Исходные вещества и методы экспериментов. Скорость химической реакции

Химические реакции, их свойства, типы, условия протекания и прочая, являются одним из краеугольных столпов интересной науки под названием химия. Попробуем же разобрать что такое химическая реакция, и какова ее роль. Итак, химической реакцией в химии принято считать превращение одного либо нескольких веществ, в другие вещества. При этом ядра у них не меняются (в отличие от реакций ядерных), зато происходит перераспределение электронов и ядер, и, разумеется, появляются новые химические элементы.

Химические реакции в природе и быту

Мы с вами окружены химическими реакциями, более того мы сами их регулярно осуществляем различными бытовыми действиями, когда например, зажигаем спичку. Особенно много химических реакций сами того не подозревая (а может и подозревая) делают повара, когда готовят еду.

Разумеется, и в природных условиях проходит множество химических реакций: извержение вулкана, листвы и деревьев, да что там говорить, практически любой биологический процесс можно отнести к примерам химических реакций.

Типы химических реакций

Все химические реакции можно условно разделить на простые и сложные. Простые химические реакции, в свою очередь, разделяются на:

  • реакции соединения,
  • реакции разложения,
  • реакции замещения,
  • реакции обмена.

Химическая реакция соединения

По весьма меткому определению великого химика Д. И. Менделеева реакция соединения имеет место быть когда «их двух веществ происходит одно». Примером химической реакции соединения может быть нагревание порошков железа и серы, при которой из них образуется сульфид железа — Fe+S=FeS. Другим ярким примеров этой реакции является горение простых веществ, таких как сера или фосфор на воздухе (пожалуй, подобную реакцию можно также назвать тепловой химической реакцией).

Химическая реакция разложения

Тут все просто, реакция разложения является противоположностью реакции соединения. При ней из одного вещества получается два или более веществ. Простым примером химической реакции разложения может быть реакция разложение мела, в ходе которой из собственно мела образуется негашеная известь и углекислый газ.

Химическая реакция замещения

Реакция замещения осуществляется при взаимодействии простого вещества со сложным. Приведем пример химической реакции замещения: если опустить стальной гвоздь в раствор с медным купоросом, то в ходе этого простого химического опыта мы получим железный купорос (железо вытеснит медь из соли). Уравнение такой химической реакции будет выглядеть так:

Fe+CuSO 4 → FeSO 4 +Cu

Химическая реакция обмена

Реакции обмена проходят исключительно между сложными химическими веществами, в ходе которых они меняются своими частями. Очень много таких реакций имеют место быть в различных растворах. Нейтрализация кислоты желчью – вот хороший пример химической реакции обмена.

NaOH+HCl→ NaCl+Н 2 О

Так выглядит химическое уравнение этой реакции, при ней ион водорода из соединения HCl обменивается ионом натрия из соединения NaOH. Следствием этой химической реакции является образование раствора поваренной соли.

Признаки химических реакций

По признакам протекания химических реакций можно судить прошла ли химическая реакция между реагентами или нет. Приведем примеры признаков химических реакций:

  • Изменение цвета (светлое железо, к примеру, во влажном воздухе покрывается бурым налетом, как результат химической реакции взаимодействия железа и ).
  • Выпадение осадка (если вдруг через известковый раствор пропустить углекислый газ, то получим выпадение белого нерастворимого осадка карбоната кальция).
  • Выделение газа (если Вы капнете на пищевую соду лимонной кислотой, то получите выделение углекислого газа).
  • Образование слабодиссоциированных веществ (все реакции, в результате которых образуется вода).
  • Свечение раствора (примером тут могут служить реакции, происходящие с раствором люминола, излучающего при химических реакциях свет).

В целом, трудно выделить какие признаки химических реакций являются основными, для разных веществ и разных реакций характерны свои признаки.

Как определить признак химической реакции

Определить признак химической реакции можно визуально (при изменении цвета, свечении), или по результатам этой самой реакции.

Скорость химической реакции

Под скоростью химической реакции обычно понимают изменение количества одного из реагирующих веществ за единицу времени. Притом, скорость химической реакции всегда положительная величина. В 1865 году химиком Н. Н. Бекетовым был сформулирован закон действия масс гласящий, что «скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в степени, равные их стехиометрическим коэффициентам».

К факторам скорости химической реакции можно отнести:

  • природу реагирующих веществ,
  • наличие катализатора,
  • температуру,
  • давление,
  • площадь поверхности реагирующих веществ.

Все они имеют самое прямое влияние на скорость протекания химической реакции.

Равновесие химической реакции

Химическим равновесием называют такое состояние химической системы, при котором протекает несколько химических реакций и скорости в каждой паре прямой и обратной реакции равны между собой. Таким образом, выделяется константа равновесия химической реакции – это та величина, которая определяет для данной химической реакции соотношение между термодинамическими активностями исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия можно определить направление протекания химической реакции.

Условия возникновения химических реакций

Чтобы положить начало химических реакций, необходимо для этого создать соответствующие условия:

  • приведение веществ в тесное соприкосновение.
  • нагревание веществ до определенной температуры (температура химической реакции должна быть подходящей).

Тепловой эффект химической реакции

Так называют изменение внутренней энергии системы как результат протекания химической реакции и превращения исходных веществ (реактантов) в продукты реакции в количествах, соответствующих уравнению химической реакции при следующих условиях:

  • единственно возможной работой при этом есть только лишь работа против внешнего давления.
  • исходные вещества и продукты, полученные в результате химической реакции, имеют одинаковую температуру.

Химические реакции, видео

И в завершение интересно видео про самые удивительные химические реакции.

Пусть в школе мы и относимся к химии как к одному из наиболее сложных и поэтому «нелюбимых» предметов, но спорить с тем, что химия важна и значима, не стоит, ибо спор обречен на неуспех. Химия, как и физика, окружает нас: это молекулы , атомы , их которых состоят вещества , металлы, неметаллы , соединения и др. Поэтому химия – одна из важнейших и обширных областей естествознания.

Химия это наука о веществах, их свойствах и превращениях.

Предметом химии являются формы существования объектов материального мира. В зависимости от того, какие объекты (вещества) химия изучает, химию принято делить на неорганическую и органическую . Примерами неорганических веществ являются кислород, вода, кремнезём, аммиак и сода, примерами веществ органических – метан, ацетилен, этанол, уксусная кислота и сахароза.

Все вещества, как здания, построены из кирпичиков-частиц и характеризуются определенной совокупностью химических свойств – способностью веществ принимать участие в химических реакциях.

Химические реакции – это процессы образования сложных по составу веществ из более простых, переход одних сложных веществ в другие, разложение сложных веществ на несколько более простых по составу веществ. Иными словами, химические реакции – это превращения одних веществ в другие.

В настоящее время известно много миллионов веществ , к ним постоянно добавляются новые вещества – как открытые в природе, так и синтезированные человеком, т.е. полученные искусственным путем. Число химических реакций не ограничено , т.е. безмерно велико.

Вспомним основные понятия химии – вещество, химические реакции и др.

Центральным понятием химии является понятие вещество . Каждое вещество обладает уникальным набором признаков – физических свойств, определяющих индивидуальность каждого конкретного вещества, например, плотность, цвет, вязкость, летучесть, температуру плавления и кипения.

Все вещества могут находиться в трех агрегатных состояниях твердом (лед), жидком (вода) и газообразном (пар), зависящих от внешних физических условий. Как видим, вода H 2 O представлена во всех заявленных состояниях.

Химические свойства вещества от агрегатного состояния не зависят, а вот физические свойства, напротив, зависят. Так, в любом агрегатном состоянии сера S при сгорании образует сернистый газ SO 2 , т.е. проявляет одно и то же химическое свойство, но свойства физические серы весьма различны в разных агрегатных состояниях: например, плотность жидкой серы равна 1,8 г/см 3 , твердой серы 2,1 г/см 3 и газообразной серы 0,004 г/см 3 .

Химические свойства веществ выявляются и характеризуются химическими реакциями. Реакции могут протекать как в смесях различных веществ, так и внутри одного вещества. При протекании химических реакция всегда образуются новые вещества.

Химические реакции изображаются в общем виде уравнением реакции: Реагенты → Продукты , где реагенты – это исходные вещества, взятые для проведения реакции, а продукты – это новые вещества, которые образовались в результате проведения реакции.

Всегда химические реакции сопровождаются физическими эффектами – это может быть поглощение или выделение теплоты, изменения агрегатного состояния и окраски веществ ; о протекании реакций часто судят по наличию этих эффектов. Так, разложение зеленого минерала малахит сопровождается поглощением теплоты (именно поэтому реакция идет при нагревании), а в результате разложения образуется твердый черный оксид меди (II) и бесцветные вещества – углекислый газ CO 2 и жидкая вода H 2 O.

Химические реакции необходимо отличать от физических процессов , которые изменяют лишь внешнюю форму или агрегатное состояние вещества (но не его состав); наиболее распространены такие физические процессы, как дробление, прессование, совместное сплавление, смешивание, растворение, фильтрирование осадка, перегонка.

С помощью химических реакций можно получать практически важные вещества, которые в природе находятся в ограниченных количествах (азотные удобрения ) или вообще не встречаются (синтетические лекарственные препараты, химические волокна, пластмассы ). Иными словами, химия позволяет синтезировать необходимые для жизнедеятельности человека вещества . Но химическое производство приносит и много вреда окружающему миру – в виде загрязнений, вредных выбросов, отравления флоры и фауны , поэтому использование химии должно быть рациональным, бережным и целесообразным.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Для образования активного комплекса нужно преодолеть некоторый энергетический барьер, затратив энергию Е А. Эта энергия и есть энергия активации – некоторая избыточная энергия, по сравнению со средней при данной температуре энергией, которой должны обладать молекулы для того, чтобы их столкновения были эффективными.

В общем случае для химической реакции А + В = С +Д переход от исходных веществ А и В к продуктам реакции С и Д через состояние активного комплекса А + В = А¼В = С + D схематически можно представить в виде энергетических диаграмм (рис. 6.2).

Низкими значениями Е А и очень большими скоростями характеризуются ионные взаимодействия в растворах электролитов. Например:

Ca +2 + SO = CaSO 4 .

Объясняется это тем, что разноименно заряженные ионы притягиваются друг к другу и не требуется затрат энергии на преодоление сил отталкивания взаимодействующих частиц.

Влияние катализатора

Изменение скорости реакции под воздействием малых добавок особых веществ, количество которых в ходе процесса не меняется, называется катализом.

Вещества, изменяющие скорость химической реакции, называются катализаторами (вещества, изменяющие скорость химических процессов в живых организмах – ферменты). Катализатор в реакциях не расходуется и в состав конечных продуктов не входит.

Химические реакции, протекающие в присутствии катализатора, называются каталитическими. Различают положительный катализ – в присутствии катализатора скорость химической реакции возрастает - и отрицательный катализ (ингибирование) – в присутствии катализатора (ингибитора) скорость химической реакции замедляется.

1. Окисление сернистого ангидрида в присутствии платинового катализатора:

2SO 2 + O 2 = 2SO 3 – положительный катализ.

2. Замедление процесса образования хлороводорода в присутствии кислорода:

H 2 + Cl 2 = 2HCl – отрицательный катализ.

Различают: а) гомогенный катализ – реагирующие вещества и катализатор образуют однофазную систему; б) гетерогенный катализ – реагирующие вещества и катализатор образуют систему из разных фаз.

Механизм действия катализатора. Механизм действия положительных катализаторов сводится к уменьшению энергии активации реакции. При этом образуется активный комплекс с более низким уровнем энергии и скорость химической реакции сильно возрастает. На рис. 6.3 представлена энергетическая диаграмма химической реакции, протекающей в отсутствие (1) и в присутствии (2) катализатора.

Если медленно протекающую реакцию А + В = АВ вести в присутствии катализатора К, то катализатор вступает в химическое взаимодействие с одним из исходных веществ, образуя непрочное промежуточное соединение: А + К = АК.

Энергия активации этого процесса мала. Промежуточное соединение АК – реакционноспособно, оно реагирует с другим исходным веществом, при этом катализатор высвобождается и выходит из зоны реакции:



АК +В = АВ + К.

Суммируя оба процесса, получаем уравнение быстро протекающей реакции: А + В + (К) = АВ + (К).

Пример. Окисление сернистого ангидрида с участием катализатора NO: 2SO 2 + O 2 = 2SO 3 – медленная реакция;

При введении катализатора – NO – образуется промежуточное соединение: 2NO + O 2 = 2NO 2 .

В гетерогенном катализе ускоряющее действие связано с адсорбцией. Адсорбция – явление поглощения газов, паров, растворенных веществ поверхностью твердого тела. Поверхность катализатора неоднородна. На ней имеются так называемые активные центры, на которых происходит адсорбция реагирующих веществ, что увеличивает их концентрацию.

Некоторые вещества снижают или полностью уничтожают активность твердого катализатора – каталитические яды (к ним относятся соединения свинца, мышьяка, ртути, цианистые соединения). Особенно чувствительны к каталитическим ядам платиновые катализаторы.

Есть и такие вещества, которые усиливают действие катализатора, хотя сами катализаторами не являются. Эти вещества называются промоторами.


ХИМИЧЕСКОЕ РАВНОВЕСИЕ


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-03-24

В современной науке различают химические и ядерные реакции, протекающие в результате взаимодействия исходных веществ, которые принято называть реагентами. В результате образуются другие химические вещества, которые называются продуктами. Все взаимодействия происходят при определенных условиях (температура, излучение, присутствие катализаторов и прочее). Ядра атомов реагентов химических реакций не меняются. В ядерных превращениях образуются новые ядра и частицы. Существует несколько различных признаков, по которым определяют типы химических реакций.

За основу классификации можно взять число исходных и образующихся веществ. В этом случае все типы химических реакций делятся на пять групп:

  1. Разложения (несколько новых получается из одного вещества), например, разложение при нагревании на хлористый калий и кислород: KCLO3 → 2KCL + 3O2.
  2. Соединения (два или несколько соединений образуют одно новое), взаимодействуя с водой, окись кальция превращается в гидроокись кальция: H2O + CaO → Ca(OH)2;
  3. Замещения (число продуктов равно числу исходных веществ, в которых замещена одна составляющая часть на другую), железо в сульфате меди, замещая медь, образует сульфат двухвалентного железа: Fe + CuSO4 → FeSO4 +Cu.
  4. Двойного обмена (молекулы двух веществ обмениваются оставляющими их частями), металлы в и обмениваются анионами, образуя выпадающий в осадок йодид серебра и азотнокислый кадий: KI + AgNO3 → AgI↓ + KNO3.
  5. Полиморфного превращения (происходит переход вещества из одной кристаллической формы в другую), йодид цвета при нагревании переходит в йодид ртути желтого цвета: HgI2 (красный) ↔ HgI2 (желтый).

Если химические превращения рассматривать по признаку изменения в реагирующих веществах степени окисления элементов, то тогда типы химических реакций могут делиться на группы:

  1. С изменением степени окисления — реакции окислительно-восстановительные (ОВР). В качестве примера можно рассмотреть взаимодействие железа с соляной кислотой: Fe + HCL → FeCl2 + H2, в результате степень окисления железа (восстановитель, отдающий электроны) изменилась с 0 до -2, а водорода (окислитель, принимающий электроны) с +1 до 0.
  2. Без изменения степени окисления (т. е. не ОВР). Например, реакции кислотно-щелочного взаимодействия бромистого водорода с гидроокисью натрия: HBr + NaOH → NaBr + H2O, в результате таких реакций образуются соль и вода, а степени окисления химических элементов, входящих в исходные вещества, не меняются.

Если рассматривать и скорость протекания в прямом и обратном направлении, то все типы химических реакций могут делиться также на две группы:

  1. Обратимые — те, что одновременно протекают в двух направлениях. Большинство реакций являются обратимыми. В качестве примера можно привести растворение в воде двуокиси углерода с образованием нестойкой угольной кислоты, которая разлагается на исходные вещества: H2O + CO2 ↔ H2CO3.
  2. Необратимые - протекают только в прямом направлении, после полного расходования одного из исходных веществ завершаются, после чего присутствуют только продукты и исходное вещество, взятое в избытке. Обычно один из продуктов является или выпавшим в осадок нерастворимым веществом или выделившимся газом. Например, при взаимодействии серной кислоты и хлористого бария: H2SO4 + BaCl2 + → BaSO4↓ + 2HCl в осадок выпадает нерастворимый

Типы химических реакций в органической химии можно разделить на четыре группы:

  1. Замещение (происходит замена одних атомов или групп атомов на другие), например, при взаимодействии хлорэтана с гидроокисью натрия образуется этанол и хлорид натрия: C2H5Cl + NaOH → C2H5OH + NaCl, то есть атом хлора замещается на атом водорода.
  2. Присоединение (две молекулы реагируют и образовывают одну), например, бром присоединяется в месте разрыва двойной связи в молекуле этилена: Br2 + CH2=CH2 → BrCH2—CH2Br.
  3. Отщепление (молекула разлагается на две и более молекулы), например, при определенных условиях этанол разлагается на этилен и воду: C2H5OH → CH2=CH2 + H2O.
  4. Перегруппировка (изомеризация, когда одна молекула превращается в другую, но качественный и количественный состав атомов в ней не меняется), например, 3-хлорутен-1 (C4H7CL) превращается в 1 хлорбутен-2 (C4H7CL). Здесь атом хлора перешел от третьего углеродного атома в углеводородной цепочке к первому, а двойная связь соединяла первый и второй атомы углерода, а затем стала соединять второй и третьи атомы.

Известны и другие виды химических реакций:

  1. По протекающие с поглощением (эндотермические) или выделением тепла (экзотермические).
  2. По типу взаимодействующих реагентов или образующихся продуктов. Взаимодействие с водой — гидролиз, с водородом — гидрирование, с кислородом — окисление или горение. Отщепление воды — дегидратация, водорода — дегидрирование и так далее.
  3. По условиям взаимодействия: в присутствии катализаторов (каталитические), под действием низкой или высокой температуры, при изменении давления, на свету и прочее.
  4. По механизму протекания реакции: ионные, радикально-цепные или цепные реакции.

Исходные вещества Активированный комплекс Продукты реакции - раздел Химия, Общая химия Для Образования Активного Комплекса Нужно Преодолеть Некоторый Энергетический...

Энергия активации Е А – один из основных параметров, который характеризует скорость химического взаимодействия. Она зависит от природы реагирующих веществ. Чем больше Е А, тем меньше (при прочих равных условиях) скорость реакции.

Обычно реакции между веществами с прочными ковалентными связями характеризуются большими значениями Е А и идут медленно, например:

Низкими значениями Е А и очень большими скоростями характеризуются ионные взаимодействия в растворах электролитов. Например:

Ca +2 + SO= CaSO 4 .

Объясняется это тем, что разноименно заряженные ионы притягиваются друг к другу и не требуется затрат энергии на преодоление сил отталкивания взаимодействующих частиц.

Конец работы -

Эта тема принадлежит разделу:

Общая химия

Государственное образовательное учреждение высшего профессионального образования.. тюменский государственный нефтегазовый университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая химия
Курс лекций Тюмень 2005 УДК 546(075) Севастьянова Г.К., Карнаухова Т. М.Общая химия: Курс лекций. – Тюмень: ТюмГНГУ, 2005. – 210 с.

Основные законы химии
1. Закон сохранения массы веществ (М.В. Ломоносов; 1756 г.): масса веществ, вступивших в реакцию, равна массе веществ, образовавшихся в результате реакции. 2. За

Общие положения
Согласно современным представлениям, атом – это наименьшая частица химического элемента, являющаяся носителем его химических свойств. Атом электрически нейтрален и состоит из положительно заряженно

Развитие представлений о строении атома
До конца 19 столетия большинство учёных представляло атом как неразложимую и неделимую частицу элемента – "конечный узел" материи. Считалось также, что атомы неизменны: атом данного элеме

Модель состояния электрона в атоме
В соответствии с квантово – механическими представлениями, электрон – это такое образование, которое ведёт себя и как частица, и как волна, т.е. он обладает, как и другие микрочастицы, корпускул

Квантовые числа
Для характеристики поведения электрона в атоме введены квантовые числа: главное, орбитальное, магнитное и спиновое. Главное квантовое число n определяет энергию электрона на энергетичес

Электронные конфигурации (формулы) элементов
Запись распределения электронов в атоме по уровням, подуровням и орбиталям получила название электронной конфигурации (формулы) элемента. Обычно электронная формула приводится для основного

Порядок заполнения электронами уровней, подуровней, орбиталей в многоэлектронных атомах
Последовательность заполнения электронами уровней, подуровней, орбиталей в многоэлектронных атомах определяют: 1) принцип наименьшей энергии; 2) правило Клечковского; 3)

Электронные семейства элементов
В зависимости от того, какой подуровень последним заполняется электронами, все элементы делятся на четыре типа – электронные семейства: 1. s – элементы; заполняется электронами s –

Понятие об электронных аналогах
Атомы элементов с одинаковым заполнением внешнего энергетического уровня носят название электронных аналогов. Например:

Периодический закон и периодическая система элементов Д.И. Менделеева
Важнейшим событием химии в 19 веке было открытие периодического закона, сделанное в 1869 г. гениальным русским ученым Д. И. Менделеевым. Периодический закон в формулировке Д. И. Менделеева гласи

Структура периодической системы химических элементов Д. И. Менделеева
Элементы в периодической системе располагаются в последовательности возрастания порядковых номеров Z от 1 до 110. Порядковый номер элемента Z соответствует заряду ядра его атома, а также числу д

Периодическая система Д.И. Менделеева и электронная структура атомов
Рассмотрим связь между положением элемента в периодической системе и электронным строением его атомов. У каждого последующего элемента периодической системы на один электрон больше, чем у предыдуще

Периодичность свойств элементов
Так как электронное строение элементов изменяется периодически, то соответственно периодически изменяются и свойства элементов, определяемые их электронным строением, такие, как атомный радиус, эне

Теория метода валентных связей
Метод разработан В. Гейтлером и Дж. Лондоном. Большой вклад в его развитие внесли также Дж. Слейтер и Л. Полинг. Основные положения метода валентных связей: 1. Химическая связь

Ковалентная связь
Химическая связь между атомами, осуществляемая обобществленными электронами, называется ковалентной. Ковалентная связь (означает – «совместно действующая») возникает за счет образования общи

Насыщаемость ковалентной связи
Насыщаемость ковалентной связи (валентные возможности атома, максимальная валентность) характеризует способность атомов участвовать в образовании определенного ограниченного числа ковалентных св

Направленность ковалентной связи
Согласно МВС наиболее прочные химические связи возникают в направлении максимального перекрывания атомных орбиталей. Поскольку атомные орбитали имеют определённую форму, их максимал

Полярность и поляризуемость химической связи
Ковалентная связь, в которой обобществленная электронная плотность (обобществленные электроны, связующее электронное облако) симметрична по отношению к ядрам взаимодействующих атомов, называется

Полярность молекул (типы ковалентных молекул)
Следует отличать полярность молекулы от полярности связи. Для двухатомных молекул типа АВ эти понятия совпадают, как это уже показано на примере молекулы HCl. В таких молекулах чем больше разнос

Ионная связь
При взаимодействии двух атомов, обладающих весьма различными электроотрицательностями, общая пара электронов может быть практически полностью смещена к атому с большей электроотрицательностью. В ре

Металлическая связь
Само название «металлическая связь» указывает, что речь пойдет о внутренней структуре металлов. Атомы большинства металлов на внешнем энергетическом уровне содержат небольшое число валентн

Гидроксиды
Среди многоэлементных соединений важную группу составляют гидроксиды – сложные вещества, содержащие гидроксогруппы OH. Некоторые из них (основные гидроксиды) проявляют свойства оснований - N

Кислоты
Кислоты – это вещества, диссоциирующие в растворах с образованием катионов водорода и анионов кислотного остатка (с позиций теории электролитической диссоциации). Кислоты классифици

Основания
Основаниями с позиций теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид - ионов OH ‾ и ионов металлов (исключение NH4OH

Первый закон термодинамики
Взаимосвязь между внутренней энергией, теплотой и работой устанавливает первый закон (начало) термодинамики. Его математическое выражение: Q = DU + A, или для беско

Тепловой эффект химической реакции. Термохимия. Закон Гесса
Все химические процессы сопровождаются тепловыми эффектами. Тепловым эффектом химической реакции называется теплота, выделяемая или поглощаемая в результате превращения исходных веществ

Энтропия
Если на систему оказать внешнее воздействие, в системе происходят определенные изменения. Если после снятия этого воздействия система может вернуться в первоначальное состояние, то процесс является

Свободная энергия Гиббса
Все химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии. Связь между энтальпией и энтропией системы устанавливает термодинамическая функция состояния, которая называет

Свободная энергия Гельмгольца
Направление протекания изохорных процессов (V = const и Т = const) определяется изменением свободной энергии Гельмгольца, которую называют также изохорно-изотермический потенциал (F): DF =

Закон действующих масс
Зависимость скорости химической реакции от концентрации реагирующих веществ определяется законом действующих масс. Этот закон установлен норвежскими учеными Гульдбергом и Вааге в 1867 г. Он формули

Зависимость скорости химической реакции от температуры
Зависимость скорости химической реакции от температурыопределяется правилом Вант-Гоффа и уравнением Аррениуса. Правило Вант-Гоффа:при увеличении температуры на каждые 1

Влияние катализатора
Изменение скорости реакции под воздействием малых добавок особых веществ, количество которых в ходе процесса не меняется, называется катализом. Вещества, изменяющие скорость хими

Общие представления о химическом равновесии. Константа химического равновесия
Химические реакции, в результате которых хотя бы одно из исходных веществ расходуется полностью, называются необратимыми, протекающими до конца. Однако большинство реакций являют

Смещение химического равновесия. Принцип Ле Шателье
Химическое равновесие остается неизменным до тех пор, пока постоянны параметры, при которыхоно устано

Фазовые равновесия. Правило фаз Гиббса
Гетерогенные равновесия, связанные с переходом вещества из одной фазы в другую без изменения химического состава, называются фазовыми. К ним относятся равновесия в процессах испарен



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...