Какие выражения называются алгебраическими. Дробные рациональные выражения

Алгебраическое выражение

выражение, составленное из букв и цифр, соединённых знаками действий сложения, вычитания, умножения, деления, возведения в целую степень и извлечения корня (показатели степени и корня должны быть постоянными числами). А. в. называется рациональным относительно некоторых букв, в него входящих, если оно не содержит их под знаком извлечения корня, например

рационально относительно a, b и с. А. в. называется целым относительно некоторых букв, если оно не содержит деления на выражения, содержащие эти буквы, например 3а/с + bc 2 - 3ас/4 является целым относительно а и b. Если некоторые из букв (или все) считать переменными, то А. в. есть Алгебраическая функция .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Алгебраическое выражение" в других словарях:

    Выражение, составленное из букв и чисел, соединенных знаками алгебраических действий: сложения, вычитания, умножения, деления, возведения в степень, извлечения корня … Большой Энциклопедический словарь

    алгебраическое выражение - — Тематики нефтегазовая промышленность EN algebraic expression … Справочник технического переводчика

    Алгебраическим выражением называется одна или несколько алгебраических величин (чисел и букв), соединенных между собой знаками алгебраических действий: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в целую… … Википедия

    Выражение, составленное из букв и чисел, соединённых знаками алгебраических действий: сложения, вычитания, умножения, деления, возведения в степень, извлечения корня. * * * АЛГЕБРАИЧЕСКОЕ ВЫРАЖЕНИЕ АЛГЕБРАИЧЕСКОЕ ВЫРАЖЕНИЕ, выражение,… … Энциклопедический словарь

    алгебраическое выражение - algebrinė išraiška statusas T sritis fizika atitikmenys: angl. algebraic expression vok. algebraischer Ausdruck, m rus. алгебраическое выражение, n pranc. expression algébrique, f … Fizikos terminų žodynas

    Выражение, составленное из букв и чисел, соединённых знаками алгебр. действий: сложения, вычитания, умножения, деления, возведения в степень, извлечения корня … Естествознание. Энциклопедический словарь

    Алгебраическим выражением относительно данного переменного, в отличие от трансцендентного, называют такое выражение, которое не содержит иных функций от данного количества, кроме сумм, произведений или степеней этого количества, причем слагаемыми … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    ВЫРАЖЕНИЕ, выражения, ср. 1. Действие по гл. выразить выражать. Не нахожу слов для выражения своей благодарности. 2. чаще ед. Воплощение идеи в формах какого нибудь искусства (филос.). Только крупный художник способен создать такое выражение,… … Толковый словарь Ушакова

    Уравнение, получающееся при приравнивании двух алгебраических выражений (См. Алгебраическое выражение). А. у. с одним неизвестным называется дробным, если неизвестное входит в знаменатель, и иррациональным, если неизвестное входит под… … Большая советская энциклопедия

    ВЫРАЖЕНИЕ - первичное математическое понятие, под которым подразумевают запись из букв и чисел, соединённых знаками арифметических действий, при этом могут быть использованы скобки, обозначения функций и т.п.; обычно В формула млн. её часть. Различают В (1)… … Большая политехническая энциклопедия

Уроки алгебры знакомят нас с различными видами выражений. По мере поступления нового материала выражения усложняются. При знакомстве со степенями они постепенно добавляются в выражение, усложняя его. Также происходит с дробями и другими выражениями.

Чтобы изучение материала было максимально удобным, это производится по определенным названиям для того, чтобы можно было их выделить. Данная статья даст полный обзор всех основных школьных алгебраических выражений.

Одночлены и многочлены

Выражения одночлены и многочлены изучаются в школьной программе, начиная с 7 класса. В учебники были даны определения такого вида.

Определение 1

Одночлены – это числа, переменные, их степени с натуральным показателем, любые произведения, сделанные с их помощью.

Определение 2

Многочленами называют сумму одночленов.

Если взять, к примеру число 5 , переменную x , степень z 7 ,тогда произведения вида 5 · x и 7 · x · 2 · 7 · z 7 считаются одночленами. Когда берется сумма одночленов вида 5 + x или z 7 + 7 + 7 · x · 2 · 7 · z 7 , тогда получаем многочлен.

Чтобы отличать одночлен от многочлена, обращают внимание на степени и их определения. Немаловажно понятие коэффициента. При приведении подобных слагаемых их разделяют на свободный член многочлена или старший коэффициент.

Над одночленами и многочленами чаще всего выполняются какие-то действия, после которых выражение приводится к вижу одночлена. Выполняется сложение, вычитание, умножение и деление, опираясь на алгоритм для выполнения действий с многочленами.

Когда имеется одна переменная, не исключено деление многочлена на многочлен, которые представляются в виде произведения. Такое действие получило название разложение многочлена на множители.

Рациональные (алгебраические) дроби

Понятие рациональные дроби изучаются в 8 классе средней школы. Некоторые авторы называют их алгебраическими дробями.

Определение 3

Рациональной алгебраической дробью называют дробь, в которой на месте числителя и знаменателя выступают многочлены или одночлены, числа.

Рассмотрим на примере записи рациональных дробей типа 3 x + 2 , 2 · a + 3 · b 4 , x 2 + 1 x 2 - 2 и 2 2 · x + - 5 1 5 · y 3 · x x 2 + 4 . Опираясь на определение, можно сказать, что каждая дробь считается рациональной дробью.

Алгебраические дроби можно складывать, вычитать, умножать, делить, возводить в степень. Подробнее это рассматривается в разделе действий с алгебраическими дробями. Если необходимо преобразовать дробь, нередко пользуются свойством сокращения и приведения к общему знаменателю.

Рациональные выражения

В школьном курсе изучается понятие иррациональных дробей, так как необходима работа с рациональными выражениями.

Определение 4

Рациональные выражения считаются числовыми и буквенными выражениями, где используются рациональные числа и буквы со сложением, вычитанием, умножением, делением, возведением в целую степень.

Рациональные выражения могут не иметь знаков, принадлежащих функции, которые приводят к иррациональности. Рациональные выражения не содержат корней, степеней с дробными иррациональными показателями, степеней с переменными в показателе, логарифмических выражений, тригонометрических функций и так далее.

Основываясь на правиле, приведенном выше, приведем примеры рациональных выражений. Из выше сказанного определения имеем, что как числовое выражение вида 1 2 + 3 4 , так и 5 , 2 + (- 0 , 1) 2 · 2 - 3 5 - 4 3 4 + 2: 12 · 7 - 1 + 7 - 2 2 3 3 - 2 1 + 0 , 3 считаются рациональными. Выражения, содержащие буквенные обозначения, также относят к рациональным a 2 + b 2 3 · a - 0 , 5 · b , с переменными вида a · x 2 + b · x + c и x 2 + x y - y 2 1 2 x - 1 .

Все рациональные выражения подразделяют на целые и дробные.

Целые рациональные выражения

Определение 5

Целые рациональные выражения – это такие выражения, не содержащие деления на выражения с переменными отрицательной степени.

Из определения имеем, что целое рациональное выражение – это и выражение, содержащее буквы, например, а + 1 , выражение, содержащее несколько переменных, например, x 2 · y 3 − z + 3 2 и a + b 3 .

Выражения вида x: (y − 1) и 2 x + 1 x 2 - 2 x + 7 - 4 не могут быть целыми рациональными, так как имеют деление на выражение с переменными.

Дробные рациональные выражения

Определение 6

Дробное рациональное выражение – это выражение, которое содержит деление на выражение с переменными отрицательной степени.

Из определения следует, что дробные рациональные выражения могу быть 1: x , 5 x 3 - y 3 + x + x 2 и 3 5 7 - a - 1 + a 2 - (a + 1) (a - 2) 2 .

Если рассматривать выражения такого типа (2 · x − x 2) : 4 и a 2 2 - b 3 3 + c 4 + 1 4 , 2 , то дробными рациональными они не считаются, так как не имеют в знаменателе выражений с переменными.

Выражения со степенями

Определение 7

Выражения, которые содержат степени в любой части записи, называют выражениями со степенями или степенными выражениями .

Для понятия приведем пример такого выражения. В них могут отсутствовать переменные, например, 2 3 , 32 - 1 5 + 1 , 5 3 , 5 · 5 - 2 5 - 1 , 5 . Также характерны степенные выражения вида 3 · x 3 · x - 1 + 3 x , x · y 2 1 3 . Для того, чтобы решить их, необходимо выполнять некоторые преобразования.

Иррациональные выражения, выражения с корнями

Корень, имеющий место быть в выражении, дает ему иное название. Их называют иррациональными.

Определение 8

Иррациональными выражениями называют выражения, которые имеют в записи знаки корней.

Из определения видно, что это выражения вида 64 , x - 1 4 3 + 3 3 , 2 + 1 2 - 1 - 2 + 3 2 , a + 1 a 1 2 + 2 , x · y , 3 x + 1 + 6 x 2 + 5 x и x + 6 + x - 2 3 + 1 4 x 2 3 + 3 - 1 1 3 . В каждом из них имеется хотя бы один значок корня. Корни и степени связаны, поэтому можно видеть такие записи выражений, как x 7 3 - 2 5 , n 4 8 · m 3 5: 4 · m 2 n + 3 .

Тригонометрические выражения

Определение 9

Тригонометрическое выражение – это выражения с содержанием sin , cos , tg и ctg и их обратные – arcsin , arccos , arctg и arcctg .

Примеры тригонометрических функций очевидны: sin π 4 · cos π 6 cos 6 x - 1 и 2 sin x · t g 2 x + 3 , 4 3 · t g π - arcsin - 3 5 .

Для работы с такими функциями необходимо пользоваться свойствами, основными формулами прямых и обратных функций. Статья преобразование тригонометрических функций раскроет этот вопрос подробней.

Логарифмические выражения

После знакомства с логарифмами можно говорить о сложных логарифмических выражениях.

Определение 10

Выражения, которые имеют логарифмы, называют логарифмическими .

Примером таких функций могут быть log 3 9 + ln e , log 2 (4 · a · b) , log 7 2 (x · 7 3) log 3 2 x - 3 5 + log x 2 + 1 (x 4 + 2) .

Можно встретить такие выражения, где есть степени и логарифмы. Это итак понятно, так как из определения логарифма следует, что это является показателем степени. Тогда получаем выражения вида x l g x - 10 , log 3 3 x 2 + 2 x - 3 , log x + 1 (x 2 + 2 x + 1) 5 x - 2 .

Для углубления изучения материала, следует обратиться к материалу о преобразовании логарифмических выражений.

Дроби

Существуют выражения особого вида, которые получили название дроби. Так как они имеют числитель и знаменатель, то они могут содержать не просто числовые значения, а также выражения любого типа. Рассмотрим определение дроби.

Определение 11

Дробью называют такое выражение, имеющее числитель и знаменатель, в которых имеются как числовые, так и буквенные обозначения или выражения.

Примеры дробей, которые имеют числа в числителе и знаменателе, выглядят так 1 4 , 2 , 2 - 6 2 7 , π 2 , - e π , (− 15) (− 2) . Числитель и знаменатель может содержать как численные, так и буквенные выражения вида (a + 1) 3 , (a + b + c) (a 2 + b 2) , 1 3 + 1 - 1 3 - 1 1 1 + 1 1 + 1 5 , cos 2 α - sin 2 α 1 + 3 t g α , 2 + ln 5 ln x .

Хотя такие выражения, как 2 5 − 3 7 , x x 2 + 1: 5 не являются дробями, однако, имеют дробь в своей записи.

Выражение общего вида

Старшие классы рассматривают задачи повышенной трудности, где собраны все комбинированные задания группы С по ЕГЭ. Эти выражения отличаются особой сложностью и различными комбинациями корней, логарифмов, степеней, тригонометрических функций. Это задания типа x 2 - 1 · sin x + π 3 или sin a r c t g x - a · x 1 + x 2 .

Их вид говорит о том, что можно отнести к любому из вышеперечисленных видов. Чаще всего их не относят ни к какому, так как они имеют специфичное комбинированное решение. Их рассматривают как выражения общего вида, причем для описания не используются дополнительные уточнения или выражения.

При решении такого алгебраического выражения всегда необходимо обращать внимание на его запись, наличие дроби, степеней или дополнительных выражений. Это нужно для того, чтобы точно определиться со способом его решения. Если нет уверенности в его названии, то рекомендуется называть его выражением общего типа и решать, согласно выше написанному алгоритму.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Решим задачу.

Ученик купил тетрадей по 2 коп. за тетрадь и учебник за 8 коп. Сколько заплатил он за всю покупку?

Чтобы узнать стоимость всех тетрадей, надо цену одной тетради умножить на число тетрадей. Значит, стоимость тетрадей будет равна копейкам.

Стоимость же всей покупки будет равна

Заметим, что перед множителем, выраженным буквой, знак умножения принято опускать, он просто подразумевается. Поэтому предыдущую запись можно представить в таком виде:

Получили формулу решения задачи. Она показывает, что для решения задачи надо цену тетради умножить на число купленных тетрадей и к произведению прибавить стоимость учебника.

Вместо слова «формула» для подобных записей употребляют также название «алгебраическое выражение».

Алгебраическим выражением называется запись, состоящая из чисел, обозначенных цифрами или буквами и соединённых знаками действий.

Для краткости вместо «алгебраическое выражение» говорят иногда просто «выражение».

Приведём ещё примеры алгебраических выражений:

Из этих примеров видим, что алгебраическое выражение может состоять только из одной буквы, а может совсем не содержать чисел, обозначенных буквами (два последних примера). В этом последнем случае выражение называется также арифметическим выражением.

Дадим в полученном нами алгебраическом выражении букве значение 5 (значит, ученик купил 5 тетрадей). Подставив вместо число 5, получим:

что равно 18 (то есть 18 коп.).

Число 18 является значением данного алгебраического выражения при

Значением алгебраического выражения называется число, которое получится, если в это выражение подставить вместо букв данные их значения и произвести над числами указанные действия.

Например, мы можем сказать: значение выражения при равно 12 (12 коп.).

Значение етого же выражения при равно 14 (14 коп.) и т. д.

Мы видим, что значение алгебраического выражения вависит от того, какие значения мы дадим входящим в него буквам. Правда, иногда бывает, что значение выражения не вависит от вначений входящих в него букв. Например, выражение равно 6 при любых значениях а.

Найдём в виде примера числовые значения выражения при различных значениях букв a и b.

Подставим в данное выражение вместо а число 4, а вместо 6 число 2 и вычислим полученное выражение:

Итак, при значение выражения За равно 16.

Таким же образом найдём, что при значение выражения равно 29, при и оно равно 2 и т. д.

Результаты вычислений можно записать в виде таблицы, которая наглядно покажет, как изменяется значение выражения в зависимости от изменения значений входящих в него букв.

Составим таблицу из трёх строк. В первой строке будем записывать значения а, во второй - значения 6 и

в третьей - значения выражения Получим такую таблицу.

Алгебраическое выражение - это любая запись из букв, чисел, знаков арифметических действий и скобок, составленная со смыслом. По сути, алгебраическое выражение – это числовое выражение , в котором помимо чисел употребляются также и буквы. Поэтому алгебраические выражения также называют буквенными выражениями.

В основном в буквенных выражениях используют буквы латинского алфавита. Для чего же нужны эти буквы? Вместо них мы можем подставить различные числа. Поэтому эти буквы называются переменными. То есть они могут менять свое значение.

Примеры алгебраических выражений.

$\begin{align} & x+5;\,\,\,\,\,(x+y)\centerdot (x-y);\,\,\,\,\,\frac{a-b}{2}; \\ & \\ & \sqrt{{{b}^{2}}-4ac};\,\,\,\,\,\frac{2}{z}+\frac{1}{h};\,\,\,\,\,a{{x}^{2}}+bx+c; \\ \end{align}$


Если, например, в выражении x + 5 мы подставим вместо переменной х какое-нибудь число, то мы получим числовое выражение. При этом, значение этого числового выражения будет значением алгебраического выражения x + 5 при данном значении переменной. То есть, при x = 10, x + 5 = 10 + 5 = 15. А при x = 2, x + 5 = 2 + 5 = 7.

Бывают такие значения переменной, при котором алгебраическое выражение теряет смысл. Так, например, будет, если в выражение 1:x мы подставим вместо x значение 0.
Так как на нуль делить нельзя.

Область определения алгебраического выражения.

Множество значений переменной, при которых выражение не теряет смысл, называется областью определения этого выражения. Также можно сказать, что область определения выражения – это множество всех допустимых значений переменной.

Рассмотрим примеры:

  1. y+5 – областью определения будут любые значения y.
  2. 1:x – выражение будет иметь смысл при всех значениях x кроме 0. Поэтому областью определения будут любые значения x за исключением нуля.
  3. (x+y):(x-y) – область определения – любые значения x и y, при которых x ≠ y.
Виды алгебраических выражений.

Рациональные алгебраические выражения – это целые и дробные алгебраические выражения.

  1. Целое алгебраическое выражение – не содержит возведение в степень с дробным показателем, извлечение корня из переменной, а также деления на переменную. В целых алгебраических выражениях все значения переменных являются допустимыми. Например, ax + bx + c – целое алгебраическое выражение.
  2. Дробное – содержит деление на переменную. $\frac{1}{a}+bx+c$ - дробное алгебраическое выражение. В дробных алгебраических выражениях допустимыми являются все значения переменных, при которых не происходит деления на нуль.
Иррациональные алгебраические выражения содержат извлечение корня из переменной или возведение переменной в дробную степень.

$\sqrt{{{a}^{2}}+{{b}^{2}}};\,\,\,\,\,\,\,{{a}^{\frac{2}{3}}}+{{b}^{\frac{1}{3}}};$ - иррациональные алгебраические выражения. В иррациональных алгебраических выражениях допустимыми являются все значения переменных, при которых выражение, стоящее под знаком корня четной степени не отрицательно.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...