Керамические сверхпроводники. Открытие высокотемпературной сверхпроводимости

Явление высокотемпературной сверхпроводимости (ВТСП) не так давно интересовало только ученых. Однако сегодня на рынок электроэнергетического оборудования выходят коммерчески прибыльные продукты на основе ВТСП, в том числе российского производства. ВТСП может совершить прорыв в технологиях передачи электроэнергии.

Совсем не жаркая ВТСП

В начале ХХ века было открыто, что ряду металлов и сплавов свойственна сверхпроводимость, то есть способность обладать нулевым сопротивлением, при температуре, близкой к абсолютному нулю (около −270°С). Долгое время сверхпроводники можно было использовать только при температуре жидкого гелия, что позволило создать ускорительное оборудование и магнитно-резонансные томографы.

В 1986 г. открыли сверхпроводимость при температуре около 30К, что было удостоено Нобелевской премии, а в начале 1990-х гг. удалось достичь сверхпроводимости уже при 138К, причем в качестве сверхпроводника использовались уже не металлы, а оксидные соединения.
Керамические материалы, обладающие нулевым сопротивлением при температуре выше температуры жидкого азота (77К) получили название высокотемпературных сверхпроводников (ВТСП). Однако если мы переведем Кельвины в более привычные для нас градусы Цельсия, то поймем, что речь идет о не слишком высоких температурах, скажем, порядка минус 169–200°С. Такие условия даже суровая русская зима обеспечить не в состоянии.

Умы исследователей будоражит идея найти материалы, способные переходить в сверхпроводящее состояние при комнатной температуре (293К). Теоретически такая возможность существует. По некоторым данным, сверхпроводящие свойства якобы удавалось зафиксировать даже у отдельных зерен графита после специальной обработки. На сегодняшний день поиск «комнатнотемпературных» сверхпроводников (КТСП) считается одной из ключевых исследовательских задач в области нанотехнологий. Однако пока не только практическое применение, но и надежное экспериментальное подтверждение КТСП остается вопросом завтрашнего дня. Сегодняшняя электроэнергетика осваивает использование ВТСП.

Оборудование на основе высокотемпературной сверхпроводимости требует охлаждения жидким азотом. Как отмечают эксперты отрасли, это относительно дешевый и удобный хладагент, обеспечивающий температуру 77К и позволяющий реализовывать практические проекты.

Польза сверхпроводимости

Сверхпроводимость может использоваться (и уже используется) в самых разных сферах. Впервые она была применена при создании магнитов с высокими полями. С помощью сверхпроводников может быть обеспечена магнитная левитация, позволяющая высокоскоростным поездам двигаться плавно, без шума и трения. Создаются ВТСП электродвигатели для судов и промышленности, которые обладают существенно меньшими массогабаритными параметрами при равной мощности. Сверхпроводимость интересна с точки зрения микроэлектроники и компьютерной техники. Низкотемпературные сверхпроводники применяются в медицинских диагностических аппаратах (томографах), и даже в таких экзотических проектах «меганауки», как большой адронный коллайдер и международный термоядерный реактор.

С высокотемпературной сверхпроводимостью связаны надежды на преодоление глобальной энергетической дилеммы, связанной, с одной стороны, с постоянным ростом энергопотребления в настоящем и будущем, а с другой стороны, с необходимостью радикально сокращать выбросы углекислого газа, чтобы предотвратить изменения климата. Ведь по сути дела ВТСП выводит привычное оборудование для генерации и передачи электроэнергии на принципиально новый уровень с точки зрения эффективности.

Одно из самых очевидных применений сверхпроводников связано с передачей электроэнергии. ВТСП кабели могут передавать значительную мощность при минимальном сечении, то есть обладают пропускной способностью другого порядка, нежели традиционные кабели. При прохождении тока через сверхпроводник не выделяется тепло, и практически отсутствуют потери, то есть решается главная проблема распределительных сетей.

Генераторы благодаря обмоткам из сверхпроводящих материалов, обеспечивающим огромные магнитные поля, становятся значительно мощнее. К примеру, концерн Siemens построил три ВТСП генератора мощностью до 4 МВт. Машина в два раза легче и меньше по сравнению с обычным генератором той же мощности. Также, ВТСП генератор показал большую устойчивость по напряжению при изменении нагрузки и более высокие характеристики с точки зрения потребления реактивной мощности.

Сегодня в мире активно ведутся разработки ветрогенераторов на основе высокотемпературной сверхпроводимости. При использовании ВТСП обмоток реально создание ВТСП генераторов мощностью 10 МВт, которые будут в 2–4 раза легче обычных.

Перспективная сфера для широкого применения сверхпроводников - накопители энергии, роль которых также велика с точки зрения развития современных энергосистем, использующих возобновляемые источники энергии. Даже привычное электрооборудование, такое как трансформаторы, приобретает качественно новые характеристики благодаря ВТСП.

Сверхпроводимость позволяет создавать такие необычные устройства как ограничители тока короткого замыкания, полностью автоматически ограничивающие ток при замыкании и автоматически же включающиеся при снятии КЗ.


Лента второго поколения

Что же из этих многообещающих идей уже удалось воплотить на практике, и чьими усилиями? В первую очередь нужно отметить, что на сегодняшний день на рынке представлены высокотемпературные сверхпроводники первого и второго поколения (ВТСП-1 и ВТСП-2). По объему выпущенной на сегодняшний день продукции пока выигрывают ВТСП-1, но для экспертов очевидно, что будущее за сверхпроводниками второго поколения. Это связано с тем, что в конструкции сверхпроводников ВТСП-2 более 70% составляет матрица, изготовленная из серебра.

Одна из ключевых российских компаний, работающих над темой сверхпроводников второго поколения, - ЗАО «СуперОкс». Зародилась она в стенах МГУ имени Ломоносова, где научная группа химического факультета работала над технологией осаждения тонких пленок сверхпроводников. В 2006 г. на базе накопленных знаний был запущен коммерческий проект по созданию отечественного производства ВТСП-проводов 2-го поколения.

В 2011 г. сфера интересов «СуперОкс» была расширена за счет тесного взаимодействия с вновь созданной компанией SuperOx Japan LLC. Была создана пилотная производственная линия, позволяющая производить ВТСП-провод с критическим током до 500 А/см ширины. С 2011 г. компания «СуперОкс-Инновации» также является резидентом «Сколково», где ведет прикладные исследования, направленные на оптимизацию технических характеристик ВТСП лент второго поколения, разрабатывает различные технологии производства этих материалов. В 2013 г. было запущено производство ленты ВТСП-2 в московском технопарке «Слава».

«Наш продукт, сверхпроводящая лента второго поколения представляет собой подложку из специальной нержавеющей стали, устойчивой к высоким температурам, которая впоследствии при нанесении тонких пленок не теряет своих механических свойств, - рассказывает Вадим Амеличев, ведущий специалист ЗАО «СуперОкс». - Специальными методами на эту подложку наносятся буферные оксидные слои, а в качестве функционального слоя - пленка купрата гадолиния-бария. Затем эта структура покрывается тонкими слоями серебра или меди, и в таком виде используется в сверхпроводниковых устройствах.

У такого материала при толщине пленки всего в один-два микрона токопроводящая способность около 500 А на 1 мм² сечения, то есть в сотни раз больше, чем у обычного медного кабеля. Соответственно, такая лента идеальна для применений, где требуется высокий ток. Кабели на большие токи, магниты на большие поля - основная область применения».

«СуперОкс» обладает полным циклом производства ленты ВТСП-2. В 2012 г. стартовали продажи этого инновационного продукта, и сейчас материал поставляется не только в Россию, но и экспортируется в девять стран, в том числе Евросоюз, Японию, Тайвань и Новую Зеландию.
«В мире не так много производителей ленты ВТСП-2, - поясняет Вадим Амеличев. - Есть две американские фирмы, компании в Южной Корее и Японии. В Европе кроме нас никто в промышленных масштабах такую ленту не производит. Нашу ленту тестировали во многих исследовательских центрах и подтвердили конкурентоспособность ее характеристик».

Развить новую индустрию

«Несмотря на то, что высокотемпературная сверхпроводимость появилась совсем недавно, вопросами ее применения в технике интенсивно занимаются в технологически развитых странах мира, - рассказывает Виктор Панцырный, д.т.н., действительный член АЭН РФ, директор по развитию АО «Русский сверхпроводник», - В нашей стране в рамках Комиссии при Президенте РФ по модернизации и технологическому развитию экономики России инициирован проект «Сверхпроводниковая индустрия» как часть проекта «Инновационная энергетика» по приоритетному направлению «Энергоэффективность».

Данный проект в области сверхпроводниковой индустрии координирует компания «Русский сверхпроводник», созданная Госкорпорацией «Росатом». За пятилетку с 2011 по 2015 г. здесь планируют создать конкурентоспособные технологии производства высокотемпературных сверхпроводников второго поколения, опытное производство длинномерных (до 1000 м) ленточных проводов ВТСП-2, а также разработать прототипы оборудования на основе ВТСП-2 проводов для электроэнергетики. Это и генераторы большой мощности, и ограничители тока (СОТ), и кинетические накопители энергии (КНЭ), а также мощные токовводы для магнитных систем, индуктивные накопители энергии (СПИН), трансформаторы, электродвигатели большой мощности.

С 2016 г. планируется запустить серийное производство ВТСП-2 проводов и ряда устройств на их основе. В работах по данному проекту участвуют около 30 организаций, включая ВУЗы, академические и отраслевые научно-исследовательские центры, проектные бюро и промышленные организации, в частности ОАО «ВНИИНМ», ОАО «НИИЭФА», ОАО «НИИТФА», ОАО «ГИРЕДМЕТ», ОАО «НИФХИ», ОАО ТВЭЛ, ОАО «Точмаш» так и вне его, в НИЦ «Курчатовский институт», ЭНИН им. Кржижановского, ФГБОУ МАИ, НИЯУ МИФИ, ГУАП, ОАО «Россети», ОАО «НТЦ ФСК ЕЭС», ЗАО «СуперОкс», ОАО «ВНИИКП», ОАО «НИИЭМ», ОКБ «Якорь» и др.

«Структурно проект состоит из девяти задач, выполняемых параллельно, - поясняет Виктор Панцырный. - С 2011 по 2013 гг. удалось создать первые отечественные действующие макеты сверхпроводниковых машин - двигатель и генератор мощностью 50 кВт, кинетический накопитель энергии на 0,5 МДж, сверхпроводниковый ограничитель токов короткого замыкания мощностью 3,5 МВт для энергетических сетей напряжением 3,5 кВ, сверхпроводниковый трансформатор мощностью 10 кВА, токовводы для магнитных систем, пропускающие ток 1500А.

Также созданы основы технологии полностью отечественного производства ленточных проводов ВТСП-2, начиная от сырьевых материалов и заканчивая методами контроля готовой продукции. Были найдены основные технологические решения, позволившие перейти к созданию полномасштабных прототипов энергетических устройств. Так в настоящее время завершается работа по созданию двигателя мощностью 200 кВт».

Благодаря применению ВТСП-2 обмоток такой двигатель при его установке на электромобиль (электробус) позволит увеличить пробег на 15–20% между подзарядками аккумуляторных батарей. Изготовлен и готовится к испытаниям в сети железнодорожного транспорта сверхпроводящий ограничитель токов короткого замыкания мощностью более 7 МВА. Завершается изготовление генератора мощностью 1 МВА, перспективного для применения в ветряных энергетических установках.
На базе уникальных технологий Росатома создается кинетический накопитель энергии со сверхпроводниковым подвесом маховиков, который имеет энергоемкость более 7 МДж. Следует отметить разработку индуктивного накопителя энергии, способного в предельно короткое время отдать аккумулированную энергию до нескольких МДж. В завершающей стадии находятся и работы по созданию сверхпроводникового трансформатора мощностью уже 1000 кВА.

«Кроме того, важнейшими результатами проекта будут создание мощной экспериментальной и технологической базы, а также формирование коллективов высококвалифицированных специалистов в сфере сверхпроводниковых технологий, - заключает Виктор Панцырный. - В этом году в НИЦ Курчатовский институт заработает комплексная производственно-исследовательская линия по получению ВТСП-2 ленточных сверхпроводников методом лазерной абляции. Линия станет инструментом развития науки и технологии ВТСП материалов, используя в максимальной степени мощную научную инфраструктуру курчатовского НБИКС центра. Это позволит интенсивно развивать перспективную высокотехнологичную область, ведущую к коммерциализации сверхпроводниковых технологий».


Кабели переменного тока

Нельзя не рассказать о российском проекте по созданию сверхпроводящего кабеля длиной 200 м. Над созданием кабеля работали ОАО «Энергетический институт им. Г.М. Кржижановского» (ЭНИН), ОАО «Всероссийского научно-исследовательский институт кабельной промышленности» (ВНИИКП), Московский авиационный институт и ОАО «НТЦ электроэнергетики». Разработка началась в 2005 г., в 2009 г. был создан опытный образец, успешно прошедший испытания на специально созданном уникальном полигоне.

Основные достоинства ВТСП кабеля - высокая токовая нагрузка, малые потери, экологическая чистота и пожарная безопасность. Кроме того, при передаче большой мощности по такому кабелю при напряжении 10–20 кВ не требуются промежуточные подстанции.

ВТСП кабель представляет собой сложную многослойную конструкцию. Центральный несущий элемент выполнен в виде спирали из нержавеющей стали, окруженной пучком проводов из меди и нержавеющей стали, обмотанных медной лентой. Поверх центрального элемента укладываются два повива сверхпроводящих лент, а сверху - высоковольтная изоляция. Затем следует наложение сверхпроводящего экрана, повивы гибких медных лент, обмотанных лентой из нержавеющей стали. Каждая жила кабеля затягивается в собственный гибкий криостат длиной 200 м.

Создание этой многокомпонентной конструкции осложняется тем, что ВТСП лента крайне чувствительна Основная часть технологических операций проводилась на базе ОАО «ВНИИКП». Однако для изготовления высоковольтной изоляции кабель свозили в г. Пермь на завод «Камский кабель».

«Для ВТСП кабеля мы производили операцию наложения бумажной изоляции, - рассказывает Александр Азанов, заместитель главного технолога ООО «Камский кабель». - Было задействовано уникальное оборудование, которое ранее использовалось для производства маслонаполненных кабелей высокого напряжения. Именно поэтому не пожалели ресурсов на доставку полуфабриката из Москвы в Пермь и обратно. И, думаю, что пока для производства таких специальных кабелей целесообразно задействовать уникальное оборудование, установленное на разных заводах, чем организовывать производство в одном месте.

В ближайшее время организация серийного производства данного кабеля на нашем или любом другом заводе маловероятна, так как монтаж линий со сверхпроводниками производится крайне редко и очень малыми длинами (не более 1 км). Главная причина тому - стоимость ВТСП кабелей и их обслуживания (требуется постоянно прокачивать жидкий азот через кабель)».

Кабели постоянного тока

На сегодняшний день разработки в области создания ВТСП кабелей продолжаются. ОАО «ФСК ЕЭС» и ОАО «НТЦ ФСК ЕЭС» ведут совместный НИОКР «Создание высокотемпературной сверхпроводящей кабельной линии постоянного тока на напряжение 20 кВ с током 2500 А длиной до 2500 м». Первый прототип будущей инновационной системы передачи энергии - два отрезка биполярного ВТСП кабеля по 30 м, разработанные в НТЦ ФСК ЕЭС и изготовленные на заводе «Иркутсккабель», - успешно прошли токовые и высоковольтные испытания в 2013 г.

В ноябре 2014 г. состоялись испытания комплекта преобразовательного оборудования для инновационной передачи электроэнергии мощностью 50 МВт с использованием сверхпроводящего кабеля длиной в несколько сотен метров. Применение ВТСП кабеля для электроснабжения крупных городов позволит добиться уменьшения площадей землеотводов, отказаться от строительства воздушных линий и снизить потери электроэнергии.

В НТЦ ФСК ЕЭС отмечают, что кабельная линия постоянного тока на основе ВТСП обладает рядом достоинств по сравнению с линией переменного тока. Она не только позволяет передавать мощность с минимальными потерями, но и ограничивать токи короткого замыкания, регулировать реактивную мощность, управлять потоками мощности и обеспечивать ее реверс.

«Приятно осознавать, что российские разработчики ВТСП кабелей находятся на передовых рубежах, - говорит Виталий Высоцкий, д.т.н., академик АЭН РФ, директор научного направления - зав. отделением сверхпроводящих проводов и кабелей ОАО «ВНИИКП». - Например, кабель 200 м являлся крупнейшим в Европе в 2009–2013 гг., и только в 2014 г. в Германии был установлен кабель длиной 1 км. Но и этот рекорд будет перекрыт с испытанием кабеля 2,5 км для С.-Петербурга».

От господдержки - к частным инвестициям

Эксперты прогнозируют достаточно активное развитие мирового и российского рынка сверхпроводников. Так, Андрей Вавилов, председатель Совета Директоров ЗАО «СуперОкс», отмечает, что объем мирового рынка ВТСП удваивается каждый год и в 2017 г. достигнет $1 млрд, при этом долю РФ в мировом рынке можно оценить примерно в 10%.

«Рынок сверхпроводимости для электроэнергетики обязан развиваться, поскольку плотность потребления энергии постоянно растет и без сверхпроводимости поддерживать растущие запросы невозможно», - уверен Виталий Высоцкий. - Однако энергетики весьма консервативны по отношению ко всему новому, да еще и дорогостоящему. Поэтому пока главная задача - все-таки продвижение новых проектов с поддержкой государственных организаций. Это станет доказательством надежности и эффективности сверхпроводящих устройств. Появление новых проектов вызовет спрос на производство ВТСП лент, увеличение их выпуска и снижение цены, что опять же поможет развитию рынка».

«На данной стадии комплексное решение всех поставленных задач невозможно без всесторонней помощи государства, но с каждым годом повышается инвестиционная привлекательность ВТСП техники, что позволяет с высокой долей уверенности ожидать притока частных инвестиций в ее дальнейшее коммерческое развитие», - соглашается с коллегой Виктор Панцырный.
Экспертов радует, что в целом на уровне государства есть понимание значимости сверхпроводниковых технологий.
«Развитие сверхпроводниковой индустрии имеет общенациональное значение и является важной составной частью перехода на инновационный путь развития экономики страны. Это было недавно констатировано на расширенном заседании Консультативного Совета при председателе Комитета Государственной Думы по энергетике ФС РФ, где, в частности, было отмечено, что для обеспечения экономической и политической независимости России стратегически необходимо иметь отечественное производство низко- и высокотемпературных сверхпроводящих материалов, сверхпроводниковых устройств и изделий на их основе», - сообщает Виктор Панцырный.

Планы на будущее

Мы попросили экспертов оценить, какие сферы применения сверхпроводимости, на их взгляд, наиболее перспективны и где можно ожидать коммерческого использования технологии в ближайшие годы.

«Как и во всем мире, в России сегодня наиболее продвинуты проекты сверхпроводящих кабелей. Они должны и, надеемся, будут развиваться, - рассказывает Виталий Высоцкий. - Сверхпроводящие кабели на основе ВТСП - уже сейчас чисто коммерческий продукт, правда, пока еще достаточно дорогой. Он станет дешевле, когда начнется его широкое внедрение и потребуется значительное количество ВТСП лент, что и удешевит их производство.

Однако, на мой взгляд, наиболее необходимыми и востребованными для электроэнергетики являются сверхпроводящие ограничители тока КЗ на уровни напряжения от 100 кВ и выше. Обычных устройств такого класса напряжения просто не существует, и без сверхпроводимости здесь просто не обойтись. Такие проекты уже обсуждаются в нашей стране. Кроме того, по моему мнению, хорошие перспективы имеют ВТСП машины для ветрогенераторов. Они сулят значительное (в разы) снижение веса единичного генератора и увеличение единичной мощности».

«Сегодня драйвер развития рынка сверхпроводниковых изделий - электроэнергетика (силовые кабели и ограничители тока), - считает Андрей Вавилов. - Но и в ряде других отраслей имеется значительный потенциал. Например, сегодня разрабатываются варианты применения ВТСП провода как эффективной замены низкотемпературных сверхпроводников в ускорительной технике, используемой для науки, производства изотопов и медицины. В России имеются большие планы в этой области, в частности, по строительству современного коллайдера NICA в Дубне.

Большой потенциал имеет создание эффективных вращающихся машин, имеющих уникальные тяговые характеристики, низкую массу и вес. Такие двигатели востребованы в первую очередь для обеспечения движения больших судов, а генераторы могут использоваться в возобновляемой энергетике.

Совершенно новые перспективы сегодня открывает явление магнитной левитации. Это не только транспортные системы, но и бесконтактные манипуляторы, а также долговечные подшипники с широким спектром применения».

«Дальнейшее развитие высокотемпературной сверхпроводимости будет иметь выраженный мультипликативный эффект не только в электроэнергетике, но и в иных отраслях, таких как космический, авиационный, морской, автомобильный и железнодорожный транспорт, машиностроение, металлургия, электроника, медицина, ускорительная техника. Технологии сверхпроводимости также важны и для укрепления обороноспособности страны», - убежден Виктор Панцырный.

Одним словом, дальнейшее развитие технологий на основе сверхпроводимости открывает перед человечеством огромные перспективы, причем уже в обозримом времени.

Высокотемпературная сверхпроводимость

Открытие в конце 1986 года нового класса высокотемпературных сверхпроводящих материалов радикально расширяет возможности практического использования сверхпроводимости для создания новой техники и окажет революционизирующее воздействие на эффективность отраслей народного хозяйства.

Явление, заключающееся в полном исчезновении электрического сопротивления проводника при его охлаждении ниже критической температуры, было открыто в 1911 году, однако практическое использование этого явления началось в середине шестидесятых годов, после того как были разработаны сверхпроводящие материалы, пригодные для технических применений. В связи с тем, что критические температуры этих материалов не превышали 20 К, все созданные сверхпроводниковые устройства эксплуатировались при температурах жидкого гелия, т.е. при 4-5 К. Несмотря на дефицитность этого хладоагента, высокие энергозатраты на его ожижение, сложность и высокую стоимость систем теплоизоляции по целому ряду направлений началось практическое использование сверхпроводимости. Наиболее крупномасштабными применениями сверхпроводников явились электромагниты ускорителей заряженных частиц, термоядерных установок, МГД-генераторов. Были созданы опытные образцы сверхпроводниковых электрогенераторов, линий электропередачи, накопителей энергии, магнитных сепараторов и др. В последние годы в различных капиталистических странах началось массовое производство диагностических медицинских ЯМР-томографов со сверхпроводниковыми магнитами, потенциальный рынок которых оценивается в несколько млрд. долларов.

Открытие высокотемпературных сверхпроводников, критическая температура которых с запасом превышает температуру кипения жидкого азота, принципиально меняет экономические показатели сверхпроводниковых устройств, поскольку стоимость хладоагента и затраты на поддержание необходимой температуры снижаются в 50-100 раз. Кроме того, открытие высокотемпературной сверхпроводимости (ВТСП) сняло теоретический запрет на дальнейшее повышение критической температуры с 30 - вплоть до комнатной. Так, со времени открытия этого явления критическая температура повышена с 30 - 130 К.

Государственная научно-техническая программа предусматривает широкий комплекс работ, включающих в себя фундаментальные и прикладные исследования, направленные на решение проблемы технической реализации высокотемпературной сверхпроводимости.

В соответствии со структурой программы главными направлениями работ являются:

1. ИССЛЕДОВАНИЕ ПРИРОДЫ И СВОЙСТВ ВТСП.

Основными задачами этого направления являются фундаментальные исследования по выяснению механизма высокотемпературной сверхпроводимости, разработка теории ВТСП, прогнозирование поиска новых соединений с высокими критическими параметрами и определение их физико-химических свойств.

2. ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА СВОЙСТВА ВТСП МАТЕРИАЛОВ.

По данному направлению будут проводиться исследования влияния высоких давлений, механических и тепловых воздействий, ионизирующих излучений, электромагнитных полей и других внешних факторов на свойства ВТСП материалов и выработка рекомендаций по вопросам создания ВТСП материалов с оптимальными технологическими и техническими характеристиками.

3. НАУЧНЫЕ ОСНОВЫ И ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ВТСП МАТЕРИАЛОВ.

Главными задачами исследований по данному направлению являются разработка теоретических основ получения высокотемпературных сверхпроводящих материалов с заданными свойствами, синтез новых материалов с необходимыми для технической реализации параметрами, разработка технологий получения высокотемпературных сверхпроводников заданных технических форм. Ключевыми вопросами этого направления и всей программы в целом является создание технологичных и стабильных тонкопленочных структур, приемлемых для реализации в слаботочной технике, и особенно сильноточных токонесущих элементов в виде проводов, лент, кабелей и др. для использования в сильноточной технике.

4. СЛАБОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Создание конкретных технических изделий на основе ВТСП материалов наиболее реально в ближайшее время именно в слаботочной технике, т.е. в микроэлектронике и вычислительной технике.

В рамках программы предполагается разработка и освоение серийного производства трех классов электронных сверхпроводниковых приборов:

СКВИДы (приборы на основе джозефсоновских переходов) как детекторы слабых магнитных полей для применения в медицине (магнитоэнцефалография), геологии и геофизике (поиск полезных ископаемых, изучение геологического строения земной коры, прогноз землетрясений), материаловедении (неразрушающий контроль материалов, конструкций), военной технике (обнаружение магнитных аномалий, в частности, глубинных подводных лодок), научных исследованиях, связи и навигации.

Широкое освоение и внедрение СКВИД магнитометрического метода измерений позволит в короткий срок качественно изменить многие виды измерительной техники, повысить в сотни и более раз чувствительность приборов и точность измерений, подвести измерительные возможности широкой номенклатуры датчиков к теоретическому пределу, вывести измерительную технику на высший качественно новый уровень.

Аналого-цифровые приборы (АЦП), использующие сверхбыстрые (доли пикосекунды) переключения от джозефсоновского к "гиверовскому" режиму работы, для применений в новейших системах связи, цифровых вычислительных устройствах для обработки и анализа аналоговых сигналов и др.

Приборы, основанные на эффекте появления на джозефсоновском переходе постоянного напряжения при подаче на него СВЧ сигнала, для использования в прецизионных измерительных системах (например, эталон Вольта).

Широкое применение ВТСП найдет в вычислительной технике. Уже в настоящее время разработаны, изготовлены и испытаны макеты ячейки памяти, сверхчувствительный элемент считывания на ВТСП пленках с кратным снижением энерговыделения по сравнению с полупроводниковыми усилителями считывания, сверхскоростные линии связи, которые позволят увеличить производительность систем в 10 - 100 раз. Внедрение ВТСП в вычислительную технику даст кратное увеличение ее быстродействия и степени интеграции. Так, переход на ВТСП соединения и снижение рабочей температуры полупроводниковых суперЭВМ позволит повысить их производительность с 10х9 до 10х12 операций/сек.

Одной из перспективных областей применения ВТСП будет космическая техника - бортовые и "забортовые" измерительная аппаратура и вычислительные системы (возможна работа без специальных устройств охлаждения, так как "теневая" температура у спутников - 90 К). При этом при переходе на ВТСП удельная масса охлаждающей системы снизится в 50 раз, объем уменьшится в 1000 раз, надежность возрастет в 10 раз.

Широкие перспективы использования ВТСП открываются в СВЧ-технике и в создании датчиков видимого и ИК диапазона с высокой чувствительностью.

5. СИЛЬНОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Применение ВТСП в сильноточной технике будет иметь наиболее радикальные экономические последствия для народного хозяйства.

Это направление включает в себя создание электроэнергетических устройств и систем, вырабатывающих, передающих и преобразующих электроэнергию в промышленных масштабах. Основой этого направления является способность сверхпроводников нести без потерь высокие плотности (10х9-10х10 А/м2) транспортного тока в сильных магнитных полях при температурах ниже критической. Это свойство сверхпроводников позволяет создавать электроэнергетическое оборудование различного назначения с улучшенными массогабаритными характеристиками, более высоким КПД и значительно (в десятки раз) сниженными эксплуатационными расходами.

Так, при передаче по кабельным линиям электропередач мощностей свыше 20 млн. кВт на расстояние свыше 2000 км ожидается снижение электрических потерь на 10%, что соответствует сбережению от 7 до 10 млн. т.у.т. в год. При этом приведенные затраты на сверхпроводящую кабельную ЛЭП могут быть не больше, чем на высоковольтную ЛЭП традиционного исполнения. Синхронные сверхпроводящие генераторы для ТЭС, АЭС и ГЭС будут иметь на 0,5-0,8% более высокий КПД и на 30%

меньшие весогабаритные показатели. Предполагается создание сверхпроводниковых индуктивных накопителей энергии, которые по сравнению с гидроаккумулирующими станциями, единственным типом накопителей энергии, нашедшим промышленное применение в энергетике, будут обладать существенно более высоким КПД (до 97-98% вместо 70%). В рамках программы предполагается создание широкой гаммы электротехнических и электроэнергетических устройств, при этом масштабы суммарной экономии электроэнергии за счет массового применения ВТСП будут столь велики, что позволят радикальным образом пересмотреть сложившуюся экстенсивную стратегию развития топливно-энергетического комплекса.

Согласно структуре программы, предусматривается разработка и выпуск сверхпроводящих устройств и систем, создание которых экономически и технически целесообразно на основе традиционных гелиевых сверхпроводников. Это сверхпроводящие сепараторы, ЯМР-томографы, магнитные системы для удержания плазмы в ТОКОМАКах и ускорителях заряженных частиц и др. Создание таких систем кроме реального экономического эффекта от их внедрения заложит необходимую техническую и технологическую основу для быстрого перехода на ВТСП по мере создания технологичных ВТСП проводников.

6. КРИОСТАТИРОВАНИЕ.

Поскольку несмотря на значительное повышение критических температур новых сверхпроводящих материалов их абсолютное значение остается на уровне криогенных температур, одним из важнейших направлений исследований и разработок является создание высокоэкономичных, надежных автоматизированных ожижительных и рефрижераторных азотных установок, систем криостатирования для конкретных сверхпроводящих изделий, а также поиск принципиально новых методов получения холода в диапазоне рабочих температур ВТСП.

Сегодня увидел и обсуждение под ним. Учитывая, что сегодня же я был на производстве сверхпроводящих кабелей, хотел вставить пару замечаний, но read-only… В итоге решил написать небольшую статью про высокотемпературные сверхпроводники.

Для начала, на всякий случай, хочется отметить, что сам термин «высокотемпературный сверхпроводник» означает сверхпроводники с критической температурой выше 77 К (-196 °C) - температуры кипения дешёвого жидкого азота. Не редко к ним относят и сверхпроводники с критической температурой около 35 К, т.к. такую температуру имел первый сверхпроводящий купрат La 2-x Ba x CuO 4 (вещество переменного состава, отсюда и x). Т.е. «высокие» температуры тут пока ещё очень низкие.

Основное распространение получило два высокотемпературных сверхпроводника - YBa 2 Cu 3 O 7-x (YBCO, Y123) и Bi 2 Sr 2 Ca 2 Cu 3 O 10+x (BSCCO, Bi-2223). Также применяются схожие с YBCO материалы, в которых иттрий заменён иным редкоземельным элементом, например гадолинием, их общее обозначение - ReBCO.
Выпускаемые YBCO, да и другие ReBCO, имеют критическую температуру на уровне 90-95 К. Выпускаемые BSCCO достигают критической температуры в 108 К.

Кроме высокой критической температуры, ReBCO и BSCCO отличаются большими значениями критического магнитного поля (в жидком гелии - более 100 Тл) и критического тока. Впрочем, с последним всё не так просто…

В сверхпроводнике электроны движутся не независимо, а парами (Куперовскими парами). Если мы хотим, чтобы ток перешёл из одного сверхпроводника в другой, то зазор между ними должен быть меньше характерного размера этой пары. Для металлов и сплавов этот размер составляет десятки, а то и сотни нанометров. А вот в YBCO и BSCCO он составляет лишь пару нанометров и доли нанометра, в зависимости от направления движения. Даже зазоры между отельными зёрнами поликристалла оказываются уже вполне ощутимым препятствием, не говоря уж о зазорах между отдельными кусками сверхпроводника. В результате сверхпроводящая керамика, если не предпринимать специальных ухищрений, способна пропускать через себя лишь относительно небольшой ток.

Проще всего проблему оказалось решить в BSCCO: его зёрна естественным образом имеют ровные края, а самое простое механическое сжатие позволяет эти зёрна упорядочить для получения высокого значения критического тока. Это позволило достаточно быстро и просто создать первое поколение высокотемпературных сверхпроводящих кабелей, а точнее - высокотемпературных сверхпроводящих лент. Они представляют собой серебряную матрицу, в которой есть множество тонких трубочек, заполненных BSCCO. Эту матрицу расплющивают, при этом зёрна сверхпроводника приобретают нужный порядок. Получаем тонкую гибкую ленту, содержащую множество отдельных плоских сверхпроводящих жил.

Увы, BSCCO материал далеко не идеальный: у него критический ток очень быстро падает с ростом внешнего магнитного поля. Критическое магнитное поле у него достаточно велико, но задолго до достижения этого предела, он теряет способность пропускать сколько-нибудь большие токи. Это очень сильно ограничивало применение высокотемпературных сверхпроводящих лент, заменить старые добрые сплавы ниобий-титан и ниобий-олово, работающие в жидком гелии, они не могли.

Совсем другое дело - ReBCO. Но создать в нём правильную ориентацию зёрен весьма тяжело. Лишь относительно недавно научились делать сверхпроводящие ленты на основе этого материала. Такие ленты, называемые вторым поколением, получают напылением сверхпроводящего материала на подложку, имеющую специальную текстуру, задающую направление роста кристаллов. Текстура, как не сложно догадаться, имеет нанометровые размеры, так что это настоящие нанотехнологии. В московской компании «СуперОкс», в которой я собственно и был, для получения такой структуры на металлическую подложку напыляют пять промежуточных слоёв, один из которых одновременно с напылением распыляется потоком быстрых ионов, падающих под определённым углом. В результате кристаллы этого слоя растут только в одном направлении, в котором ионам сложнее всего их распылять. Другие производители, а их в мире четыре, могут использовать иные технологии. Кстати, отечественные ленты используют гадолиний вместо иттрия, он оказался технологичнее.

Сверхпроводящие ленты второго поколения шириной 12 мм и толщиной 0,1 мм в жидком азоте при отсутствии внешнего магнитного поля пропускают ток до 500 А. Во внешнем магнитном поле 1 Тл критический ток всё ещё доходит до 100 А, а при 5 Тл - до 5 А. Если охладить ленту до температуры жидкого водорода (ниобиевые сплавы при такой температуре ещё даже не переходят в сверхпроводящее состояние), то та же лента сможет пропустить 500 А в поле 8 Тл, а «какие-нибудь» 200-300 А - в поле на уровне пары десятков тесла (лягушка летает). Про жидкий гелий и говорить не приходится: есть проекты магнитов на этих лентах с полем на уровне 100 Тл! Правда тут уже в полный рост возникает проблема механической прочности: магнитное поле всегда стремится разорвать электромагнит, но когда это поле достигает десятков тесла, его стремления легко реализуются…

Впрочем, все эти прекрасные технологии не решают проблемы соединения двух кусков сверхпроводника: хоть кристаллы и ориентированны в одном направлении, о полировке внешней поверхности до субнанометрового размера шероховатостей речи не идёт. У корейцев есть технология спекания отдельных лент друг с другом, но она ещё, мягко говоря, далека от совершенства. Обычно ленты соединяют друг с другом обычной пайкой обычным оловянно-свинцовым припоем или иным классическим способом. Разумеется, при этом на контакте появляется конечное сопротивление, так что создать из таких лент сверхпроводящий магнит, не требующий питания на протяжении многих лет, да и просто ЛЭП с в точности нулевыми потерями не получается. Но сопротивление контакта составляет малые доли микроома, так что даже при 500 А токе там выделяются лишь доли милливатта.

Разумеется, в научно-популярной статье читатель ищет по-больше зрелищности… Вот несколько видео моих экспериментов с высокотемпературной сверхпроводящей лентой второго поколения:

Последнее видео записал под впечатлением от комментария на YouTube, в котором автор доказывал, что сверхпроводимости не существует, а левитация магнита - совершенно самостоятельный эффект, предлагал всем желающим убедиться в его правоте, измерив непосредственно сопротивление. Как видим, сверхпроводимость всё-таки существует.

Высокотемпературная сверхпроводимость

Высокотемпературные сверхпроводники (Высокие T c) - семейство материалов (сверхпроводящих керамик) с общей структурной особенностью, относительно хорошо разделёнными медно-кислородными плоскостями. Их также называют сверхпроводниками на основе купратов. Температура сверхпроводящего перехода, которая может быть достигнута в некоторых составах в этом семействе, является самой высокой среди всех известных сверхпроводников. В настоящее время рекордным значеним критической температуры T c =135 K (под давлением T c =165 K, -109 °C) обладает вещество HgBa 2 Ca 2 Cu 3 O 8+x , открытое в 1993 г. С. Н. Путилиным и Е. В. Антиповым из МГУ. Нормальное (и сверхпроводящие) состояния показывают много общих особенностей между различными составами купратов; многие из этих свойств не могут быть объяснены в рамках теории БКШ . Последовательной теории сверхпроводимости в купратах в настоящее время не существует; однако, проблема привела ко многим экспериментальным и теоретическим результатам, и интерес в этой области - не только в достижении сверхпроводимости при комнатной температуре. Первое соединение из класса высокотемпературных сверхпроводящих купратов La 2-x Ba x CuO 4 открыли Карл Мюллер и Георг Беднорц в 1986 г. За это открытие в 1987 г. им была немедленно присуждена Нобелевская премия .

Интерметаллиды

В 2001 году открыт сплав 2 (диборид магния) с рекордной для интерметаллидов температурой перехода в сверхпроводящее состояние Т с = 40 К. Кристаллическая структура этого вещества представляет собой чередующиеся слои бора и слои магния. Слоистость приводит к анизотропии физических свойств, т.е. величины электрической проводимости, оптического спектра поглощения, прочности и т.д. различны в плоскости слоёв и в направлении перпендикулярном слоям. Это двухзонное соединение стало первым известным науке сверхпроводником, обладающим сразу двумя сверхпроводящими щелями (двухщелевая сверхпроводимость), что было предсказано теоретически и подтверждено экспериментально. В дырочных квазидвумерных зонах бора (σ-зонах) при переходе в сверхпроводящее состояние в спектре квазичастиц образуется щель Δ σ (зона запрещённых энергий для одиночных электронов и дырок) со значениями примерно (10-11) мэВ при максимальных Т с. В трёхмерных зонах магния (π-зонах) также образуется сверхпроводящая щель Δ π с амплитудой примерно (1,5 - 3) мэВ. Таким образом, в сверхпроводящем 2 сосуществуют два сверхпроводящих конденсата: изотропный трёхмерный (от π-зон магния) и двумерный дырочный (локализованный в слоях бора).

Внесение примесей других атомов в 2 , т.е. допирование, приводит к понижению критической температуры перехода Т с. Судя по всему, это соединение имеет оптимизированные для сверхпроводимости характеристики от природы и не поддаётся искусственному "улучшению". При понижении Т с от 40 К до 10 К величина малой щели Δ π меняется слабо, а значение большой щели Δ σ понижается вместе с критической температурой, экспериментаторы отмечают линейную связь между Т с и Δ σ . Характеристическое отношение теории БКШ 2Δ σ /k B Т с по оценкам ведущих российских экспериментаторов находится в диапазоне 5-7, что говорит о сильном электрон-фононном взаимодействии в слоях бора и приближает 2 к купратным ВТСП.

Сверхпроводящие пниктиды и селениды

В 2008 году произошло замечательное открытие нового класса сверхпроводящих соединений с высокими значениями критической температуры T c - слоистых соединений на основе железа и элементов V группы (пниктидов) либо , т. н. ферропниктидов или селенидов железа. Впервые было констатировано сверхпроводящее состояние у соединений, содержащих магнитные атомы (). Кристаллическая структура всех железосодержащих сверхпроводников (уже известно 6 семейств) представляет собой чередующиеся слои, в которых атомы железа окружены тетраэдром из атомов или , что подавляет магнитные свойства атомов . На данный момент рекордсменом по значению T c является соединение GdOFeAs (Gd-1111), допированное фтором, который замещает кислород. Его T c достигает 55 К.

Все железосодержащие сверхпроводники обладают многозонной структурой и квазидвумерны (проявляют анизотропию свойств в направлении поперёк плоскостей). При переходе в сверхпроводящее состояние в каждой зоне открывается собственная щель в квазичастичном спектре, что приводит к появлению как минимум двух сверхпроводящих конденсатов и многощелевой сверхпроводимости, подобной случаю 2 (диборида магния). Характеристическое отношение теории БКШ 2Δ большая /k B Т с по оценкам российских экспериментаторов находится в диапазоне 4,6 - 6.

Органические сверхпроводники

В конце 60-х - начале 70-х гг были большие надежды на синтез органических комплексов с переносом заряда (КПЗ) - например, комплексов en:TCNQ -TTF (тетрацианохинодиметан-тетратиафульвален). Однако, несмотря на синтез ряда перспективных соединений, оказалось, что сверхпроводимость в этих комплексах неустойчива даже при небольших плотностях тока.

Примечания

Ссылки


Wikimedia Foundation . 2010 .

  • Вах (междометие)
  • Петропавловский мост

Смотреть что такое "Высокотемпературная сверхпроводимость" в других словарях:

    высокотемпературная сверхпроводимость - сверхпроводимость при высокой температуре — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы сверхпроводимость при высокой температуре EN high temperature superconductivity … Справочник технического переводчика

    Сверхпроводимость - Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом Сверхпроводимость свойство некоторых мате … Википедия

    ВЫСОКОТЕМПЕРАТУРНАЯ СВЕРХПРОВОДЯЩАЯ КЕРАМИКА - (ВТСП керамика), керамика (см. КЕРАМИКА), созданная на основе оксидных высокотемпературных сверхпроводников (см. ОКСИДНЫЕ ПОЛУПРОВОДНИКИ). Впервые сверхпроводящая керамика была получена в 1986 Й. Беднорцем (см. БЕДНОРЦ Йоханнес Георг) и К.… … Энциклопедический словарь

    ВТСП - высокотемпературная сверхпроводимость … Словарь сокращений русского языка

    Список новых перспективных технологий - содержит некоторые из самых выдающихся текущих событий, достижений и инноваций в различных областях современной технологии. Новые технологии это те технические нововведения, которые представляют прогрессивные изменения в рамках области… … Википедия

    Теллур - 52 Сурьма ← Теллур → Иод … Википедия

    Теллур / Tellurium (Te) Атомный номер 52 Внешний вид простого вещества Свойства атома Атомная масса (молярная масса) 127,6 а. е. м. (г/моль) … Википедия

    ОКСИДНЫЕ ВЫСОКОТЕМПЕРАТУРНЫЕ СВЕРХПРОВОДНИКИ - оксидные соединения с высокой критич. темп рой Т с переходав сверхпроводящее состояние. Обнаружение сверхпроводимости в этихсоединениях (1986 88) существенно повысило уровень известных значений Т с от 24К в Nb3Ge до 120Кв Т12 Ва 2 Са 2 Сu3 О… … Физическая энциклопедия

Сверхпроводимость представляет собой квантовое явление, проявляющееся в макроскопических масштабах. Сверхпроводимость возникает при охлаждении некоторых веществ до определенной для данного вещества критической температуры, при которой вещество скачкообразно переходит в особое сверхпроводящее состояние. Фундаментальной особенностью сверхпроводников является полное отсутствие электрического сопротивления.

Данное явление было открыто в 1911 году Х. Камерлинг-Оннесом. Сверхпроводимость можно наблюдать в следующем опыте. Металлическое кольцо помещается в магнитное поле В при температуре выше критической T c . Затем температура понижается до значений Т < T с. После этого поле В выключают. По закону электромагнитной индукции изменение магнитного поля вызывает в образце появление тока. Вследствие того, что в образце отсутствует сопротивление, ток может циркулировать бесконечно долго.

Если при температурах Т< T 0 увеличить индукцию В магнитного поля, то при некотором критическом значении В кр, которое называется критическим магнитным полем, сверхпроводящее состояние нарушается. Согласно современным представлениям сверхпроводящее и нормальное состояния представляет собой две фазы вещества, которые могут переходить друг в друга (рис.1).

Рис. 1.

Второе фундаментальное свойство сверхпроводников заключается в эффекте Мейснера, т.е. сверхпроводники становятся идеальными диамагнетиками и выталкивают внешнее магнитное поле. В отличие от них идеальные проводники с сопротивлением должны захватывать магнитный поток. На приведенном ниже рисунке 2 показано поведение сверхпроводящего шара и проводника с сопротивлением при различных температурах и внешних магнитных полях. На рис2. рассмотрены случаи:2а) Т>Т к, 2б) Т<Т к, внешнее магнитное поле не равно нулю 2в) Т<Т к, внешнее магнитное поле равно нулю

Рис.2

Эффект Мейснера связан с тем, что в приповерхностном слое, толщиной около 10 –6 см начинает циркулировать постоянный ток, сила которого такова, что созданное им поле компенсирует внешнее поле в толще сверхпроводника.

Различают сверхпроводники I и II рода.

Сверхпроводники I рода переходят в нормальное состояние скачкообразно, а проводники второго рода переходят в нормальное состояние постепенно. На приведенном рисунке показана зависимость намагниченности М от индукции В внешнего магнитного поля. Начальные кривые от 0 до критического значения В с у сверхпроводников I и II рода одинаковы. Они соответствуют эффекту Мейснера. Сверхпроводники I рода (рис.а) при критическом значении магнитного поля скачкообразно переходят в нормальное состояние, при этом их намагниченность резко уменьшается.


Сверхпроводники II рода (рис.б) при критическом значении магнитного поля начинают плавно переходить в нормальное состояние, при этом их намагниченность уменьшается плавно.

До 80-х годов самая высокая критическая температура у сверхпроводников имела значение 23 К.

В 1986 году были открыты сверхпроводники с критическими температурами 35 К. Сейчас открыты материалы с критическими температурами 135 К. До этих открытий в качестве охлаждающего вещества применялся жидкий гелий (температура кипения при нормальном давлении 4,2 К). После открытия сверхпроводников с критическими температурами, превосходящими 77,3 К(температура кипения азота) стали применять в качестве охлаждающего вещества более дешевый и доступный азот. Соответственно о низкотемпературных сверхпроводниках стали говорить как о сверхпроводниках гелиевого уровня температур, а о высокотемпературные сверхпроводники назвали сверхпроводниками азотного уровня температур.

К пониманию природы низкотемпературной сверхпроводимости привели два экспериментальных факта.

1. Металлы, являющиеся при комнатных температурах хорошими проводниками (серебро, медь) не обладают свойством сверхпроводимости. Плохие проводники (ртуть) при низких температурах становятся сверхпроводниками. Хорошая проводимость серебра и меди указывает на слабое взаимодействие электронов с кристаллической решеткой. Наоборот, в ртути электроны взаимодействуют с решеткой более интенсивно.

2. Для большинства сверхпроводников выполняется соотношение , где М – масса атома изотопа. Явление получило название изотопический эффект. Это соотношение указывало на взаимодействие электронов с ионами кристаллической решетки.

Качественно явление низкотемпературной сверхпроводимости может быть описано следующим образом. Электрическое поле движущегося электрона воздействует на кристаллическую решетку, деформируя (поляризуя) её. При этом электрон оказывается в окружении положительного облака заряда узла кристаллической решетки. Если суммарный заряд области электрона и поляризованного иона окажется положительным, то эта область может притянуть другой электрон. При этом через взаимодействие с положительным узлом кристаллической решетки в пару объединяются электроны, имеющие противоположно ориентированные спины и импульсы. Такая пара называется куперовской парой по фамилии ученого Л. Купера, разработавшего эту теорию. Куперовская пара имеет спин, равный 0, она подчиняется статистике Бозе-Эйнштейна. Поэтому при низких температурах превращение в куперовские пары носит массовый характер. Каждый электрон с импульсом может вступить во взаимодействие лишь с таким электроном, импульс которого равен . Состояния электронов в кристалле постоянно меняются, поэтому постоянно изменяются и наборы пар. Этот процесс обеспечивает связь между всеми куперовскими парами. Такую совокупность куперовских пар можно рассматривать как бозе-конденсат.

Открытие высокотемпературной сверхпроводимости стало неожиданностью для теоретической физики, т.к. теория низкотемпературной сверхпроводимости не давала высоких значений критических температур.

Среди высокотемпературных сверхпроводников особую группу составляют купраты – соединения со сложной слоистой структурой. Кристалл купрата можно образно сравнить с "сэндвичем" из различных элементов. В.Л. Гинзбургом была рассмотрена модель сверхпроводника, состоящего из металлической пленки, расположенной между слоями диэлектрика или полупроводника. Электроны этих слоев отталкиваются электронами металла, вследствие чего вокруг последних возникает облако положительного заряда, что способствует образованию куперовских пар. По оценкам В.Л. Гинзбурга такая модель допускает существование критических температур до 200 К.

К настоящему времени хорошо разработанной теории высокотемпературной сверхпроводимости не существует.

Сверхпроводники используются в различных устройствах и приборах. Из сверхпроводниковых изделий гелиевого уровня температур используются томографы, сепараторы и накопители энергии. Сверхпроводящие томографы обеспечивают более высокое качество диагностики внутренних органов, сепараторы применяются для обогащения руд, накопители обеспечивают запас энергии порядка нескольких киловатт-часов.

Замена жидкого гелия на азот в качестве охлаждающего вещества в сотни раз сокращает расходы на создание установок.

Замена обычных проводников на высокотемпературные сверхпроводники значительно уменьшает их вес, существенно увеличивает время эксплуатации. В настоящее время они применяются в системах спутниковой и сотовой связи, прецизионной аппаратуре, измеряющей ничтожно малые токи, изменения магнитных потоков.

В цифровой сверхпроводниковой электронике создаются устройства с большим числом элементов на одном чипе.

Между сверхпроводящим кольцом и магнитом возникает отталкивание. Это явление может применяться в моторах, гироскопах. Во многих странах разрабатываются проекты поездов на магнитной подушке. По сверхпроводнику монорельсу попускается электрический ток. В вагонах поезда размещаются сверхпроводящие магниты. Вагоны зависают над рельсом. Такой поезд развивает скорость, сравнимую со скоростью самолета.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...