Фазово контрастная микроскопия использует при изучении. Фазовый контраст

Человеческий глаз различает только длину (цвет) и амплитуду (интенсивность, контрастность) световой вол­ны, но не улавливает различий в фазе. Почти все живые клетки прозрачны, так как свето­вые лучи, проходя через них, не меняют своей ампли­туды, хотя и изменяются по фазе. Превратить «фазо­вый» (неконтрастный) препарат в «амплитудный» (конт­растный) можно, либо окрашивая объект (для живых клеток этот прием малопригоден), либо снижая апер­туру конденсора путем прикрывания диафрагмы (при­ем также нежелателен, так как снижает разрешающую способность микроскопа).

Метод фазово-контрастной микроскопии разработан для наблюдения за прозрачными объектами, он осно­ван на преобразовании фазовых изменений, претерпе­ваемых световой волной при прохождении через объ­ект, в видимые аплитудные с помощью определенного оптического устройства. Если в объектив обычного микроскопа вмонтировать специальный диск - фазовую пла­стинку с кольцом (получается путем напыления диска солями редких металлов толщиной в несколько десятых микрометра), а в конденсор - кольцевую диафрагму (непроницаемую для лучей света пластинку с прозрач­ной щелью в виде кольца), так чтобы через конденсор и объектив проходило лишь кольцо света, которое за­тем совмещается с кольцом фазовой пластинки объек­тива, то фазы проходящего светового луча сдвигаются (обычно на 1/4длины волны), фазовые изменения пере­ходят в амплитудные, и препарат становится контраст­ным.

Для проведения исследований необходимо в допол­нение к световому микроскопу иметь фазовоконтрастное устройство (наиболее широко распространена мо­дель КФ-4), которое состоит из фазовых объективов (на оправе имеется буква «Ф»), конденсоров с набором кольцевых диафрагм и вспомогательного микроскопа (оптического устройства, помещаемого в тубус вместо окуляра при установке фазового контраста).

Метод применяют для исследования живых клеток микроорганизмов, контрастность которых достигается оптическим путем без вмешательства в физиологиче­ские процессы изучаемых объектов.

Контрольные вопросы:

1. В каких случаях применяется фазово-контрастная микроскопия?

2. На чём основан метод фазово-контрастной микроскопии?

3. Чем отличается конструкция фазово-контрастного микроскопа от обычного светового?

4. Как устроена фазово-контрастная модель КФ-4?

Люминесцентная, или флуоресцентная, микроскопия

Некоторые биологические объекты способны при ос­вещении коротковолновыми лучами (сине-фиолетовыми, ультрафиолетовыми) поглощать их и испускать лучи с более длинной волной. При этом клетки будут как бы светиться желто-зеленым или оранжевым светом. Это так называемая собственная, или первичная, люмине­сценция.

Нелюминесцирующие объекты можно обработать специальными флуорохромами (акридином желтым, ак­ридином оранжевым, аурамином, примулином, тиофлавином, конго красным, тетрациклином, хинином) и так­же наблюдать люминесценцию.

Это уже будет наведенная, или вторичная, люмине­сценция.

Препараты, окрашенные флуорохромами, изучают в средах, не люминесцирующих под действием коротковолновых лучей: в воде, глицерине, вазелиновом масле или физиологическом растворе.

Оптическая схема люминесцентного микроскопа отличается от обычной источником света (можно использовать ртутную лампу, а если возможно возбуждение люминесценции объекта сине-фиолетовыми лучами, то и низковольтные лампы) и наличием на пути лучей двух светофильтров: синий светофильтр перед конденсором, пропускающий сине-фиолетовые лучи видимого спектра, и жёлтый светофильтр - в окуляре микроскопа, убирающий синие лучи, мешающие выявлению люминесценции.

Люминесцентная микроскопия по сравнению с обычной позволяет сочетать цветное изображение и контрастность объектов; изучать морфологию живых и мёртвых клеток микроорганизмов в питательных средах и тканях животных и растений; исследовать клеточные микроструктуры, избирательно поглощающие различные флуорохромы, которые являются при этом как бы специфическими цитохимическими индикаторами; определить функционально-морфологические изменения клеток; использовать флуорохромы при иммунологических реакциях и подсчёте бактерий в образцах с невысоким их содержанием.

Электронная микроскопия

По схеме строения электронный микроскоп аналогичен световому, но освещение объекта обеспечивает не луч света, а поток электронов от вольфрамовой нити, нагреваемой электрическим током.

Разрешающая способность современных электронных микроскопов – 0,2-0,4 нм, рабочее увеличение в среднем – 100 000 раз.

Трансмиссионный электронный микроскоп.

Трансмиссионный (просвечивающий, пропускающий электроны сквозь объект) микроскоп широко применяют в биологических исследованиях.

Каждый электронный микроскоп состоит из электронной пушки (источник электронов); электромагнитных катушек, выполняющих роль конденсорной, объективной и проекционной линз предметного столика; экрана для изображения и окуляра. Для работы микроскопа необходим вакуумный насос, т.к. движение электронов возможно только в вакууме. Электроны в трансмиссионном микроскопе движутся по такому же пути, как и лучи света в световом микроскопе.

Изображение объекта можно сфотографировать, если заменить флуоресцирующий экран (металлическую пластину, покрытую тонким слоем сульфида цинкаили сульфида цинка с селенидом кадмия) фотопластинкой.

Препараты для электронно-микроскопических исследований помещают на специальные сетки, на которые нанесена тончайшая плёнка (подложка). Общая толщина препарата и подложки не должна превышать 0,25 мкм.

При исследовании морфологических особенностей клеток микроорганизмов под электронным микроскопом изучают целые клетки и их срезы, толщина которых не должна превышать 0,8-0,9 мкм.

Контрастность объекта обеспечивается напылением объекта тяжёлыми металлами (хромом, золотом, палладием) или обработкой контрастирующими веществами типа фосфорно-вольфрамовой кислоты и уранилацетата.

Сканирующий или растровый электронный микроскоп. Даёт объёмное почти трёхмерное изображение исследуемого объекта. В сканирующих микроскопах подвижный тонкий электронный луч очень быстро и последовательно обегает поверхность исследуемого образца по квадратному растру и передаёт полученную информацию на электронно-лучевую трубку, покрытую люминофором, светящимся под действием электронов.

Глубина фокуса сканирующего микроскопа достигает нескольких миллиметров; пределы полезного увеличения 10-50 тыс. раз, разрешающая способность меньше, чем у трансмиссионных.

Препараты для сканирующего микроскопа подвергают специальной обработке, основная цель которой - обезвоживание объекта без нарушения, (сморщивания) поверхности структур. Затем препарат покрывают тонким слоем сплава золота или платины, что делает поверхность образца электропроводной и позволяет избежать накопления электрического заряда, который может снизить разрешающую способность микроскопа.

При работе с электронным микроскопом следует строго соблюдать правила техники безопасности.

Задание:

Зарисовать схему устройства электронного микроскопа, пользуясь рис. 2 из цветного буклета.

Контрольные вопросы:

1. В чём преимущества люминесцентной микроскопии, на чём она основана?

2. Что означает первичная люминесценция?

3. Как можно получить наведенную или вторичную люминесценцию?

4. Какова разрешающая способность и рабочее увеличение современных электронных микроскопов?

5. На каком физическом явлении основана электронная микроскопия?

6. Назовите два типа электронных микроскопов.

7. Из каких узлов состоит электронный микроскоп?

8. В чём особенности пробоподготовки в трансмиссионном микроскопе?

9. В чём преимущества сканирующего или растрового микроскопирования?

10. Как готовят препараты для сканирующего микроскопа?

При микроскопии неокрашенных микроорганизмов, отличающихся от окружающей среды только по показателю преломления, изменения интенсивности света (амплитуды) не происходит, а изменяется только фаза прошедших световых волн. Поэтому глаз этих изменений заметить не может и наблюдаемые объекты выглядят малоконтрастными, прозрачными. Для наблюдения таких объектов используют фазово-контрастную микроскопию , основанную на превращении невидимых фазовых изменений, вносимых объектом, в амплитудные, различимые глазом.
Фазово-контрастное устройство может быть установлено на любом световом микроскопе и состоит из:
1) набора объективов со специальными фазовым пластинками;
2) конденсора с поворачивающимся диском. В нем установлены кольцевые диафрагмы, соответствующие фазовым пластинкам в каждом из объективов;
3) вспомогательного микроскопа.

Настройка фазового контраста основном заключается в следующем: 1) заменяют объективы и конденсор микроскопа на фазовые (обозначенные буквой Ф или ph) ; 2) устанавливают объектив малого увеличения. Отверстие в диске конденсора должно быть без кольцевой диафрагмы (обозначенной цифрой «0»); 3) настраивают свет по Келеру; 4) выбирают фазовый объектив соответствующего увеличения и фокусируют его на препарат; 5) поворачивают диск конденсора и устанавливают соответствующую объективу кольцевую диафрагму; 6) вынимают из тубуса окуляр и вставляют на его место вспомогательный микроскоп. Настраивают его так, чтобы были резко видны фазовая пластинка (в виде темного кольца) и кольцевая диафрагма (в виде светлого кольца того же диаметра). С помощью регулировочных винтов на конденсоре совмещают эти кольца. Вынимают вспомогательный микроскоп и вновь устанавливают окуляр.

Благодаря применению этого способа микроскопии контраст живых неокрашенных микроорганизмов резко увеличивается и они выглядят темными на светлом фоне (позитивный фазовый контраст) или светлыми на темном фоне (негативный фазовый контраст). В РФ выпускают устройство КФ-4 для позитивного фазового контраста.
Фазово-контрастная микроскопия применяется также для изучения клеток культуры ткани, наблюдения действия различных вирусов на клетки и т. п. В этих случаях часто применяют биологические микроскопы с обратным расположением оптики - так называемые инвертированные микроскопы. У таких микроскопов объективы расположены снизу, а конденсор - сверху. За изобретение фазово-контрастной микроскопии его автор голландский физик Цернике был удостоен Нобелевской премии.

Схема фазово-контрастного микроскопа.
1. Кольцо конденсера
2. Предметная плоскость
3. Фазовая пластинка
4. Первичное изображение.
В отличие от опорного света, рассеянный на образце предметный свет, в областях, изображённых синим, минует фазовую пластинку, таким образом длина его оптического пути другая

Метод получения изображений в оптических микроскопах , при котором сдвиг фаз электромагнитной волны трансформируется в контраст интенсивности. Фазовоконтрастную микроскопию открыл Фриц Цернике , за что получил Нобелевскую премию за 1953 год .

Принцип действия

Для получения фазовоконтрастного изображения свет от источника разбивается на два когерентных световых луча, один из них называют опорным, другой предметным, которые проходят разные оптические пути . Микроскоп юстируют таким образом, чтобы в фокальной плоскости, где формируется изображение, интерференция между этими двумя лучами гасила бы их.

Изображение клетки в фазово-контрастном микроскопе

Длину оптического пути изменяют с помощью так называемой фазовой пластинки (англ.) русск. , расположенной на фазовом кольце. Когда на пути одного из лучей находится образец, преломление света в нём изменяет оптический путь, а, следовательно, и фазу, что изменяет условия интерференции.

Фазово-контрастная микроскопия особенно популярна в биологии, поскольку не требует предварительного окрашивания клетки , из-за которого та может погибнуть.

История открытия

Голландский физик, математик и химик Фриц Цернике в 1930 году начал работать в области оптики. В этом же году он открыл фазово-контрастный метод. В течение 1930-1940-х годов Цернике внёс свой вклад и в других вопросах оптики, в то время как фазово-контрастный метод не был замечен широкими кругами учёных. Новый метод оставался вне поля зрения научного сообщества вплоть до Второй мировой войны , когда во время немецкой оккупации Голландии открытие Цернике было использовано для создания первых фазово-контрастных микроскопов. В течение войны многие производители стали выпускать фазово-контрастные микроскопы, и они стали широко применяться в биологических и медицинских исследованиях.

Ссылки

Источники


Wikimedia Foundation . 2010 .

  • Фазлуллин, Мухаметхан Ашрафзянович
  • Фазосдвигающие маски

Смотреть что такое "Фазово-контрастная микроскопия" в других словарях:

    Фазово-контрастная микроскопия - см. Микроскопия в фазово контрастном микроскопе. (Источник: «Словарь терминов микробиологии») … Словарь микробиологии

    Фазово-контрастная микроскопия - метод микроскопического исследования, основанный на получении с помощью специальных приспособлений контрастного изображения различающихся по плотности структур бесцветных прозрачных микрообъектов, например живых микроорганизмов и тканевых …

    ФАЗОВО-КОНТРАСТНАЯ МИКРОСКОПИЯ - фазово контрастная микроскопия, см. Микроскоп, Микроскопическая техника … Ветеринарный энциклопедический словарь

    фазово-контрастная оптическая микроскопия - 4.34 фазово контрастная оптическая микроскопия (phase contrast optical microscopy): Метод микроскопического анализа, основанный на преобразовании дифференциальных фазовых сдвигов световых волн, проходящих через образец, в различие амплитуд.… … Словарь-справочник терминов нормативно-технической документации

    микроскопия фазово-контрастная - М. живых неокрашенных объектов, при которой контрастность изображения повышают путем превращения фазовых различий прошедшего сквозь объект пучка световых лучей в амплитудные … Большой медицинский словарь

    МИКРОСКОПИЯ - общее название методов наблюдения в микроскоп неразличимых человеческим глазом объектов. Подробнее см. в ст. (см. МИКРОСКОП). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    микроскопия - совокупность методов изучения малых объектов с помощью микроскопов. К традиционным видам М. относятся–люминесцентная М. – основана на явлении фотолюминесценции, возникающей при окраске препаратов специальными люминесцентными красителями;… … Словарь микробиологии

    Темнопольная микроскопия - Схема темнопольной микроскопии в падающем свете. Подсветка образца осуществляется сбоку (зеленая линия). Изображение создается светом, рассеивающимся на неоднородностях образца. Темнопольная микроскопия вид оптическ … Википедия

    Аноптральная микроскопия - метод исследования главным образом живых малоконтрастных объектов (простейших, бактерий, клеток в культуре) посредством аноптрального микроскопа (изобретён в 1953 финским физиологом А. Вильска) разновидности фазово контрастного микроскопа … Большая советская энциклопедия

    Микроскопи́ческие ме́тоды иссле́дования - способы изучения различных объектов с помощью микроскопа. В биологии и медицине эти методы позволяют изучать строение микроскопических объектов, размеры которых лежат за пределами разрешающей способности глаза человека. Основу М.м.и. составляет… … Медицинская энциклопедия

Метод фазового контраста и его разновидность - т. н. метод «аноптрального» контраста предназначены для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К таковым относятся, например, живые неокрашенные животные ткани. Суть метода в том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Не воспринимаемые непосредственно ни глазом, ни фотопластинкой, эти фазовые изменения с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различимы глазом или фиксируются на фоточувствительном слое. Иными словами, в получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Получаемое таким образом изображение называется фазово-контрастным.


Типичная схема работы метода: в переднем фокусе конденсора устанавливается апертурная диафрагма, отверстие которой имеет форму кольца. Её изображение возникает вблизи заднего фокуса объектива, и там же устанавливается т. н. фазовая пластинка, на поверхности которой имеется кольцевой выступ или кольцевая канавка, называемая фазовым кольцом. Фазовая пластинка не всегда помещена в фокусе объектива – часто фазовое кольцо наносят прямо на поверхность одной из линз объектива. В любом случае неотклонённые в препарате лучи от осветителя, дающие изображение диафрагмы, должны полностью проходить через фазовое кольцо, которое значительно ослабляет их (его делают поглощающим) и изменяет их фазу на /4 ( - длина волны света). А лучи, даже ненамного отклоненные (рассеянные) в препарате, проходят через фазовую пластинку, минуя фазовое кольцо, и не претерпевают дополнительного сдвига фазы. С учётом фазового сдвига в материале препарата полная разность фаз между отклоненными и неотклонёнными лучами близка к 0 или /2, и в результате интерференции света в плоскости изображения препарата они заметно усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата. Отклоненные лучи имеют значительно меньшую амплитуду по сравнению с неотклонёнными, поэтому ослабление основного пучка в фазовом кольце, сближая значения амплитуд, также приводит к большей контрастности изображения. Метод дает возможность различать малые элементы структуры, чрезвычайно слабо контрастные в методе светлого поля. Прозрачные частицы, сравнительно не малые по размерам, рассеивают лучи света на столь небольшие углы, что эти лучи проходят вместе с неотклонёнными через фазовое кольцо. Для таких частиц фазово-контрастный эффект имеет место только вблизи их контуров, где происходит сильное рассеяние.

Самым главным достоинством фазово-контрастного метода микроскопирования живых неокрашенных микроорганизмов является чёткое и контрастное их изображение. Данный способ изучения наиболее приемлем для исследований в клинических лабораториях для изучения различного рода выделений и осадков, простейших, их цист, процессов агглютинации, рассмотрение ретикулоцитов, а также кровяных пластинок, костного мозга качественных и злокачественных опухолей и прочее.

Для того чтоб понять сущность и принцип работы фазово-контрастного метода необходимо знать, что фотоплёнка и человеческий глаз способен воспринимать исключительно изменения амплитуды, то есть размахи колебаний световой волны, однако они не восприимчивы к изменениям её фазы, задержкам или ускорениям.

Все препараты, которые наблюдались в микроскопах в тех частях, где были смещения амплитуды световых волн, являются контрастными, а там, где присутствовали фазовые смещения, были малоконтрастные. Используя фазово-контрастные приспособления микроскопа, существующие фазовые неконтрастные колебания искусственно конвертируются в колебания с другой амплитудой, из-за чего фазовые элементы препарата становятся такими же контрастными, как и амплитудные. Вследствие этого изображение всего исследуемого объекта становится чётким и контрастным.

Для достижения подобного результата можно использовать обычный микроскоп МБИ – 2, а также специальный к нему набор фазово-контрастных приборов, в состав которых входят: конденсатор с комплектом кольцевых диафрагм, комплект фазовых объективов (10Х, 20 X, 40 X и 90Х), вспомогательный микроскоп малой степени увеличения, который используется вместо окуляра, осветитель и светофильтр.

Как правило, обычный конденсатор микроскопа заменяют фазовым и при этом необходимо проверить, чтоб этот конденсатор правильно и точно вошёл в держатель, и в процессе подъёма его передняя линза становилась вровень с предметным столиком микроскопа. Объективы также необходимо заменить на фазовые.

Для начала следует установить правильное освещение для объекта. Для этого осветительную лампу ставят на расстоянии пятнадцати-двадцати сантиметров от самого микроскопа, сужают диафрагму осветителя и направляют лучи на поверхность плоского зеркала, таким образом, чтоб точное и отчётливое изображение накаленной нити лампы оказалось в самом центре зеркала. Зеркало двигают, отбрасывая свет на поверхность диафрагмы конденсатора, которую затем полностью открывают.

Если увеличение слишком маленькое и его не достаточно, то в таких случаях устанавливают препарат для излучения. Опуская и поднимая конденсатор, выходит наиболее резкое изображение препарата при условии закрытой диафрагмы осветителя. Если же поле зрения всё-таки оказывается слишком освещённым, в таких случаях ставят дополнительный светофильтр. С помощью лёгких передвижений зеркал ярко освещённое пятно двигают в центр поля зрения и затем открывают диафрагму осветителя, таким образом, чтоб все поля зрения были полностью и равномерно освещены. На этом этапе заканчивается установка света.

Вместо окуляра устанавливают вспомогательный микроскоп. Ставят также тот фазовый объектив, который будут использовать и соответствующую ему кольцевую диафрагму конденсатора. При передвижении окулярной части вспомогательного микроскопа изучают изображение кольцевой щели диафрагмы конденсатора, то есть светлое кольцо, а также изображение фазовой пластинки в объективе – тёмное кольцо, для того, чтоб узнать, насколько совмещены эти два изображения.

Для того чтоб получить фазовый контраст нужно более полно совместить изображения этих двух колец. Данный процесс выполняется с помощью центрировочных винтов фазового конденсатора, благодаря которым щель конденсорной диафрагмы движется настолько, чтоб её изображение совместилось с изображением фазовой тёмной пластинки. Вспомогательный микроскоп достают из тубуса и устанавливают на его месте рабочий окуляр, после чего изучают необходимый объект.

Стоит также отметить основные условия успешного процесса подготовки фазово-контрастного исследования:

  • Правильное расположение света;
  • Полностью открытая диафрагма фазового конденсора;
  • Полное соответствие номера кольцевой диафрагмы фазового конденсора относительно увеличению фазового объектива;
  • Тщательное совмещение тёмного изображения фазовой пластинки, а также светлого изображения кольцевой диафрагмы при помощи вспомогательного микроскопа.


Последние материалы раздела:

Лейб-гвардии егерский полк Лейб гвардии егерский
Лейб-гвардии егерский полк Лейб гвардии егерский

Егерский лейб-гвардии полк Фото группы военнослужащих Лейб-Гвардии Егерского полка, после 1913 года Лейб-гвардии Егерский полк ведет свою историю...

Фазово контрастная микроскопия использует при изучении
Фазово контрастная микроскопия использует при изучении

Человеческий глаз различает только длину (цвет) и амплитуду (интенсивность, контрастность) световой вол­ны, но не улавливает различий в фазе. Почти...

Мезодерма дает начало. Образование мезодермы. Видео об образовании из мезодермы
Мезодерма дает начало. Образование мезодермы. Видео об образовании из мезодермы

Развитие нервной трубки (нейруляция) включает образование нервной пластинки, нервного желобка и замыкания последнего в нервную трубку. Как только...