Ковалентная связь. Метод валентных связей

Основные положения метода ВС.

1. Одинарную химическую связь образуют два электрона с противоположными спинами, принадлежащие разным атомам. Связь образуется за счет перекрывания их волновых функций и образования общей электронной пары. В результате между ядрами атомов появляется зона повышенного отрицательного заряда, так как в этой области время пребывания электронов больше, чем в других точках молекулярного пространства. Образование общей электронной пары приводит к снижению полной энергии системы в целом и образованию ковалентной связи.

2. Связь является ориентированной в пространстве и располагается в том направлении, где возможность перекрывания волновых функций максимальна.

3. Из двух атомных орбиталей более прочную связь образует та, которая сильнее перекрывается с орбиталью второго атома. Чем больше перекрывание орбиталей, тем больше выделяется энергии при образовании связи, тем она прочнее.

Характеристики ковалентной связи.

1. Энергия связи Е св, кДж/моль.

2. Полярность связи.

3. Насыщаемость связи.

Рассмотрим их более подробно.

Энергия связи.

Устойчивость двухатомной молекулы к распаду на атомы характеризуется величиной ее энергии диссоциации, или прочностью связи. В молекуле водорода энергия связи численно равна энергии, которая выделяется при образовании молекулы Н 2 из атомов Н + Н = Н 2 + 432 кДж. Эту же энергию нужно затратить, чтобы разорвать связь H 2 = H + H − 432 кДж.

В молекулах состава AB n последовательный отрыв атомов «В» сопровождается неравномерными затратами энергии.

Например, значения энергии (кДж/моль) последовательного отщепления атомов водорода от молекулы метана существенно различаются:

При этом энергия связи С-Н определяется как средняя величина затраченной энергии на всех стадиях: СН 4 =С+4Н; ∑=1660кДж/моль;
Е (С−Н) = 1660 / 4 = 415 кДж/моль.

Энергия связи конкретной пары атомов, например С-Н, зависит от того, в какую молекулу эта пара входит. Однако изменения этой энергии в разных молекулах невелики. Это подтверждает предположение о том, что связывающие атомы электронные пары локализованы между атомами.

Если сравнивать между собой энергии связи С-Н во многих молекулах, то среднее значение окажется равным 413 кДж/моль, что не слишком отличается от вычисленной для связи С-Н в молекуле СН 4 (415 кДж/моль).



Чем выше энергия химической связи, тем прочнее связь. Связь считается прочной, или сильной, если ее энергия превышает 500 кДж/моль (например, 942 кДж/моль для N 2), слабой – если ее энергия меньше 100 кДж/моль (например, 69 кДж/моль для NO 2). Если при взаимодействии атомов выделяется энергия менее 15 кДж/моль, то считают, что химическая связь не образуется, а наблюдается межмолекулярное взаимодействие (например, 2 кДж/моль для Xe 2). Прочность связи обычно уменьшается с увеличением ее длины (табл.4.1).

Таблица 4.1

Значения длины и энергии связи у галогеноводородных кислот

Одинарная связь всегда слабее, чем кратные связи – двойная и тройная между теми же атомами.

Полярность связи

Если ковалентная связь образована двумя атомами одного и того же элемента, то общая электронная плотность располагается абсолютно симметрично в поле обоих ядер. Если же общая пара связывает атомы двух различных элементов, то электронная плотность является не симметричной. Она смещена к атому более электроотрицательного элемента. В результате на этом атоме наводится избыточный (частичный) отрицательный заряд, а на противоположном – частичный положительный. В результате в молекуле образуются два разноименно заряженных полюса. Чем больше разница в электроотрицательностях атомов, тем более полярной является связь.

Полярные молекулы, имеющие разделенные в пространстве положительный и отрицательный полюса, называются ДИПОЛЯМИ. Расстояние между полюсами в диполе называют его длинной (L ).

Произведение заряда одного из полюсов на длину диполя называют дипольным моментом (Кл∙м).

μ = Z∙L. (4.1)

Дипольный момент является векторной величиной. В химии направление дипольного момента принято от положительного полюса к отрицательному. Например, в молекуле хлористого водорода на атоме водорода сосредотачивается избыточный (+), а на атоме хлора избыточный (-) H δ + → Cl δ - . Для многоатомных молекул дипольный момент можно рассчитать как векторную сумму дипольных моментов отдельных связей, пренебрегая их взаимным влиянием. Моменты отдельных связей могут либо усиливать, либо компенсировать друг друга, изменяя суммарный момент.



Например, линейные молекулы BeCl 2 и CO 2 являются неполярными. Хотя каждая из связей полярна. К таким молекулам можно отнести молекулы метана СН 4 и гексафторида серы SF 6 , в которых дипольные моменты отдельных связей

компенсируют друг друга и суммарный дипольный момент молекулы равен нулю.

В предельном случае общая электронная пара полностью локализуется у одного из атомов. В результате образуются два разноименно заряженных иона. Атом, потерявший электрон, превращается в катион (А +), а атом, захвативший чужой электрон, - в анион (А -). В результате взаимного притяжения двух противоположно заряженных частиц возникает ионная связь.

Ионная связь формируется за счет электростатического притяжения между частицами с зарядами противоположного знака, которые образуются за счет переноса одного или нескольких электронов от одного атома к другому. По теории Косселя (1916 г.) атом всякого элемента, вступая в соединение, теряя или присоединяя соответствующее число электронов, стремится приобрести электронную оболочку атома ближайшего (в Периодической системе) благородного газа ns 2 или ns 2 np 6 . В результате присоединения или потери электронов образуется анион или катион соответственно.

Так, например, для ионного кристалла NaCl образование ионов Na + и Cl - из нейтральных атомов показывает, что атом натрия теряет электрон, а атом хлора его присоединяет. В результате этого образуются Na + (2s 2 2p 6 – оболочка Ne) и Cl - (3s 2 3p 6 – оболочка Ar). Эти ионы формируют внутри кристалла правильную трехмерную структуру.

Ионы в кристалле находятся в равновесных положениях, поэтому силы кулоновского притяжения между ними должны компенсироваться силами отталкивания их электронных оболочек.

Известно, что идеальной ионной связи не существует. Даже в тех соединениях, которые обычно относят к ионным, не наблюдается полного перехода электронов от одного атома к другому. Электроны всегда частично остаются в общем пользовании.

Так, например, связь во фториде лития на 80% ионная, а на 20% – ковалентная. По этой причине правильнее говорить о степени ионности химической связи.

Доминирующая ионная связь появляется только в том случае, если взаимодействующие атомы (например, натрий и хлор) сильно отличаются энергиями ионизации и сродства к электрону (металл-неметалл).

Взаимодействие между катионами и анионами в ионном кристалле не зависит от направления, поэтому об ионной связи говорят, как о ненаправленной. Каждый катион может притягивать любое число анионов, и наоборот. По этой причине ионная связь является ненаправленной и ненасыщенной, а число взаимодействий между ионами в твердом состоянии ограничивается лишь

размерами кристалла. Поэтому «молекулой» ионного соединения следует считать весь кристалл.

По этой причине ионные кристаллы очень твердые и хрупкие и имеют высокие значения энергии кристаллической решетки.

Если попытаться деформировать ионную решетку, то один из слоев будет сдвигаться относительно другого до тех пор, пока одноименно заряженные ионы не окажутся слишком близко друг от друга. Это приводит к резкому возрастанию сил отталкивания, и решетка быстро разрушается.

Насыщаемость связи

Ковалентная связь – наиболее общий вид химической связи, возникающей в соединениях различного типа. Принято выделять два возможных механизма ее образования: обменный механизм, когда каждый из взаимодействующих атомов поставляет по одному электрону, и донорно-акцепторный, если электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору), имеющему свободную электронную орбиталь.

1. Обменный механизм А+ В = А: В

2. Донорно-акцепторный механизм А + : В = А : В

Молекула водорода служит простейшим возможным примером образования ковалентной связи по обменному механизму.

В рамках представлений Льюиса об обменном механизме валентность элемента определяется числом общих электронных пар, образуемых атомом в молекуле.

В некоторых случаях оба электрона при образовании ковалентной связи поставляются только одним из атомов. Это называется донорной валентностью . Если такая связь образована, она становится неотличимой от любой другой ковалентной связи. Донорно-акцепторная связь реализуется во многих молекулах и ионах.

При образовании иона аммония NH 4 + и молекулы BF 3 NH 3 атом азота в молекуле аммиака NH 3 имеет несвязывающую 2S 2 электронную пару. Ион водорода Н + - свободную 1S орбиталь, а атом бора в молекуле BF 3 - свободную 2р орбиталь.

Н + + : NH 3 → H : N H F 3 B + : NH 3 → BF 3 : NH 3

В ионе NH 4 + акцептором служит ион Н + , а в молекуле BF 3 NH 3 – атом бора (В). Атом азота, входящего в состав молекулы аммиака, в обоих случаях выступает в качестве донора.

Донорно-акцепторное взаимодействие между разными молекулами может сопровождаться образованием комплексных соединений:

А1С1 3 +: NH 3 = [А1(NH 3)]С1 3

Атом азота в NH 3 имеет неподеленную пару электронов и играет роль донора, а атом А1 в молекуле А1С1 3 – свободную орбиталь и играет роль акцептора.

Все это говорит о том, что валентность атомов зависит не только от количества неспаренных электронов, но и от наличия вакантных орбиталей и количества неподеленных электронных пар соответственно.

В ионе NH 4 + все связи центрального атома азота N-Н, несмотря на их различное происхождение, равноценны и не различимы, что наглядно доказывает одинаковую природу ковалентных и донорно-акцепторных связей.

Связи, образуемые по донорно-акцепторному механизму, обычно образуются уже после того, как атом - донор использовал имеющиеся у него неспаренные электроны для образования связей по обменному механизму. Это объясняется тем, что при образовании общих электронных пар с участием электронов другого атома происходит насыщение валентного уровня атома донора, при этом его электроотрицательность снижается и он легче отдает свои несвязываюшие пары для образования связей по донорно-акцепторному механизму.

Свободные орбитали акцепторов характеризуются очень низким значением энергии. Этим объясняется их склонность к заполнению электронами по донорно-акцепторному механизму. Донорно-акцептрное взаимодействие лежит в основе таких процессов, как полимеризация некоторых молекул при переходе из газообразного в жидкое состояние, образование комплексных соединений, гидролиз анионов.

Направленность связи

Образование ковалентной связи является результатом перекрывания валентных электронных облаков (атомных орбиталей АО), которые характеризуются определенными ориентациями в пространстве, и поэтому ковалентная связь имеет строго определенную направленность.

Направление ковалентных связей характеризуется валентными углами – углами между линиями, соединяющими центры связываемых атомов. Сама по себе графическая формула молекулы или иона не несет информации о валентных углах. Например, в ионе 2− валентные углы между связями S-O равны 109,5 o , а в ионе 2− Pd-Cl − 90 o ; молекула ВF 3 – плоская треугольная, NF 3 – пирамидальная, а С1F 3 имеет Т-образную форму, хотя все три последние молекулы имеют состав АF 3 .

Совокупность длин связей и валентных углов в молекуле определяет ее пространственное равновесное строение, в котором имеет место равенство сил

притяжения и отталкивания и которое обеспечивает оптимальное пространственное строение и минимальное значение энергии молекулы.

Перекрывание атомных орбиталей вдоль линии, связывающей ядра атомов, приводит к образованию σ-связей. Между двумя атомами в химической частице возможна только одна σ-связь. Все σ-связи обладают осевой симметрией относительно межъядерной оси.

Фрагменты химических частиц могут вращаться вокруг межъядерной оси без нарушения степени перекрывания атомных орбиталей, образующих σ-связи.

Совокупность направленных, строго ориентированных в пространстве σ - связей создает пространственную структуру частиц.

Рис. 4.2. Схемы образования σ-связей с участием электронов различных типов

При дополнительном перекрывании атомных орбиталей, перпендикулярных линии связывающей ядра взаимодействующих атомов, образуются π-связи, в которых могут принимать участие р- р , р - d и d-d -орбитали (рис.4.3).

С появлением π-связи, не имеющей осевой симметрии, свободное вращение фрагментов химической частицы вокруг σ-связи становится невозможным, так как оно должно привести к разрыву π-связи.

Число связей, образующихся между атомами, называется кратностью, или порядком связи, и определяется числом общих электронных пар.

Установлено, что среднее расстояние между связанными атомами (длина связи) уменьшается с возрастанием числа обобществленных электронных пар.

Рис. 4.3. Схемы образования π-связей с участием электронов различных типов

Это связано с тем, что электронная плотность между двумя положительно заряженными ядрами возрастает, вследствие чего увеличивается и притяжение между ядрами, а следовательно, возрастает и энергия связи (табл. 4.2).

В методе предполагается, что химическая связь образуется двумя неспаренными электронами с антипараллельными спинами. При этом происходит обобществление электронов т. е. образуется электронная пара, принадлежащая двум атомам.

В 1927 г. немецкие ученые У. Гейтлер и Ф. Лондон провели квантово-механический расчет взаимодействия атомов водорода при образовании молекулы . В результате приближенного решения уравнения Шредингера они вывели зависимость потенциальной энергии системы от расстояния между ядрами атомов водорода (рис. II. 3). При сближении двух атомов электроны с антипараллельными спинами притягиваются одновременно двумя протонами, поэтому потенциальная энергия системы уменьшается (кривая При сближении двух атомов действуют не только силы притяжения, но и силы отталкивания. Два электрона отталкиваются друг от друга, то же наблюдается и для двух протонов. Силы отталкивания начинают преобладать при очень малых расстояниях между атомами. При некотором расстоянии между ядрами энергия системы минимальна. Система становится наиболее устойчивой, возникает химическая связь и образуется молекула водорода. Например, в молекуле водорода нм. При сближении атомов, у электронов которых спины параллельны, наблюдается только их отталкивание, и энергия системы возрастает (кривая 2). Квантово-механические расчеты показывают, что электронная плотность в системе при взаимодействии двух атомов водорода, имеющих антипараллельные спины электронов, максимальна в области, лежащей между ядрами.

В то же время электронная плотность в области между ядрами двух атомов с параллельными спинами электронов минимальна.

Механизм образования химической связи, разработанный для молекулы водорода, позднее был распространен и на другие молекулы. Рассмотрим образование химической связи в двухатомных молекулах элементов первого и второго периодов периодической системы элементов Менделеева, пользуясь методом Электронные конфигурации элементов первого и второго периодов приведены в табл. II.2. Напомним, что существует только одна -орбиталь, в то время как -орбиталей имеется три. Каждая орбиталь может содержать два электрона

Рис. II.3. Зависимость потенциальной энергии системы из двух атомов водорода от расстояния между ядрами: 1 - антипараллельные спины электронов; 2 - параллельные спины электронов

Та6лица II.2. Электронные конфигурации элементов первого и второго периодов и строение двухатомных молекул согласно методу ВС (см. скан)

с антипараллельными спинами. Значит, наибольшее число неспаренных электронов в -подуровне равно трем, как, например, у атома азота, электронная конфигурация которого

Поэтому при образовании молекулы азота обобществляются три пары электронов (тройная связь Атом кислорода, электронная конфигурация которого должен иметь два спаренных электрона на одной из трех -орбиталей. Таким образом, он обладает лишь двумя неспаренными электронами, которые участвуют в образовании химической связи. Вследствие этого в молекуле кислорода общими являются две пары электронов (двойная связь ).

Валентность.

В учении о химической связи широко используют очень важное понятие о валентности элементов. Способность атома к образованию химических связей называют в а-лентностью элемента. Количественной мерой валентности принято считать число разных атомов в молекуле, с которыми данный атом образует связи. Согласно обменному механизму метода валентность элементов определяется числом содержащихся в атоме неспаренных электронов. Для s- и -электронов - это электроны внешнего уровня, для d-элементов - внешнего и предвнешнего уровней.

Спаренные (расположенные по два на атомных орбиталях) электроны при возбуждении могут разъединяться при наличии свободных ячеек того же уровня (разъединение электронов в какой-либо иной уровень невозможно). Например, валентность (В) элементов главной подгруппы I группы равна единице, так как на внешнем уровне атомы этих элементов имеют один электрон:

Валентность элементов главной подгруппы II группы в основном (невозбужденном) состоянии равна нулю, так как на внешнем уровне нет неспаренных электронов:

При возбуждении этих атомов спаренные -электроны разъединяются в свободные ячейки -подуровня этого же уровня и валентность становится равной двум (возбужденный атом отмечен звездочкой):

Кислород и фтор во всех соединениях проявляют постоянную валентность, равную двум для кислорода и единице для фтора. Валентные электроны этих элементов находятся на втором энергетическом уровне, где нет более свободных ячеек:

В то же время сера - аналог кислорода - проявляет переменную валентность 2, 4, 6; хлор - аналог фтора - проявляет валентность 1, 3, 5, 7. Это объясняется наличием свободных d-ячеек на третьем энергетическом уровне:

При возбуждении

Для большинства d-элементов валентность в невозбужденном состоянии равна нулю, так как на внешнем уровне нет неспаренных электронов. Например, для железа

При возбуждении атома железа -электроны разъединяются и переходят на свободный -подуровень четвертого уровня, валентность становится равной двум:

Кроме электронов внешнего уровня валентными могут быть неспаренные d-электроны предвнешнего уровня, и валентность атома железа с учетом d-электронов может быть равна 3, 4, 5 и максимально 6.

Осмий - аналог железа - может проявлять максимальную валентность, равную восьми:

При возбуждении атома осмия -электроны разъединяются и переходят на свободный -подуровень шестого уровня, валентность становится равной двум. Неспаренные d-электроны увеличивают ее до шести. Кроме того, спаренные d-электроны имеют возможность разъединяться и переходить на свободный -подуровень пятого уровня, тогда максимальная валентность атома осмия становится равной восьми:

Донорно-акцепторный механизм образования ковалентной связи.

Рассмотренный механизм возникновения ковалентных связей путем обобществления неспаренных электронов двух атомов получил название обменного механизма. Образование ковалентной связи может происходить также при взаимодействии одного атома или иона с заполненной атомной орбиталью с другим атомом или ионом, имеющим вакантную (свободную) атомную орбиталь. Такой механизм образования

ковалентной связи называется донорно-акцепторным. Атом или ион, поставляющий пару электронов, называют донором, а атом или ион, к которому эта пара электронов перемещается, - акцептором. Согласно методу ковалентная связь по донорно-акцепторному механизму возникает при перекрывании вакантной орбитали акцептора с заполненными орбиталями донора или донорной группы. Поэтому донорная группа должна содержать по меньшей мере одну неподеленную пару электронов.

Рассмотрим образование химической связи по донорно-акцепторному механизму при взаимодействии молекулы аммиака с ионом водорода. Атом азота имеет на внешнем энергетическом уровне два спаренных b три неспаренных электрона.

Лекция № 4. Основы теории химической связи. Метод валентных связей

Химическая связь - это взаимодействие ядер и электронов, приводящее к образованию устойчивой совокупности атомов - молекулярных частиц или атомных агрегатов . Движущей силой образования химической связи является стремление системы к минимуму энергии при достижении атомами завершенной электронной оболочки инертного газа (s 2 или s 2 p 6). В зависимости от способа приближения системы атомных частиц к устойчивому состоянию различают три типа химической связи: ковалентную, ионную и металлическую. В теории химической связи обычно рассматривают также силы межмолекулярного взаимодействия (силы Ван-дер-Ваальса), являющиеся по своей сути физическим взаимодействием, и водородную связь, лежащую на границе физических и химических явлений.

С развитием квантово-механических представлений в теории химической связи сложились два метода описания ковалентной связи: метод валентных связей (метод ВС) и метод молекулярных орбиталей (метод МО).

Согласно методу ВС атомы, составляющие молекулу, сохраняют свою индивидуальность, а химические связи возникают в результате взаимодействия их валентных электронов и валентных орбиталей. Метод МО рассматривает молекулу как единое образование, в котором каждый электрон принадлежит молекулярной частице в целом и движется в поле всех ее ядер и электронов. Методы ВС и МО, несмотря на существенные различия в подходах к описанию молекул, хорошо дополняют друг друга. Во многих случаях они приводят в конечном итоге к одинаковым результатам.

¨ Ковалентная связь реализуется за счет образования общей электронной пары.

¨ Общая электронная пара образуется при перекрывании электронных орбиталей взаимодействующих атомов.

Степень перекрывания и прочность связи зависит от энергетического и геометрического соответствия орбиталей. При прочих равных условиях прочность связи увеличивается с уменьшением разности энергии взаимодействующих орбиталей и увеличением плотности электронного облака:

1s - 1s > 1s - 2s > 1s - 3s 1s - 1s > 2s - 2s > 3s - 3s

Необходимым условием эффективного перекрывания орбиталей является надлежащая их ориентация в пространстве и совпадение математического знака волновой функции:

Эффективное перекрывание Нулевое перекрывание Неэффективное перекрывание

Выделяют два механизма образования общей электронной пары - обменный и донорно-акцепторный. При реализации обменного механизма каждый из взаимодействующих атомов предоставляет на образование общей электронной пары неспаренный электрон, занимающий валентную орбиталь:



При образовании ковалентной связи по донорно-акцепторному механизму один из атомов (D) выступает в качестве донора, предоставляя в общее пользование неподеленную пару электронов, расположенную на одной из его валентных орбиталей. Второй атом - акцептор (А) - предоставляет на образование связи вакантную орбиталь, принимая на нее электронную пару партнера-донора:

По числу общих электронных пар, связывающих атомы, различают простые, двойные и тройные связи:

H 2 N: NH 2 или H 2 N-NH 2 HN:: NH или HN=NH N::: N или NºN

Известны немногочисленные примеры соединений, содержащих четырехкратные связи металл-металл, например,

По характеру перекрывания электронных орбиталей выделяют три типа ковалентной связи:

s-Связь ,при образовании которой перекрывание орбиталей происходит вдоль линии связи (линии, соединяющей ядра взаимодействующих атомов).

p-Связь ,при образовании которой перекрывание орбиталей происходит в плоскости, содержащей линию связи (боковое перекрывание).

d-Связь ,при образовании которой перекрывание орбиталей происходит в плоскости, перпендикулярной линии связи.

Физическими характеристиками химической связи и молекулярной частицы являются энергия связи, длина связи и валентный угол, а также полярность и поляризуемость. Энергия химической связи - это количество энергии, необходимое для ее разрыва . Такое же количество энергии выделяется при образовании связи. Так энергия диссоциации молекулы водорода составляет 435 кДж/моль, соответственно, E H-H = 435 кДж/моль. Расстояние между ядрами химически связанных атомов называется длиной связи . Измеряется длина связи в нм (нанометр, 1×10 -9 м) или пм (пикометр, 1×10 -12 м). Угол между условными линиями, соединяющими ядра химически связанных атомов (линиями связи) , называется валентным . Например, молекула воды имеет угловую форму

с валентным углом НОН 104,5° и длиной связей О-Н 96 пм. Энергия, необходимая для полной диссоциации молекулы, т.е. для осуществления процесса H 2 O ® 2H + O, составляет 924 кДж/моль, средняя энергия связи О-Н равна 462 кДж/моль (924/2).

В том случае, когда ковалентная связь образуется атомами с одинаковой электроотрицательностью, общая электронная пара в равной мере принадлежит обоим партнерам. Такая связь называется ковалентной неполярной. Если же атомы, образующие связь, отличаются по электроотрицательности, общая электронная пара смещена к атому с большей электроотрицательностью. Образующаяся связь называется ковалентной полярной. Вследствие несимметричного распределения электронной плотности двухатомные молекулы с ковалентной полярной связью представляют собой диполи - электронейтральные частицы, центры тяжести положительного и отрицательного заряда в которых не совпадают . При написании формул полярность ковалентной связи передают несколькими способами:

Количественной характеристикой полярности связи является ее дипольный момент, точнее электрический момент диполя:

где q e - заряд электрона, l - длина связи.

Единицей измерения дипольного момента является Кл×м (SI) или внесистемная единица - Дебай (D = 3,34×10 -30 Кл×м). Дипольный момент молекулы определяется как векторная сумма дипольных моментов ее связей и неподеленных электронных пар. Вследствие этого молекулярные частицы, имеющие одинаковую форму, но связи разной полярности, могут иметь различные дипольные моменты. Например:

m = 1,47 D m = 0,2 D

Важной характеристикой ковалентной связи, в значительной мере определяющей ее реакционную способность, является поляризуемость - способность связи изменять полярность (перераспределять электронную плотность) под действием внешнего электростатического поля, источником которого могут служить катализатор, реагент, растворитель и т.д. Наведенный диполь частицы связан с напряженностью внешнего поля (Е ) простым соотношением: m = aЕ . Коэффициент пропорциональности a является количественной характеристикой поляризуемости.

Ковалентная связь обладает двумя важнейшими свойствами - насыщаемостью и направленностью. Насыщаемость ковалентной связи заключается в том, что атомы способны к образовании конечного числа ковалентных связей. Причиной насыщаемости ковалентной связи является ограниченное число валентных орбиталей атома, необходимых для образования связи как по обменному, так и по донорно-акцепторному механизму.

Количественно насыщаемость ковалентной связи характеризуется ковалентностью. Ковалентность (структурная валентность - v) равна числу ковалентных связей, образованных атомом как по обменному, так и по донорно-акцепторному механизму.

Зная число орбиталей на валентных электронных уровнях, можно рассчитать максимальную теоретически возможную валентность для элементов разных периодов. У атомов элементов первого периода на валентном (первом) уровне находится только одна орбиталь (1s), поэтому водород во всех своих соединениях одновалентен. Гелий, атом которого имеет полностью завершенный первый уровень, химических соединений не образует.

У элементов второго периода валентным является второй энергетический уровень, содержащий четыре орбитали - 2s, 2p x , 2p y , 2p z . По этой причине максимальная ковалентность элементов второго периода равна четырем. Например, для азота:

v N = 3; v N = 4

Направленность ковалентной связи обусловлена стремлением атомов образовать связи в направлении наибольшего перекрывания орбиталей, что обеспечивает максимальный выигрыш энергии. Это приводит к тому, что молекулы, образованные с участием ковалентных связей, имеют строго определенную форму. Например, образование связей сера - водород в молекуле сероводорода происходит за счет перекрывания электронных облаков 1s-орбиталей атомов водорода и двух 3p-орбиталей атома серы, расположенных под прямым углом друг к другу. Вследствие этого молекула сероводорода имеет угловую форму и валентный угол HSH, близкий к 90°.

Поскольку форму ряда молекул нельзя объяснить образованием ковалентных связей с участием стандартного набора атомных орбиталей, Л. Полинг разработал теорию гибридизации атомных орбиталей. Согласно этой теории процесс образования молекулярной частицы сопровождается выравниваем длины и энергии ковалентных связей за счет процесса гибридизации атомных орбиталей, который можно представить как смешивание волновых функций базисных атомных орбиталей с образованием нового набора эквивалентных орбиталей. Процесс гибридизации требует затраты энергии, но образование связей с участием гибридных орбиталей энергетически выгодно, так как обеспечивает более полное перекрывание электронных облаков и минимальное отталкивание образующихся общих электронных пар. Условием устойчивой гибридизации является близость исходных атомных орбиталей по энергии. При этом, чем меньше энергия электронного уровня, тем более устойчивой является гибридизация.

Наиболее простой является sp-гибридизация , которая реализуется при смешивании волновых функций s- и одной р-орбитали:

Образующиеся sp-гибридные орбитали ориентированы по одной оси в разные стороны, что обеспечивает минимальное отталкивание электронных пар, поэтому угол между связями, образованными с участием данных орбиталей составляет 180°.

Участие в гибридизации s- и двух p-орбиталей приводит к образованию трех гибридных орбиталей (sp 2 -гибридизация ), ориентированных от центра к вершинам правильного треугольника. Валентный угол между связями, образованными с участием гибридных орбиталей данного типа составляет 120°.

sp 3 -Гибридизация приводит к образованию набора из четырех энергетически равноценных орбиталей, ориентированных от центра к вершинам тетраэдра под углом 109,5° по отношению друг к другу:

Рассмотрим в качестве примера строение некоторых молекул, образованных с участием sp 3 -гибридных орбиталей.

Молекула метана - CH 4

Из энергетической диаграммы атома углерода следует, что имеющихся двух неспаренных электронов недостаточно для образования четырех ковалентных связей по обменному механизму, поэтому образование молекулы метана происходит с участием атома углерода в возбужденном состоянии.

Равноценность связей и тетраэдрическая геометрия молекулы метана указывает на образование связей с участием sp 3 -гибридных орбиталей центрального атома.

Молекула аммиака - NH 3

Атомные орбитали азота в молекуле аммиака находятся в состоянии sp 3 -гибридизации. Три орбитали задействованы в образовании связей азот - водород, а четвертая - содержит неподеленную электронную пару, поэтому молекула имеет пирамидальную форму. Отталкивающее действие неподеленной пары электронов приводит к уменьшению валентного угла от ожидаемого 109,5 до 107,3°.

Наличие у атома азота неподеленной электронной пары позволяет ему образовать еще одну ковалентную связь по донорно-акцепторному механизму. Таким образом происходит образование молекулярного катиона аммония - NH 4 + . Образование четвертой ковалентной связи приводит к выравниванию валентных углов (a = 109,5°) за счет равномерного отталкивания атомов водорода:

Симметричность катиона аммония, а также геометрическая и энергетическая равноценность связей азот-водород свидетельствует об эквивалентности ковалентных связей, образованных по обменному и донорно-акцепторному механизму.

Молекула воды - H 2 O

Образование молекулы воды происходит с участием sp 3 -гибридных орбиталей атома кислорода, две из которых заняты неподеленными электронными парами и поэтому вклада в геометрию молекулы не вносят. Перекрывание одноэлектронных облаков двух гибридных орбиталей кислорода и 1s-орбиталей двух атомов водорода приводит к образованию уголковой молекулы. Отталкивающие действие двух неподеленных пар электронов уменьшает валентный угол HOH до 104,5°.

Наличие двух неподеленных пар электронов позволяет молекуле воды образовывать еще одну связь кислород - водород по донорно-акцепторному механизму, присоединяя катион водорода и образуя молекулярный катион гидроксония:

H 2 O + H + ® H 3 O +

Рассмотренные примеры иллюстрируют преимущества метода ВС, в первую очередь, его наглядность и простоту рассмотрения строения молекулы на качественном уровне. Присущи методу ВС и недостатки:

· Метод ВС не позволяет описать образование одноэлектронных связей, например, в молекулярном катионе Н 2 + .

· Метод ВС не позволяет описать образование делокализованных многоцентровых связей. Для описания молекул с делокализованными связями в рамках метода ВС вынуждено прибегают к специальному приему - резонансу валентных схем . Согласно концепции резонанса строение молекул такого типа передается не одной формулой, а наложением нескольких валентных схем (формул). Например, строение молекулы азотной кислоты, содержащей делокализованную трехцентровую связь

в методе ВС передается наложением (резонансом) двух валентных схем:

· Метод валентных связей не всегда адекватно отражает физические свойства молекул, в частности, их магнитное поведение. Например, согласно методу ВС, молекула кислорода должна быть диамагнитной, поскольку все электроны в ней спарены. Реально же молекула кислорода представляет собой бирадикал и является парамагнитной.

· Метод ВС не может объяснить спектры поглощения и окраску веществ, поскольку не рассматривает возбужденные состояния молекул.

· Математический аппарат метода валентных связей довольно сложен и громоздок.

Литература: с. 109 - 135; с. 104 - 118; с. 70 - 90


Атом кислорода

Рис. 4.13. Возникновение водородной связи в молекуле воды

Водородная связь, в значительной мере, определяет свойства спиртов, карбоновых кислот, сложных эфиров, белков и некоторых других органических веществ.

Для объяснения строение и свойств молекул с ковалентной связью используются два метода: метод валентных связей (ВС) и метод молекулярных орбиталей (ММО) . Рассмотрим один из них.

1. По методу ВС химическая связь между двумя атомами возникает в результате перекрывания атомных орбиталей (АО) с образованием общих электронных пар.

2. Возникающая при этом зона повышенной электронной плотности локализована между двумя атомами. Такая связь является двухцентровой и двухэлектронной.

3. Связь может образоваться только при взаимодействии электронов с различными значениями спиновых квантовых чисел (антипараллельными спинами).

4. Характер перекрывания атомных орбиталей определяют такие параметры химической связи, как энергия связи, длина связи, полярность, валентные углы между связями.

5. Ковалентная связь направлена в сторону максимального перекрывания атомных орбиталей взаимодействующих атомов.

В образовании ковалентной связи могут принимать участие АО как одинаковой, так и различной симметрии.

При перекрывании АО вдоль линии соединения центров атомов образуется s-связь (рис. 4.14-4.16).


Рис. 4.14. Образование s-связи при перекрывании двух s -атомных орбиталей

Рис. 4.15. Образование s-связи при перекрывании двух p -атомных орбиталей

Рисунки орбиталей с сайта http://w.w.w.hybridation.ru/site/htm

Рис. 4.16. Образование s-связи при перекрывании двух d - атомных орбиталей

Если при перекрывании атомных орбиталей зона повышенной электронной плотности возникает по обе стороны от линии соединения центров атомов, то образуется p-связь (рис. 4.17 и рис. 4.18).

Рис. 4.17. Образование p-связи при перекрывании двух p -атомных орбиталей

Рис. 4.18. Образование p-связи при перекрывании двух d -атомных орбиталей

Если между двумя атомами в молекуле возникают кратные связи (двойные или тройные), одна из связей будет s-связью , т.е образована перекрыванием электронных облаков вдоль оси, соединяющей центры атомов, а все остальные - p-связями , т.е образованы перекрыванием электронных облаков по обе стороны оси, соединяющей центры атомов.



В молекуле этилена С 2 Н 4 между атомами углерода имеется двойная связь СН 2 =СН 2 . Одна из них, более прочная, является σ-связью, вторая, менее прочная, является p-связью.

В линейной молекуле ацетилена Н-С≡С-Н (Н: С::: С: Н) имеются σ-связи между атомами углерода и водорода. Атомы углерода связаны одной σ-связью и двумя π-связями. Следует заметить, что энергия двойной и тройной связей больше, чем энергия одинарной связи, а длина, соответственно, меньше.


4.9. Представление о гибридизации атомных орбиталей.

Рассмотрим строение молекулы соединения бериллия с водоро-дом - BeH 2 (гидрид бериллия), в котором водород имеет валентность I , а бериллий валентность II .

Графическое изображение молекулы BeH 2:

H I ― Be II ― H I .

В этом соединении атом водорода 1 H 1s 1 , в котором единственный электрон расположен на сферической атомной орбитали, соединяется с атомом бериллия.


Электронно-графическая формула атома водорода:

Форма орбитали атома водорода:

Электронная формула атома бериллия: 4 Bе 1s 2 2s 2

Как видно из электронно-графической формулы, атом бериллия не имеет неспаренных электронов и валентность бериллия в основном состоянии равна нулю. Валентность, равную двум, атом бериллия, проявляет в возбужденном состоянии - 4 Bе٭ 1s 2 2s 1 2р 1:


S p

s

Таким образом, у атома бериллия в образовании химической связи должны были бы участвовать электроны, находящиеся на двух разных атомных орбиталях - 2s и 2p и имеющих различную форму и различную энергию. Однако, энергии каждой из двух связей в мо-лекуле BeH 2 имеют одинаковые значения. Выравнивание энергий различных атомных орбиталей обусловлено явлением гибридиза- ции .

Гибридизация это явление, при котором из двух или большего числа атомных орбиталей различных энергий и различной формы образуется такое же число видоизмененных орбиталей, обладающих одинаковой энергией.

В нашем случае, в гибридизации участвуют атомные орбитали одного s - и одного p -электронов sp -гибридизация (рис. 4.19).

s- орбиталь p -орбиталь две sp -гибридных орбитали

Рис. 4.19. Формы исходных и гибридизованных орбиталей атома бериллия.

При такой гибридизации образуются 2 гибридные орбитали, которые расположены на одной оси и ориентированы друг к другу под углом 180° (рис. 4.20).


Рис. 4.20. Расположение двух и sp- гибридизованных орбиталей в пространстве.

Такое расположение гибридных орбиталей определяет линейную форму молекулы. Две сферических орбитали двух атомов водорода перекрываются с двумя sp -гибридными орбиталями бериллия (рис. 4.21).

Рис. 4.21. Перекрывание атомных орбиталей в молекуле BeH 2

Примеры химических соединений, для которых характерна sp-гибридизация: BeCl 2 , BeH 2 , CO, CO 2 , HCN. Также sp -гибридизация наблюдается во всех ацетиленовых углеводородах (алкинах) и некоторых других органических соединениях.

В sp 2 -гибридизации участвуют атомные орбитали одного s - и двух p -электронов (рис. 4.22).

s-орбиталь две p- орбитали три sp 2 -гибридных орбитали

Рис. 4.22. Формы орбиталей при sp 2 -гибридизации.

В результате гибридизации образуются три гибридные sp 2 -орби-тали, расположенные в одной плоскости под углом 120° друг к другу (рис. 4.23).

120 0

Рис. 4.23. Расположение орбиталей в пространстве при sp 2 - гибридизации.

Форма молекулы, имеющей три гибридные sp 2 -орбитали представляет собой плоский треугольник. Такую форму имеет, например, молекула хлорида алюминия AlCl 3 . Схема перекрывания электронных орбиталей в этой молекулы показана на рис. 4.24.

Примерами других соединений, в которых имеет место sp 2 -гиб-ридизация, являются молекулы:BCl 3 , SO 3 , BF 3 и ионы: , . Кроме того, sp 2 -гибридизация характерна для всех этиленовых углеводородов (алкенов), карбоновых кислот, ароматических углеводородов (аренов) и других органических соединений.

Рис. 4.24. Перекрывание атомных орбиталей в молекуле AlCl 3

Например в молекуле этилена (C 2 H 4), оба атома углерода, находящиеся в возбужденном состоянии (sp 2 -гибридизация) связаны друг с другом двойными химическими связями, образуя одну σ-связь и одну π-связь. Еще по две σ-связи каждый атом углерода образует при соединении с атомами водорода.

В sp 3 -гибридизации принимают участие одна s - и три p - атомные орбитали (рис.4.25).

Рис. 4.25. Образование sp 3 -гибридных орбиталей.

Из четырех обычных атомных орбиталей образуется такое же число видоизмененных гибридных орбиталй, которые симметрично ориентированны в пространстве под углом 109°28". Пространственная конфигурация молекулы, центральный атом которой образован sp 3 -гибридными орбиталями – тетраэдр.

Схема перекрывания электронных облаков в молекуле метана (CH 4), в которой атом углерода находится в sp 3 -гибридизации представлена на рис. 4.26.

Примеры соединений, для которых характерна sp 3 -гибридизация: NH 3 , POCl 3 , SO 2 F 2 , SOBr 2 , NH 4+ , H 3 O + . Также sp 3 -гибридизация наблюдается во всех предельных углеводородах (алканы, циклоалканы), некоторых других органических соединениях.

Рис. 4.26. Схема перекрывания электронных облаков в молекуле метана CH 4

Следует иметь в виду, что не всегда пространственная конфигурация молекулы, имеющей sp 3 тип гибридизации соответствует тетраэдру.

Например, в молекуле аммиака (NH 3) валентность атома азота равна III и его пять электронов внешнего уровня занимают четыре орбитали (одну s и три p ). Все они принимают участие в гибридизации (тип гибридизации – sp 3), но только три орбитали (р -орбитали) принимают участие в образовании химической связи. Тетраэдр без одной вершины превращается в пирамиду. Поэтому у молекулы аммиака форма молекулы пирамидальная, угол связи искажается до 107°30′. Аналогичные рассуждения о строении молекулы воды (H 2 O) приводят нас к тому, что кислород находится в sp 3 гибридном состоянии, а форма молекулы угловая, угол связи составляет 104°27′.

Понятие о методе молекулярных орбиталей (МО)

Метод валентных связей (ВС), несмотря на наглядность, не является универсальным. Он удовлетворительно применим только к описанию связи в соединениях элементов I и II периодов. Причина в том, что химическая связь представляется как результат взаимодействия только валентной пары электронов. Взаимодействие остальных электронов не учитывается. С увеличением количества электронов все больше сказывается это неучтенное взаимодействие, что приводит к несоответствию теоретических представлений метода ВС и экспериментальных данных.

Примеры такого несоответствия есть уже в I и II периодах. Установлено существование молекулярного иона водорода Н^, состоящего из двух ядер и единственного электрона. Связь, следовательно, образована одним электроном, а не парой, как предполагает метод ВС. Молекула кислорода 0 2 , как показывают магнитные измерения, имеет два неспаренных электрона. Однако согласно методу ВС в молекуле 0 2 должна быть двойная связь и не может быть неспаренных электронов.

Эти и многие другие необъяснимые с позиций метода ВС «парадоксы» легко объясняются методом МО. Молекула в методе МО рассматривается как единая система из электронов и ядер, в которой каждый электрон движется в поле остальных электронов и ядер. В молекуле нет атомов, электроны принадлежат не отдельным ядрам, а молекуле в целом. Квантовомеханические закономерности атома перенесены на молекулу: в молекуле существуют МО, молекулярные уровни и подуровни, характеризующиеся молекулярными квантовыми числами; соблюдаются принцип наименьшей энергии, принцип Паули и правило Хунда.

Молекулярные орбитали в отличие от атомных орбиталей (АО) многоцентровые, поэтому имеют более сложную форму. По аналогии с АО (s , р, d,f) МО обозначаются соответствующими греческими буквами а, тс, 5,

В простейшем приближении молекулярные орбитали можно представить в виде конструкций из орбиталей исходных атомов, полученных как линейные комбинации атомных орбиталей (МО Л КАО). При этом исходные АО должны быть близки по энергии и обладать одинаковой симметрией относительно оси молекулы. Количество образующихся МО равно количеству исходных АО.

Рассмотрим образование молекулы водорода Н 2 . Из двух Is-АО двух атомов Н образуются две МО молекулы Н 2 . Волновая функция одной из них является линейной комбинацией АО с одинаковыми знаками, принадлежавших атомам Н (А) и Н (В) :

где Cj и С 2 - нормировочные множители (для гомоядерной молекулы

«1= СУСуммирование волновых функций с одинаковыми знаками приводит к увеличению электронной плотности между ядрами и образованию химической связи. Такая орбиталь называется связывающей (o l5). Она имеет меньшую энергию, чем исходные АО. Связывающая электронная плотность расположена по линии, соединяющей ядра, поэтому такая орбиталь обозначается сг ь.

где С 3 и С 4 - нормировочные множители (для гомоядерной молекулы С 3 = С 4).

Волновая функция второй МО является линейной комбинацией АО с противоположными знаками:

Электронная плотность между ядрами уменьшается и в определенной точке равна нулю. Такая орбиталь имеет большую энергию по сравнению с исходными АО. Она не обеспечивает связи и называется разрыхляющей (a ls *). Формы ст, 5 *- и о, 5 -орбиталей приведены на рис. 3.19.


Рис. 3.19.

По принципу наименьшей энергии в первую очередь заполняется связывающая ст^-орбиталь. Согласно запрету Паули на ней может быть два электрона с противоположными спинами. Поэтому оба электрона в молекуле Н 2 располагаются на связывающей орбитали, а разрыхляющая остается вакантной. Энергетическая диаграмма молекулы Н 2 представлена на рис. 3.20, а. В центре диаграммы представлены МО, а по краям - АО исходных атомов.

Разность между энергией исходных АО и связывающей МО (энергия связывания Е св) примерно равна разности между энергией разрыхляющей МО и исходными АО (энергия разрыхления Е ). Вопрос об устойчивости молекулы сводится к энергетическому балансу всех связывающих и разрыхляющих электронов: количество электронов на связывающих орбиталях должно быть больше, чем на разрыхляющих.


Рис. 3.20. Энергетические диаграммы молекул и ионов: а -Н 2 ;б -Н 2 + ;в -Н 2

Образованию одинарной связи соответствует избыточная пара электронов на связывающих орбиталях. Кратность связи (КС) в методе МО определяется как количество избыточных пар электронов на связывающих орбиталях (л св) по сравнению с разрыхляющими

Электронную формулу молекулы Н 2 записывают следующим образом: 2H->H 2 [(a lj) 2 ].

Объяснение образования молекулярного иона Н 2 с помощью метода МО не вызывает затруднений: единственный электрон идет на а ь -орбиталь (см. рис. 3.20, б). Кратность связи У 2 . Электронная фор- мула: Н + + H -» НJ [(1s)‘ ].

Возможно существование и другого молекулярного иона водорода Н^: H“ + H^H2[(a ls) 2 (a* li) 1 ]. Третий электрон поступает на разрыхляющую орбиталь (см. рис. 3.20, в). Кратность связи

Изоэлектронным иону Н 2 должен быть ион Не 2 с КС = 1 / 2: Не + + He -> Не 2 + [(а ь Я(а 1 *) 1 ]. Действительно, такой ион существует.

Известно, что гелий не образует двухатомных молекул. Это находится в соответствии с представлениями метода МО. В гипотетической молекуле Не 2 количество электронов на связывающих и разрыхляющих МО было бы одинаковым: 2He -> Не 2 [(о ь) 2 (ст*) 2 ]. Выигрыша энергии при ее образовании нет. Формальная кратность связи равна нулю.

Аналогичный подход применяется для анализа двухатомных го- моядерных молекул и ионов других s-элементов. Во II периоде, например, существует молекула Li 2 [(aj .) 2 (a 1 *) 2 (a 2i) 2 ], но не существует

Для атомов элементов II периода валентными, кроме 2s-, являются 2р х ~, 2р у - и 2/> г -орбитали. Они имеют одинаковую энергию, т.е. /ьорбитали трехкратно вырождены. При образовании химических связей вырождение частично снимается. Если в молекуле типа А 2 за ось х выбрать линию, проходящую через ядра атомов, то комбинация 2/^-орбиталей приводит к образованию двух a-орбиталей: связывающей и разрыхляющей с 2р? Комбинация 2/? г -орбиталей приводит к образованию связывающей и разрыхляющей орбиталей л-типа: л и л * 2р. Аналогичные МО (п 2р и п* 2р ) образуются при комбинации 2/уорбиталей. Они отличаются от л 2р и л 2р лишь положением в пространстве - поворотом на 90° вокруг оси х. Формы связывающих и разрыхляющих МО, образованных из 2/ьАО, представлены на рис. 3.21.


Рис. 3.21. Комбинация 2р-орбиталей в молекуле типа а - су 2р1 б - к 2р

Орбитали п 2р и п 2р имеют одинаковую энергию, то есть двукратно вырождены. Поскольку a-связь прочнее л-связи, связывающие а-ор- битали имеют меньшую энергию, чем связывающие л-орбитали (рис. 3.22, б). Однако это справедливо только для двухатомных гомо- ядерных молекул конца периода. Для них возрастание энергии и, соответственно, заполнение МО следуют в таком порядке:

Электроны на a 2s - и -орбиталях взаимно отталкиваются. При энергетической близости is- и 2/ьорбиталей, характерной для начала периода, это приводит к тому, что п 2р - и п 2 -орбитали становятся энергетически более выгодными, чем с 2р -орбиталь. Порядок заполнения МО соответственно изменяется:

Это наблюдается для двухатомных гомоядерных молекул начала периода вплоть до N 2 (рис. 3.22, а).


Рис. 3.22. Энергетические диаграммы соединений типа А 2: а - N 2 ; б - 0 2 (1s- и 2s-A0 и g 1s - ct* s - cr 2s -, cj 2s - МО не приведены)

Рассмотрим образование молекулы N 2 . Шесть 2р-электронов двух атомов азота переходят на три связывающие орбитали (рис. 3.22, а). Электронная формула молекулы имеет вид:

В молекуле отсутствуют неспаренные электроны. Кратность

связи КС =- = 3.

Последние электроны располагаются на связывающих орбиталях. Удаление электрона с них приводит к уменьшению кратности и энергии связи. Поэтому энергия связи в ионе N 2 меньше, чем в молекуле N 2 .

В молекуле 0 2 (рис. 3.22, б) последние два электрона заполняют разрыхляющие орбитали:

причем располагаются по правилу Хунда по одному на двух орбиталях. Поэтому в молекуле 0 2 два неспаренных электрона. Кратность

связи КС = --- = 2. Отрыв электрона от молекулы происходит с

разрыхляющей орбитали, кратность и энергия связи при этом увеличиваются. Поэтому ион OJ прочней, чем молекула 0 2

В двухатомных гетероядерных молекулах перекрывание АО возможно только при условии близости их энергий. Тем не менее энергии взаимодействующих АО различны, различен и их относительный вклад в образование МО, что отражается нормировочными множителями: Cj ф С 2 в уравнении (3.11) и С 3 ф С 4 в уравнении (4.12). Связывающая МО ближе по энергии к АО более электроотрицательного атома, а разрыхляющая - к АО менее электроотрицательного (рис. 3.23). Полярность связи в молекуле определяется различием энергии исходных АО, причем величина b пропорциональна полярной составляющей связи, а величина а - ковалентной.


Рис. 3.23.

Рассмотрим в качестве примера молекулу монооксида углерода СО. С помощью метода ВС связь можно представить как тройную, которую составляют две связи, образованные по обменному механизму, и одна по донорно-акцепторному:


Молекула СО изоэлектронна молекуле азота N 2 , поэтому форма записи электронных формул этих молекул согласно методу МО одинакова:


Рис. 3.24.

Энергетические диаграммы СО и N 2 также похожи между собой (рис. 3.24 и рис. 3.22, а).

Отличие состоит в том, что в связывающие орбитали больший вклад вносят орбитали кислорода, более электроотрицательного атома, а в разрыхляющие - орбитали углерода, менее электроотрицательного атома.

Кратность связи, как и согласно методу ВС, равна трем. Но, используя МО, нет необходимости прибегать к объяснению связей с помощью двух механизмов: обменного и донорно-акцепторного.

Наличие двух методов описания химической связи, ВС и МО, свидетельствует о несовершенстве современных представлений о химической связи. В тех случаях, когда оба эти метода применимы, они дают сходный результат. Однако существуют специфические вопросы, на которые может дать ответ лишь один из них. Тем не менее справедливо считать, что эти квантовомеханические методы не исключают, а взаимно дополняют друг друга.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...