Инертная и гравитационная массы.

– основное утверждение общей теории относительности, по которому наблюдатель не может никоим образом отличить действие гравитационного поля от силы инерции, возникающая в системе отсчета, движущейся с ускорением.
Принцип эквивалентности справедлив благодаря равенства гравитационной и инерционной массы.
Различают слабый принцип эквивалентности и сильный принцип эквивалентности. Разница между ними в том, что слабый принцип – это локальное утверждение, а сильный принцип – это утверждение, касающееся любой точки пространства времени, то есть любого места во Вселенной и любого времени в прошлом или будущем.
Математическая формулировка
Посмотрим, как этот принцип отражается в формулах. Для этого рассмотрим мировую линию материальной точки с массой m. Натуральный параметр этой линии обозначим s, он пропорционален собственному времени материальной точки?:

Где c – скорость света. Разница d s натурального параметра в двух близких точках четырехмерного пространства-времени называется пространственно-временным интервалом. Он связан с приращениями координат следующей формуле:

Единичный касательный вектор? i к мировой линии является настоящим чотиривектором; он выражается через чотиривектор скорости :

Геодезическая кривизна мировой линии также является настоящим чотиривектором, и равна:

В специальной теории относительности ускорение материальной точки было связано с силой следующей формуле:

Поскольку в специальной теории относительности символы Кристоффеля равны нулю, то мы можем вместо второй производной по времени подставить вектор кривизны k i с соответствующим коэффициентом, и обобщить (5) к следующей тензорной формулы:

Все настоящие силы, кроме силы тяжести и сил инерции, (например электромагнитные силы) собраны в векторе F i. Мимоходом можно увидеть такой интересный геометрический факт: геодезическая кривизна мировой линии (размерность обратная расстояния) равна силе, деленной на энергию покоя:.

Сила притяжения и силы инерции описываются одним слагаемым в формуле (6), связанным с символами Кристоффеля. Перепишем (6), перенеся этот слагаемое в правую часть уравнения, и обозначим эту ненастоящую силу (Эф с Тильдой):

Обратим внимание, что масса m в левой части формулы (6) вынесена за скобки, а потому при разрытии скобок будет одинаковой инерционная масса, которая стоит множителем у ускорения в данной системе координат:

И гравитационная масса, которая стоит множителем в формуле для гравитационной силы:

Ясно, что отделить силу притяжения от сил инерции трудно, особенно в нестационарном гравитационном поле.
Однако мы можем отдельно говорить о силах инерции в случае плоского пространства Минковского, когда тензор Римана тождественно равна нулю. Также мы можем говорить только о силе гравитации и отсутствие сил инерции, если метрический тензор не зависит от времени и на бесконечности переходит в постоянный тензор Минковского:

ЭКВИВАЛЕНТНОСТИ

Теория

Относительности

Вам, возможно, доводилось испытывать странные физические ощущения в скоростных лифтах: когда лифт трогается вверх (или тормозит при движении вниз), вас придавливает к полу и вам кажется, что вы на мгновение потяжелели; а в момент торможения при движении вверх (или старта при движении вниз) пол лифта буквально уходит у вас из-под ног. Сами, возможно, того не сознавая, вы испытываете при этом на себе действие принципа эквивалентности инертной и гравитационной масс. Когда лифт трогается вверх, он движется с ускорением, которое приплюсовывается к ускорению свободного падения в неинерциальной (движущейся с ускорением) системе отсчета, связанной с лифтом, и ваш вес увеличивается. Однако как только лифт набрал «крейсерскую скорость», он начинает двигаться равномерно, «прибавка» в весе исчезает, и ваш вес возвращается к привычному для вас значению. Таким образом, ускорение производит тот же эффект, что и гравитация.

Теперь представьте, что вы находитесь в открытом космосе вдали от любых сколько-нибудь значительных гравитационных полей, но при этом ваш корабль движется с ускорением 9,8 м/с 2 . Если вы встанете на весы, то обнаружите, что вес вашего тела не отличается от веса вашего тела на Земле. Если вы возьмете шар и отпустите его, он, как и на Земле, упадет на пол, и, если измерить изменение скорости его падения в пути, окажется, что он падал равноускоренно все с тем же ускорением 9,8 м/с 2 , то есть динамика его падения ничем не отличается от земной. Принцип эквивалентности как раз и гласит, что, находясь в какой-либо замкнутой системе, вы не можете определить, вызвано ускорение свободно движущегося тела в ней гравитационным полем или же оно является собственным ускорением неинерциальной системы отсчета, в которой вы находитесь, иными словами, обусловлено действием силы инерции.



Из принципа эквивалентности следуют интересные предсказания относительно поведения света в гравитационном поле. Представьте, что в момент ускоренного движения вверх при старте лифта вы послали световой импульс (например, при помощи лазерной указки) в направлении мишени на противоположной стене лифта. За то время, пока импульс света находится в пути, мишень вместе с лифтом ускорится и световая вспышка на стене окажется ниже мишени. (Конечно же, в земных условиях вы этого отклонения не заметите, так что просто представьте, будто вы способны рассмотреть отклонение на тысячные доли микрона.) Теперь, возвращаясь к принципу эквивалентности гравитации и ускорения, можно сделать вывод, что аналогичный эффект отклонения светового луча должен наблюдаться не только в не-инерциальной системе, но и в гравитационном поле. Для светового луча, согласно обобщенному принципу эквивалентности сил гравитации и инерции, введенному Эйнштейном в число постулатов общей теории относительности, отклонение светового луча

звезды, проходящего по касательной к периметру Солнца, должно составлять около 1,75 угловой секунды (примерно одна двухтысячная градуса), в то время как в рамках классической механики Ньютона луч также должен отклоняться в силу того, что свет обладает массой, но на значительно меньший угол (около 0,9 угловой секунды). Таким образом, измерения, проведенные сэром Артуром Эддингтоном (Arthur Eddington, 1882-1944) во время полного солнечного затмения 1919 года и выявившие отклонение луча на угол 1,6 угловой секунды, стали триумфальным экспериментальным подтверждением общей ТЕОРИИ ОТНОСИТЕЛЬНОСТИ.

Следуя аналогичным рассуждениям, нетрудно увидеть, что принцип эквивалентности предсказывает, что в спектре светового луча, направленного в сторону уменьшения интенсивности гравитационного поля (в земных условиях - вверх), должно наблюдаться красное смещение, и это предсказание также получило свое экспериментальное подтверждение.

Принцип эквивалентности лишь один из постулатов общей теории относительности. Он ограничивается рассмотрением эффектов гравитации и равноускоренного движения, однако каждое подтверждение принципа эквивалентности является одновременно и подтверждением общей теории относительности.

Проба на окрашивание пламени

Присутствие металлов можно идентифицировать по цвету пламени, образующегося при их горении

кон. XVIII ^ ПРОБА

НА ОКРАШИВАНИЕ ПЛАМЕНИ

1859 ОТКРЫТИЕ

КИРХГОФА-БУНЗЕНА

1859 ^ СПЕКТРОСКОПИЯ

1913 ^ АТОМ БОРА

При совершении электроном квантового скачка с одной разрешенной орбитали на другую (см. атом бора) атом испускает свет. А поскольку энергетические уровни атомов двух элементов различны, свет, испускаемый атомом одного элемента, будет отличаться от света, испускаемого атомом другого. Это положение лежит в основе науки, которую мы называем спектроскопией (см. открытие кирхго фа-бунзена).

На этом же положении (что атомы разных элементов испускают свет разной длины волны) основана проба на окрашивание пламени в химии. При нагревании в пламени газовой горелки раствора, содержащего ионы одного из щелочных металлов (то есть одного из элементов первой колонки периодической системы Менделеева), пламя окрасится в определенный цвет в зависимости от того, какой металл присутствует в растворе. К примеру, ярко-желтый цвет пламени выдает присутствие натрия, фиолетовый - калия, а карминно-красный - лития. Происходит это окрашивание пламени так: столкновение с горячими газами пламени переводит электроны в возбужденное состояние, из которого они возвращаются в исходное, одновременно испуская свет характерной длины волны.

Это свойство атомов объясняет, почему лес, прибитый к океанскому берегу, так высоко ценится для топки каминов. Долгое время находясь в море, бревна адсорбируют большое количество разных веществ, и при горении бревен эти вещества окрашивают пламя во множество разных цветов.

Любое четное число больше чем 2 можно представить в виде суммы двух простых чисел

проблема гольдбаха

христиан гольдбах

(Christian Goldbach, 1690-1764) - немецкий математик. Родился в Кенигсберге в Пруссии (ныне Калининград, Россия). В 1725 году стал профессором математики в Санкт-Петербурге, тремя годами позже приехал в Москву в качестве домашнего учителя будущего царя Петра II. Во время путешествий по Европе Гольдбах познакомился со многими ведущими математиками своего времени, включая Готфрида Лейбница, Абрахама де Муавра и семью Бернулли. Многие его работы выросли из переписки с великим швейцарским математиком Леонардом Эйлером (Leonhard Euler, 1707-83). Утверждение, которое мы теперь называем проблемой Гольдбаха, впервые было выдвинуто в 1742 году в письме Гольдбаха к Эйлеру.

Самые простые математические утверждения иногда бывает сложнее всего доказать. Так, великая теорема ферма была окончательно доказана лишь в конце XX века - через несколько сот лет после того, как была сформулирована. Существует еще одно утверждение, чем-то похожее на теорему Ферма, которое математики не смогли доказать до сих пор. Его называют проблемой Гольдбаха, и формулировка этого утверждения предельно проста. В нем всего лишь говорится, что каждое четное число больше 2 можно представить как сумму двух простых чисел. (Поясним: простое число - это число, которое делится только на 1 и на себя само. Так, 2, 3, 5, 7 - простые числа, а 4 (2 х 2),

6 (3 х 2), 9 (3 х 3) - нет.) Впервые это утверждение выдвинул Христиан Гольдбах в 1742 году. Из него следует, что 10 (возьмем пример попроще) как четное число можно записать в виде суммы

7 + 3, где 7 и 3 - простые числа. Другая формулировка утверждения Гольдбаха, немного менее известная, - что любое нечетное число, большее или равное 9, можно представить в виде суммы трех простых чисел (например, 13 = 7 + 3 + 3 = 5 + 5 + 3).

С тех пор как Гольдбах выдвинул эту гипотезу, математики не сомневались, что она, как и Великая теорема Ферма, верна. Тем не менее в отличие от теоремы Ферма никто никогда не претендовал на то, что сумел ее доказать. К решению этой проблемы существует подход «в лоб» - надолго запустить компьютерную программу, которая бы последовательно проверяла это утверждение на все больших и больших четных числах. Таким способом можно было бы опровергнуть теорему, будь она неверна. Но так нельзя доказать теорему - по той простой причине, что никогда нельзя гарантировать, что число, которое программа могла бы проверить за следующий свой шаг, не окажется первым исключением из правила. В действительности мы знаем, что проблема Гольдбаха верна по крайней мере для всех четных чисел, не превышающих 100 000.

В 30-е годы XX века группа русских математиков установила, что количество простых чисел, которые при сложении образуют четное число, конечно, а также что проблема Гольдбаха верна для большого класса четных чисел. Однако доказательство теоремы до сих пор не найдено.

Почему математики тратят столько времени на решение таких задач, как Великая теорема Ферма или проблема Гольдбаха? Ведь в этом нет практического смысла, из их решения нельзя извлечь никакой выгоды. На мой взгляд, это очень древний и очень свойственный человеческой природе вид деятельности - поиск самоочевидной, бесспорной истины. Философы тысячелетиями ищут истину. Математики надеются обнаружить такие истины, работая с системами, построенными на чистой логике. И то, что эти доказательства столь трудно достижимы, наверное, объясняется скорее самой природой логики, невозможностью найти истину в этом ненадежном, изменчивом мире, а не свойством математики как таковой.

Массу тела можно определить путем измерения испытываемого телом ускорения под действием известной силы:

Мин = F/a (1)

Определяемая таким путем масса, обозначаемая Мин, известная под названием инертной массы. Массу можно также определить, измеряя силу ее тяготения к другому телу, например к Земле: GMгрМ3=F,

Мгр=FrІ/ GM3 (2)

Определяемая подобным способом масса, обозначаемая Мгр, носит название гравитационной массы. В формулах (2) М3 - масса Земли.

Замечательно, что инертные массы всех тел в пределах точности измерений пропорциональны их гравитационным массам.

Принцип эквивалентности

Ни разу, ни при каких условиях не было обнаружено никакого различия между инертной и гравитационной массами тела, наводит на мысль, что тяготение в известном смысле может быть эквивалентным ускорению.

Действия ускоренного движения и силы тяжести полностью взаимно уничтожаются. Наблюдатель, сидящий в закрытом лифте и регистрирующий силы, представляющие ему гравитационными, не может сказать, какая доля этих сил обусловлена ускорением и какая - действительными гравитационными силами. Он вообще не обнаружил никаких сил, если только на лифт не подействуют какие-либо другие (т.е. отличные от гравитационных0 силы. Постулированный принцип эквивалентности требует, в частности, чтобы отношение инертных масс к гравитационным удовлетворяло тождеству

Мин/Мгр = 1

«Невесомость» человека в спутнике на орбите является следствием принципа эквивалентности.

Поиски математических следствий принципа эквивалентности приводят к общей теории относительности.

Теория относительности

Альберт Эйнштейн создал новую теорию - теорию относительности, или релятивистскую механику (от английского - относительность).

Главный вклад Эйнштейна в познание законов природы состоял даже не в открытии новых формул, а в радикальном изменении основополагающих фундаментальных представлений о пространстве, времени, веществе и движении.

Общая теория относительности описывает взаимосвязь физических процессов, происходящих в ускоренно движущихся друг относительно друга (неинерциальных) системах отсчета.

Специальная теория относительности базируется на двух постулатах.

Первый постулат теории относительности является обобщением классического принципа относительности Галилея на любые законы природы, а не только механики.

Первый постулат теории относительности:

Все законы природы одинаковы в инерциальных системах отсчета.

Это означает, что все инерциальные системы отсчета эквивалентны. При наличии двух инерциальных систем отсчета бессмысленно выяснять, какая из них движется, а какая покоится. Можно наблюдать только относительное прямолинейное движение. Нельзя говорить об абсолютном прямолинейном и равномерном движении, иначе существовала бы ИСО, в которой законы природы отличались бы от законов в других системах. Сравнивая эти законы, наблюдатель мог бы установить, в покое или в движении находится эта система, что противоречит первому постулату.

Никакие опыты в принципе не позволяют выделить предпочтительную абсолютную инерциальною систему отсчета.

Второй постулат теории относительности:

Скорость света в вакууме одинакова во всех инерциальных системах отсчета.

Это означает, что скорость сета в вакууме не зависит от скорости движения источника или приемник света.

Постоянство скорости света - фундаментальное свойство природы. Согласно постулатам СТО скорость света - максимально возможная скорость распространения любого взаимодействия.

Скорость света образует верхний предел скоростей для всех материальных тел.

Материальные тела не могут иметь скорость большую, чем скорость света.

Как уже было замечено, общая теория относительности была создана Эйнштейном в связи с попытками построить релятивистскую теорию тяготения. Закон всемирного тяготения Ньютона с его дальнодействием и мгновенной передачей силы несовместим с выводами специальной теории относительности. Требовалось изменить его формулировку таким образом, чтобы он, не переставая соответствовать всему имеющемуся физическому и астрономическому опыту, удовлетворил бы в то же время требованиям теории относительности.

Один из возможных путей к этому напрашивался сам собой. Закон тяготения Ньютона по своей форме весьма близок к основному закону электричества — закону Кулона. И там, и здесь сила взаимодействия обратно пропорциональна квадрату расстояния. Используя эту аналогию, можно было надеяться достичь успеха. Такие попытки действительно имели место со стороны некоторых физиков; они показали, что релятивистское обобщение закона Ньютона, во всяком случав, возможно. Однако сам Эйнштейн пошел другим путем.

Исходным пунктом теории Эйнштейна служит основное свойство сил тяготения, состоящее в том, что все тела (в пустоте) падают с одинаковым ускорением.


Этот закон установил уже Галилей, предприняв с этой целью опыты по сбрасыванию различных тел с вершины башни. Многие читатели видели, вероятно, эффектный опыт, когда в трубке, из которой откачан воздух, кусочек свинца и пушинка падают совершенно одинаково, не отставая друг от друга. Все мы так привыкли к этому простому закону, что готовы считать его чем-то само собой разумеющимся и не требующим особых объяснений.

Многие физики понимали, однако, что закон этот не так уж самоочевиден. Здесь соприкасаются два совершенно различных свойства материальных тел.

Падение тел управляется двумя физическими законами — вторым законом Ньютона и законом всемирного тяготения. Первый из них утверждает, что ускорение тела пропорционально действующей на него силе; коэффициентом пропорциональности служит масса, являющаяся в силу этого мерой инерции тела. Закон всемирного тяготения говорит, что сила, с которой тело притягивается Землей, пропорциональна его массе. Здесь масса выступает уже в совсем другой роли — в роли меры способности тела к взаимному притяжению с другими телами. Для большей ясности говорят поэтому о двух массах — массе инертной и массе тяжелой. Вес тела пропорционален его тяжелой массе. Отношение веса к ускорению пропорционально инертной массе. Из того факта, что тяготение сообщает всем телам одинаковые ускорения, вытекает тотчас же, что инертная масса любого тела пропорциональна его тяжелой массе.

В чем причина такого поразительного совпадения? Впрочем, быть может, закон этот лишь приближенный? Нельзя ли найти тела, в которых тяжелая и инертная массы распределены в различных пропорциях?

Опыты Галилея с современной точки зрения были довольно грубыми. Более точные эксперименты были предприняты Ньютоном. Он сравнивал между собой колебания маятников одинаковых размеров, но с грузами из различных веществ — золота, серебра, свинца, стекла, песка, соли, дерева, воды и даже пшеницы. Малейшее отклонение от пропорциональности между тяжелой и инертной массой тотчас обнаружилось бы по разнице в периодах колебаний этих маятников. Однако хотя точность измерений Ньютона была довольно высока — порядка 1/1000, никакой разницы ему обнаружить не удалось.

Весьма точные опыты в этом же направлении были поставлены в конце прошлого века венгерским физиком Этвешем, применившим для этой цели крутильные весы. Замысел опытов состоял в следующем. Как известно, все тела на земной поверхности находятся под действием двух сил — силы тяготения и центробежной силы, возникающей вследствие вращения Земли. Первая сила действует на тяжелую массу, вторая — на инертную. Сила тяготения направлена к центру Земли, тогда как центробежная сила перпендикулярна к ее оси вращения аа (рис. 36). На экваторе эти две силы направлены вдоль одной прямой, на полюсах центробежная сила равна нулю. Во всех остальных точках земной поверхности обе силы, складываясь по правилу параллелограмма, дают равнодействующую, направленную несколько в сторону от центра Земли. Нетрудно понять, что если в двух телах тяжелая и инертная массы распределены по-разному, то и эти равнодействующие будут иметь несколько различные направления. Если мы уравновесим два таких тела на коромысле, подвешенном на тонкой нити, то разница направлений сил заставит коромысло повернуться и закрутить нить. Точность этих опытов была такова, что позволяла обнаружить диспропорцию тяжелой и инертной масс, составляющую всего 1/5000000 их долю. Были перепробованы самые различные вещества, но никаких отклонений обнаружить не удалось.

Как мы знаем, природа массы может быть различной — это может быть масса покоя «элементарных» частиц или масса, соответствующая энергии их взаимодействия, или масса электромагнитного поля. Опыты с радиоактивными веществами, в которых соотношение между этими видами массы непрерывно меняется, показали, что и у них расхождений между тяжелой и инертной массами не обнаруживается.

Приходится, таким образом, заключить, что закон пропорциональности тяжелой и инертной массы является всеобщим физическим законом, справедливым для всех тел, независимо от их природы. Если измерять обе массы в одних единицах, то их численные значения для каждого тела будут совпадать. Поэтому можно говорить не о пропорциональности, а о равенстве обеих масс.

Опытный факт равенства тяжелой и инертной масс, возведенный в ранг универсального физического принципа, влечет за собой целый ряд интересных и важных следствий. Рассмотрим какую-либо физическую систему, заключенную для определенности в непроницаемый ящик. Поднимем этот ящик на достаточную высоту над земной поверхностью и позволим ему свободно падать. Так как сила тяжести сообщает всем телам одинаковые ускорения, то все тела внутри ящика будут двигаться под действием тяжести совершенно одинаково, так же как и сам ящик. Тем самым никаких взаимодействий, обусловленных силами земного тяготения, между этими телами возникнуть не может. Дело будет происходить так, как будто внутри ящика сила тяжести исчезла. Если мы перейдем к системе отсчета, в которой ящик неподвижен, то внутри него никакого тяготения не обнаружится. Именно это имеет место, например, внутри искусственных спутников Земли: во время их свободного полета ни расположенные там приборы, ни живые существа не ощущают силы земного притяжения. Если мы перенесем каким-либо образом нашу физическую систему в такое место пространства, где силы тяготения на самом деле отсутствуют, то все явления в ней будут происходить в точности так же, как и во время свободного падения.

С другой стороны, рассмотрим ту же самую физическую систему, но уже в неподвижном состоянии на поверхности Земли. Тогда сила тяжести внутри ящика будет проявляться полностью со всеми вытекающими отсюда последствиями. Физические условия внутри ящика будут совсем другими, и все процессы будут происходить по-иному. Теперь перенесем ящик снова куда-нибудь подальше от Земли и Солнца, чтобы сила тяжести на него не действовала, но сообщим ему ускоренно, в точности равное ускорению силы тяжести близ земной поверхности. Что произойдет? Внутри ящика появятся силы инерции, которые, подобно силам тяготения, будут сообщать всем телам одинаковые ускорения (в системе отсчета, где ящик неподвижен). Стало быть, физические условия внутри ящика будут в точности такими же, как и тогда, когда он стоял на Земле.

Получается, таким образом, что силы тяготения физически эквивалентны силам инерции. Как те, так и другие зависят от выбора системы отсчета; в частности, эта система может быть выбрана так, что силы тяготения полностью исчезают. Это обстоятельство, тесно связанное, как ясно из предыдущего, с равенством тяжелой и инертной массы, Эйнштейн назвал принципом экви валентности и положил его в основу общей теории относительности.

Здесь, правда, необходимо сделать существенную оговорку. Мы можем «уничтожить» силы тяготения внутри данной физической системы только в том случае, если эта система не очень велика. В самом деле, если рассмотренный нами ящик имеет размеры порядка десятков километров, то внутри него, когда он стоит на земной поверхности, проявятся неоднородности поля тяготения. Сила тяжести, как хорошо известно, убывает с высотой; кроме того, направления сил тяготения не параллельны, а сходятся в центре Земли. Такое поле тяготения уже нельзя уничтожить никаким выбором системы отсчета, так как, очевидно, при любом поступательном движении ящика силы инерции внутри него будут обязательно параллельны и всюду одинаковы по своей величине. Точно так же, при отсутствии «настоящего» тяготения никаким ускоренным движением ящика не удастся полностью имитировать реальное поле земного тяготения. Таким образом, принцип эквивалентности имеет местный, или, как говорят, ло кальный характер — он справедлив лишь для достаточно малых (точнее — лишь для бесконечно малых) областей пространства.

Принцип эквивалентности допускает наглядную геометрическую аналогию. Рассмотрим какую-нибудь кривую поверхность, например сферу. Во введении мы уже выяснили, что внутренняя геометрия такой поверхности не будет евклидовой. Однако если мы ограничимся достаточно малым участком поверхности, то отклонения от евклидовой геометрии также будут малы. Проведем в какой-либо точке поверхности касательную плоскость. Тогда малый участок поверхности мы без заметных искажений можем «перенести» на прилегающий участок плоскости; для этого можно, например, спроектировать его на эту плоскость из центра сферы (или какой-нибудь другой точки). Как известно, именно так и поступают в картографии; поэтому карты сравнительно небольших частей земной поверхности достаточно точны — они не содержат заметных отклонений от оригинала. Что же касается карт, изображающих целые континенты или даже всю земную поверхность, то искажения тут неизбежны. В частности, на таких картах невозможно выдержать всюду одинаковый масштаб.

Имеются основания назвать пространство — время специальной теории относительности плоским. Выбирая на основании принципа эквивалентности систему отсчета, в которой поле тяготения в данной точке обращается в нуль, мы тем самым как бы проводим в этой точке «касательную плоскость» к тому пространству—времени, которое имеется при наличии поля тяготения. Невозможность выбрать систему отсчета, в которой поле тяготения пропало бы сразу во всем пространстве, означает, что в поле тяготения пространство — время является «кривым». Следует иметь в виду, что выражение «кривизна пространства —времени» ничего другого не обозначает. Правда, аналогия с геометрией здесь довольно глубока, но аналогия всегда остается аналогией.

Принцип эквивалентности не является прямым логическим следствием закона равенства тяжелой и инертной масс. Из этого закона вытекает лишь, что все тела в поле тяготения движутся одинаково; принцип же эквивалентности распространяется на все физические процессы, в том числе и на такие, которые не сводятся к механическому движению. С другой стороны, этот принцип не связан исключительно с теорией относительности. Для его формулировки не нужно предполагать ни постоянства скорости света, ни каких-либо других фактов и выводов теории относительности. Принцип эквивалентности нужно рассматривать как весьма общий физический принцип, являющийся обобщением результатов опыта.

Нужно отметить, что принцип эквивалентности принимается безоговорочно не всеми физиками; в частности, имеют место попытки построить общую теорию относительности на основе лишь закона равенства тяжелой и инертной масс. Однако эти попытки нельзя признать удачными. Закон равенства инертной и тяжелой масс позволяет построить только кинематику теории тяготения и вывести законы механического движения. Что же касается более глубоких следствий общей теории относительности, закон равенства масс тут бессилен. Поэтому авторы этих попыток вынуждены так или иначе, явно или молчаливо, использовать и общий принцип эквивалентности.

Как же применяется принцип эквивалентности в теории тяготения? Построить теорию тяготения — это прежде всего значит указать, как в этом поле будет вести себя тот или иной физический объект. Например, нам хорошо известны законы электродинамики в условиях отсутствия поля тяготения — они даются уравнениями Максвелла. Мы умеем также формулировать их в любой неинерциальной системе отсчета; все, что нужно знать для этого, это выражение интервала собственного времени. Спрашивается, как написать уравнения Максвелла в поле тяготения?

Рассмотрим, например, электромагнитное поле вблизи земной поверхности, т. е. в поле тяготения. Выделим достаточно малый объем пространства, так, чтобы можно было применить принцип эквивалентности. Введем такую систему отсчета, в которой поле тяготения внутри выделенного объема исчезает. Для этого можно связать ее с каким-нибудь свободно падающим телом, пролетающим в данный момент через наш участок пространства. Так как поля тяготения теперь нет, то наша система отсчета не будет по своим свойствам отличаться от инерциальной, и для нее справедливы все выводы специальной теории относительности; в частности, мы сможем сформулировать там и уравнения Максвелла. Таким же точно образом для каждого малого объема пространства мы введем свою местную инерциальную систему отсчета, в которой и сформулируем искомый физический закон. Но нам нужно иметь формулировку уравнений Максвелла не в этом множестве местных систем отсчета, а в какой-либо общей системе, охватывающей сразу все пространство вокруг земного шара или, во всяком случае, достаточно большую область этого пространства. Для этого мы должны в каждом малом объеме перейти от местной инерциальной системы отсчета к этой единой общей системе; это будет равносильно переходу к некоторой неинерциальной системе отсчета, а такую операцию мы делать умеем. Таким образом, мы и получим формулировку законов электромагнитного поля при наличии тяготения. Заметим, что одновременно мы получаем и формулу для собственного времени в этой общей системе отсчета.

Эту программу и осуществил Эйнштейн в ряде работ по общей теории относительности. При этом он получил ряд важных и интересных результатов. Некоторые из них мы сейчас рассмотрим.

Мы знаем, что все физические законы, в том числе и законы электродинамики, допускают общековариантную формулировку, пригодную для любой, инерциальной или неинерциальной, системы отсчета. Свойства системы отсчета полностью описываются формулой собственного времени; поэтому, например, в общие уравнения Максвелла входят и коэффициенты формулы собственного времени. И вот оказывается, из принципа эквивалентности вытекает, что эти общие уравнения остаются справедливыми и в любом поле тяготения — для этого нужно лишь подставить в них коэффициенты формулы собственного времени, соответствующей данному полю тяготения. Поэтому, собственно говоря, надобность в новых формулировках физических законов отпадает: если мы уже сумели написать их в общековариантном виде, то они автоматически распространяются на любые поля тяготения. Именно здесь и сказывается вся сила принципа эквивалентности.

И именно здесь некоторые физики допускают логическую ошибку. Стремясь обойтись без принципа эквивалентности, они попросту переписывают общековариантную форму того или иного физического закона, выведенного в рамках специальной теории относительности, и без дальнейших околичностей считают ее действительной также и в поле тяготения. Однако этот «фокус» требует обоснования. А оно без принципа Эквивалентности невозможно.

Необходимо еще сказать несколько слов по поводу названия общая теория относительности. Оно неоднократно критиковалось; и действительно, его следует признать крайне неудачным. Трудно даже понять, что, собственно, хотел выразить Эйнштейн этим названием. Еще для специальной теории относительности название в какой-то степени оправдано, так как в ее основе действительно лежит принцип относительности Галилея.

Но никакого принципа относительности более общего, нем принцип относительности Галилея, физика не знает. Физические явления в ускоренно движущихся системах происходят иначе, чем в системах, движущихся равномерно и прямолинейно. Можно, правда, сформулировать физические законы в общековариантном виде, но это ни в коей мере не уничтожает качественной разницы между ускоренным и равномерным движением.

По-видимому, именно возможность ковариантной формулировки физических законов и имел в виду Эйнштейн. Однако этот принцип не имеет физического содержания. Со времен Лагранжа математическая физика научилась формулировать любые физические соотношения в любых системах отсчета и в любых координатах; это — чисто математическая задача. Безусловно, математические идеи и методы играют в теории относительности огромную роль; без овладения ими понять до конца теорию относительности невозможно. Но все же это — теория физическая и странно присваивать ей «математическое» название.

С другой стороны, называть общую теорию относительности теорией тяготения, как это некоторые предлагают, также представляется неправильным. Верно, что она возникла на основе разработки релятивистской теории тяготения, точно так же, как специальная теория относительности возникла из электродинамики. Но как та, так и другая давпо переросли эти первоначальные рамки. Никто не предлагает называть специальную теорию относительности электродинамикой. Точно так же неправомерно сводить общую теорию относительности только к теории тяготения.

Масса фигурирует в двух различных законах: во втором законе Ньютона и в законе всемирного тяготения. В первом случае она характеризует инертные свойства тела, во втором - гравитационные свойства, т. е. способность тел притягивать друг друга. В связи с этим возникает вопрос, не следует ли различать инертную массу и массу гравитационную

Ответ на этот вопрос может дать только опыт. Рассмотрим в гелиоцентрической системе отсчета свободное падение тел. Всякое тело вблизи поверхности Земли испытывает силу притяжения к Земле, которая согласно (46.13) равна

( гравитационная масса данного тела, - гравитационная масса Земли, - радиус земного шара). Под действием этой силы тело приобретает ускорение w (но не g; см. § 33), которое должно быть равно силе F, деленной на инертную массу тела

Опыт показывает, что ускорение w для всех тел одинаково (в § 33 показано, что из одинаковости g вытекает одинаковость до). Множитель также одинаков для всех тел.

Следовательно, и отношение оказывается для всех тел одним и тем же.

К такому же результату приводят и все другие опыты, в которых могло бы проявиться различие между инертной и гравитационной массами.

Из числа упомянутых опытов расскажем об опыте Этвеша, начатом в 1887 г. и продолжавшемся более 25 лет. В его основе лежит то обстоятельство, что на тело, покоящееся вблизи поверхности Земли, действуют, кроме реакции опоры, гравитационная сила F, направленная к центру Земли, а также центробежная сила инерции направленная перпендикулярно к оси вращения Земли (рис. 47.1; на этом рисунке не соблюден масштаб - модуль центробежной силы на два порядка меньше модуля гравитационной силы, см. § 33). Гравитационная сила пропорциональна гравитационной массе тела

(G - напряженность гравитационного поля). Центробежная сила инерции пропорциональна инертной массе . Согласно формуле (33.4) ее модуль определяется выражением

( - широта местности).

Из рис. 47.1 следует, что модуль вертикальной составляющей центробежной силы инерции равен

Мы ввели обозначение . Опыт Этвеша производился на широте . В этом случае коэффициент А примерно в 100 раз меньше G.

Модуль горизонтальной составляющей силы равен

(для значения коэффициентов А и В совпадают).

Этвеш подвесил на упругой нити стержень с укрепленными на его концах телами по возможности равной массы (рис. 47.2). Тела брались из разных материалов. К нижней части нити прикреплялось зеркальце. Луч, вышедший из осветителя и отраженный от зеркальца, попадал на перекрестье зрительной трубы. Плечи V и подбирались так, чтобы стержень находился в равновесии в вертикальной плоскости. Условие равновесия выглядит следующим образом:

Прибор располагался так, чтобы стержень был перпендикулярен к плоскости меридиана (см. рис. 47.2). В этом случае горизонтальные составляющие центробежной силы инерции создают закручивающий момент, равный

Исключив из уравнений (47.2) и (47.3) плечо Г, можно после несложных преобразований прийти к формуле

Из этой формулы видно, что в том случае, когда отношение гравитационной и инертной масс для обоих тел одинаково, момент, закручивающий нить, должен быть равен нулю. Если же отношение для первого и второго тела неодинаково, закручивающий момент отличен от нуля. В этом случае при повороте всего прибора на 180° закручивающий момент изменил бы знак на обратный и световой зайчик сместился бы из перекрестья зрительной трубы (рис. 47.3). При сравнении восьми различных тел (в том числе и деревянного) с платиновым телом, принятым за эталон, Этвеш не обнаружил закручивания нити. Это дало ему основание утверждать, что отношение для этих тел одинаково с точностью в .

В 1961-64 гг. Дикке усовершенствовал метод Этвеша, использовав для создания закручивающего момента гравитационное поле Солнца и центробежную силу инерции, обусловленную орбитальным движением Земли.

В результате своих измерений Дикке пришел к выводу, что отношение одинаково для исследованных тел с точностью 10-11. Наконец, в 1971 г. В. Б. Брагинский и В. И. Панов получили постоянство указанного отношения с точностью до

Итак, вся совокупность опытных фактов указывает на то, что инертная и гравитационная массы всех тел строго пропорциональны друг другу. Это означает, что при надлежащем выборе единиц гравитационная и инертная массы становятся тождественными, поэтому в физике говорят просто о массе. Тождественность гравитационной и инертной масс положена Эйнштейном в основу общей теории относительности.

В § 32 мы уже отмечали, что силы инерции аналогичны силам тяготения - и те, и другие пропорциональны массе тела, на которое они действуют. Там же было указано, что, находясь внутри закрытой кабины, никакими опытами нельзя установить, чем вызвано действие на тело силы тем ли, что кабина движется с ускорением -g, либо тем, что неподвижная кабина находится вблизи поверхности Земли. Это утверждение составляет содержание так называемого принципа эквивалентности.

Тождественность инертной и гравитационной масс является следствием эквивалентности сил инерцин и сил тяготения.

Отметим, что с самого начала массу в (45.1) мы полагали совпадающей с инертной массой тел, вследствие чего численное значение у нами было определено в предположении, что Поэтому (47.1) можно записать в виде

Подобным же образом были определены массы других небесных тел.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...