индекс е) * v (инд. е) r = n h (в) (1), h (в) = n/2π, n=1,2,3… Т.е. при переходе с орбиты на орбиту меняется порциями, кратными h (в).

(1) – боровское правило контования или правило отбора стационарных орбит.

2) Для устранения 2-го противоречия модели Резенфорда, Бор предположил, что излучение или поглощение энергии атомом происходит при переходе атома из одного стационарного состояния в другое. При каждом таком переходе излучается квант энергии, равный разности энергий тел стационарных состояний, между которыми происходит квантовый скачок электрона, hν=En – Em (2) (n>m, излучение, n

2 постулата: 1) Атом обладает устойчивыми или стационарными состояниями, причем энергия атомов в этом состоянии образует дискретный ряд значений (постулат стационарных значений) E1, E2, E3…En. 2) Всякому излучению или поглощению энергии должен соответствовать переход атома из одного стационарного состояния в другое. При каждом таком переходе испускается монохроматическое излучение, частота которого определяется ν=(En – Em)/h(в) (правило частот Бора).

Модель атома Бора.

1913 году. Бор принял новые постулаты квантовой механики, согласно которым на субатомном уровне энергия испускается исключительно порциями, которые получили название «кванты». Бор развил квантовую теорию еще на шаг и применил ее к состоянию электронов на атомных орбитах. Говоря научным языком, он предположил, что угловой момент электрона квантуется. Далее он показал, что в этом случае электрон не может находиться на произвольном удалении от атомного ядра, а может быть лишь на ряде фиксированных орбит, получивших название «разрешенные орбиты». Электроны, находящиеся на таких орбитах, не могут излучать электромагнитные волны произвольной интенсивности и частоты, иначе им, скорее всего, пришлось бы перейти на более низкую, неразрешенную орбиту. Поэтому они и удерживаются на своей более высокой орбите, подобно самолету в аэропорту отправления, когда аэропорт назначения закрыт по причине нелетной погоды. Однако электроны могут переходить на другую разрешенную орбиту. Как и большинство явлений в мире квантовой механики, этот процесс не так просто представить наглядно. Электрон просто исчезает с одной орбиты и материализуется на другой, не пересекая пространства между ними. Этот эффект назвали «квантовым прыжком», или «квантовым скачком». В картине атома по Бору, таким образом, электроны переходят вниз и вверх по орбитам дискретными скачками - с одной разрешенной орбиты на другую, подобно тому, как мы поднимаемся и спускаемся по ступеням лестницы. Каждый скачок обязательно сопровождается испусканием или поглощением кванта энергии электромагнитного излучения, который мы называем фотоном.

Линейчатый спектр атома представляет собой совокупность большого числа линий, разбросанных по всему спектру без всякого видимого порядка. Однако внимательное изучение спектров показало, что расположение линий следует определенным закономерностям. Яснее всего, конечно, эти закономерности выступают на сравнительно простых спектрах, характерных для простых атомов. Впервые такая закономерность была установлена для спектра водорода, изображенного на рис. 326.

Рис. 326. Линейчатый спектр водорода (серия Бальмера, длины волн в нанометрах). и - обозначения первых четырех линий серии, лежащих в видимой области спектра

В 1885 г. швейцарский физик и математик Иоганн Якоб Бальмер (1825-1898) установил, что частоты отдельных линий водорода выражаются простой формулой:

,

где означает частоту света, т. е. число волн, испускаемых в единицу времени, - называемая постоянной Ридберга величина, равная и - целое число. Если задавать для значения 3, 4, 5 и т. д., то получаются значения, очень хорошо совпадающие с частотами последовательных линий спектра водорода. Совокупность этих линий составляет серию Бальмера.

В дальнейшем было обнаружено, что в спектре водорода еще имеются многочисленные спектральные линии, которые также составляют серии, подобные серии Бальмера.

Частоты этих линий могут быть представлены формулами

, где (серия Лаймана),

, где (серия Пашена),

причем имеет то же самое числовое значение, что и в формуле Бальмера. Таким образом, все водородные серии можно объединить одной формулой:

где и - целые числа, .

Спектры других атомов значительно сложнее, и распределение их линий в серии не так просто. Оказалось, однако, что спектральные линии всех атомов могут быть распределены в серии. Крайне важно, что сериальные закономерности для всех атомов могут быть представлены в форме, подобной формуле Бальмера, причем постоянная имеет почти одно и то же значение для всех атомов.

Существование спектральных закономерностей, общих для всех атомов, указывало несомненно на глубокую связь этих закономерностей с основными чертами атомной структуры. Действительно, датский физик, создатель квантовой теории атома Нильс Бор (1885-1962) в 1913 г. нашел ключ к пониманию этих закономерностей, установив в то же время основы современной теории атома (см. гл. XXII).

Одна из важнейших особенностей строения атомных спектров - это их сериальная структура. Сериальные закономерности представляют собой яркое проявление квантовых свойств излучающих атомных систем. Линии спектра атомов газа могут быть объединены в определенные, закономерно построенные группы - так называемые серии. Длины волн всех линий, принадлежащих к одной и той же серии, связаны между собой. Сериаль­ные закономерности в наиболее простой форме проявляются в спектре одноэлектронного атома водорода, для которого они и были впервые получе­ны.

Рассмотрим атом водорода и сходные с ним ионы (модель так называе­мого водородоподобного атома) , то есть предположим, что имеется атом­ная система, состоящая из ядра с зарядом z и одного электрона (z - поряд­ковый номер элемента в периодической системе).

Кулоновская сила / взаимодействия между ядром и электроном играет роль центростремительной силы, равной для круговой орбиты

где т - масса электрона, r - радиус орбиты. В электрическом поле ядра электрон обладает потенциальной энергией

(6)

Полная энергия электрона равна сумме потенциальной и кинетической энергий. С учетом (5) и (6) и знаков в этих выражениях, имеем:

(7)

Согласно представлениям классической электромагнитной теории, вращающийся по орбите электрон возбуждает вокруг себя переменное электромагнитное поле, распространяющееся в пространстве со скоростью света. Иначе говоря, ускоренно движущийся электрон при своем вращении вокруг ядра должен излучать и вследствие этого терять часть энергии. Та­ким образом, согласно классической механике, энергия электрона всё вре­мя уменьшается. Из формулы (7) следует, что меньшему значению энергии соответствует меньший радиус. В результате электрон должен упасть на ядро.

Из формулы (5) следует, что с уменьшением радиуса орбиты скорость движения электрона возрастает, то есть период обращения уменьшается. Это должно привести к непрерывному увеличению частоты излучаемых электромагнитных волн и атом должен излучать непрерывный (сплошной) спектр. Однако в действительности атом - устойчивая система и может из­лучать лишь линейчатый спектр. Выход из создавшегося противоречивого положения был предложен Бором.

Основываясь на гипотезе Планка о квантовом характере излучения и поглощения света, Бор сформулировал законы, описывающие состояние и движение электронов в атоме в виде определенных постулатов, которые дают объяснение экспериментальным данным. Постулаты эти таковы:

1. Электрон в атоме может вращаться только по строго определен­ным орбитам, радиусы которых определяются из условия:

(8)

где р - момент количества движения электрона; п - число, принимающее положительные целые значения 1, 2, 3, ... и определяющее принадлеж­ность к той или иной орбите; h - постоянная Планка. Все другие орбиты «запрещены».

Таким образом, Бор постулировал, что момент количества движения электрона в атоме, а значит и его энергия, может принимать только строго определенные дискретные значения, то есть величина момента импульса электрона квантована.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...