Математический смысл интеграла. Функция F(x) называется первообразной для функции f(x), если F`(x)=f(x) или dF(x)=f(x)dx

Вычисление площади является основным в теории площадей. Возникает вопрос о ее нахождении, когда фигура имеет неправильную форму или необходимо прибегнуть к ее вычислению через интеграл.

Данная статья рассказывает о вычислении площади криволинейной трапеции по геометрическому смыслу. Это позволяет выявлять связь между интегралом и площадью криволинейной трапеции. Если дана функция f (x) , причем непрерывная на интервале [ a ; b ] , знак перед выражением не меняется.

Yandex.RTB R-A-339285-1 Определение 1

Фигура, обозначенная как G , ограничена линиями вида y = f (x) , y = 0 , x = a и x = b , называется криволинейной трапецией . Она принимает обозначение S (G) .

Рассмотрим на рисунке, приведенном ниже.

Для вычисления криволинейно трапеции необходимо разбить отрезок [ a ; b ] на количество n частей x i - 1 ; x i , i = 1 , 2 , . . . , n с точками, определенными на a = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b , причем дать обозначение λ = m a x i = 1 , 2 , . . . , n x i - x i - 1 с точками x i , i = 1 , 2 , . . . , n - 1 . Необходимо выбрать так, чтобы λ → 0 при n → + ∞ , тогда фигуры, которые соответствуют нижней и верхней частям Дарбу, считаются входящей Р и объемлющей Q многоугольными фигурами для G . Рассмотрим рисунок, приведенный ниже.

Отсюда имеем, что P ⊂ G ⊂ Q , причем при увеличении количества точек разбиения n , получим неравенство вида S - s < ε , где ε является малым положительным числом, s и S являются верхними и нижними суммами Дабру из отрезка [ a ; b ] . Иначе это запишется как lim λ → 0 S - s = 0 . Значит, при обращении к понятию определенного интеграла Дарбу, получим, что lim λ → 0 S = lim λ → 0 s = S G = ∫ a b f (x) d x .

Из последнего равенства получим, что определенный интеграл вида ∫ a b f (x) d x является площадью криволинейной трапеции для заданной непрерывной функции вида y = f (x) . Это и есть геометрический смысл определенного интеграла.

При вычислении ∫ a b f (x) d x получим площадь искомой фигуры, которая ограничивается линиями y = f (x) , y = 0 , x = a и x = b .

Замечание: Когда функция y = f (x) является неположительной из отрезка [ a ; b ] , тогда получаем, что площадь криволинейной трапеции вычисляется, исходя из формулы S (G) = - ∫ a b f (x) d x .

Пример 1

Вычислить площадь фигуры, которая ограничена заданными линиями вида y = 2 · e x 3 , y = 0 , x = - 2 , x = 3 .

Решение

Для того, чтобы решить, необходимо для начал построить фигуру на плоскости, где имеется прямая y = 0 , совпадающая с О х, с прямыми вида x = - 2 и x = 3 , параллельными оси о у, где кривая y = 2 · e x 3 строится при помощи геометрических преобразований графика функции y = e x . Построим график.

Отсюда видно, что необходимо найти площадь криволинейной трапеции. Вспоминая геометрический смысл интеграла, получаем, что искомая площадь и будет выражена определенным интегралом, который необходимо разрешить. Значит, необходимо применить формулу S (G) = ∫ - 2 3 2 · e x 3 d x . Такой неопределенный интеграл вычисляется, исходя из формулы Ньютона-Лейбница

S (G) = ∫ - 2 3 2 · e x 3 d x = 6 · e x 3 - 2 3 = 6 · e 3 3 - 6 · e - 2 3 = 6 · e - e - 2 3

Ответ: S (G) = 6 · e - e - 2 3

Замечание: Для нахождения площади криволинейной трапеции не всегда можно построить фигуру. Тогда решение выполняется следующим образом. При известной функции f (x) неотрицательной или неположительной на отрезке [ a ; b ] , применяется формула вида S G = ∫ a b f (x) d x или S G = - ∫ a b f (x) d x .

Пример 2

Произвести вычисление площади, ограниченной линиями вида y = 1 3 (x 2 + 2 x - 8) , y = 0 , x = - 2 , x = 4 .

Решение

Для построения этой фигуры получим, что у = 0 совпадает с О х, а х = - 2 и х = 4 являются параллельными О у. График функции y = 1 3 (x 2 + 2 x - 8) = 1 3 (x + 1) 2 - 3 - это парабола с координатами точки (- 1 ; 3) , являющейся ее вершиной с направленными вверх ветвями. Чтобы найти точки пересечения параболы с О х, необходимо вычислить:

1 3 (x 2 + 2 x - 8) = 0 ⇔ x 2 + 2 x - 8 = 0 D = 2 2 - 4 · 1 · (- 8) = 36 x 1 = - 2 + 36 2 = 2 , x 2 = - 2 - 36 2 = - 4

Значит, парабола пересекает ох в точках (4 ; 0) и (2 ; 0) . Отсюда получим, что фигура, обозначенная как G , получит вид, изображенный на рисунке ниже.

Данная фигура не является криволинейной трапецией, потому как функция вида y = 1 3 (x 2 + 2 x - 8) изменяет знак на промежутке [ - 2 ; 4 ] . Фигура G может быть представлена в виде объединений двух криволинейных трапеций G = G 1 ∪ G 2 , исходя из свойства аддитивности площади, имеем, что S (G) = S (G 1) + S (G 2) . Рассмотрим график, приведенный ниже.

Отрезок [ - 2 ; 4 ] считается неотрицательной областью параболы, тогда отсюда получаем, что площадь будет иметь вид S G 2 = ∫ 2 4 1 3 (x 2 + 2 x - 8) d x . Отрезок [ - 2 ; 2 ] неположительный для функции вида y = 1 3 (x 2 + 2 x - 8) , значит, исходя из геометрического смысла определенного интеграла, получим, что S (G 1) = - ∫ - 2 2 1 3 (x 2 + 2 x - 8) d x . Необходимо произвести вычисления по формуле Ньютона-Лейбница. Тогда определенный интеграл примет вид:

S (G) = S (G 1) + S (G 2) = - ∫ - 2 2 1 3 (x 2 + 2 x - 8) d x + ∫ 2 4 1 3 (x 2 + 2 x - 8) d x = = - 1 3 x 3 3 + x 2 - 8 x - 2 2 + 1 3 x 3 3 + x 2 - 8 x 2 4 = = - 1 3 2 3 3 + 2 2 - 8 · 2 - - 2 3 3 + (- 2) 2 - 8 · (- 2) + + 1 3 4 3 3 + 4 3 - 8 · 4 - 2 3 3 + 2 2 - 8 · 2 = = - 1 3 8 3 - 12 + 8 3 - 20 + 1 3 64 3 - 16 - 8 3 + 12 = 124 9

Стоит отметить, что нахождение площади не верно по принципу S (G) = ∫ - 2 4 1 3 (x 2 + 2 x - 8) d x = 1 3 x 3 3 + x 2 - 8 x - 2 4 = = 1 3 4 3 3 + 4 3 - 8 · 4 - - 2 3 3 + - 2 2 - 8 · - 2 = 1 3 64 3 - 16 + 8 3 - 20 = - 4

Так как полученное число является отрицательным и представляет собой разность S (G 2) - S (G 1) .

Ответ: S (G) = S (G 1) + S (G 2) = 124 9

Если фигуры ограничены линиями вида y = c , y = d , x = 0 и x = g (y) , а функция равна x = g (y) , причем непрерывна и имеет неменяющийся знак на промежутке [ c ; d ] , то их называют криволинейными тарпециями.Рассмотримна рисунке, приведенном ниже.

Определение 2

∫ c d g (y) d y заключается в том, что его значением является площадь криволинейной трапеции для непрерывной и неотрицательной функции вида x = g (y) , расположенной на интервале [ c ; d ] .

Пример 3

Произвести вычисление фигуры, которая ограничена осью ординат и линиями x = 4 ln y y + 3 , y = 1 , y = 4 .

Решение

Построение графика x = 4 ln y y + 3 не является простым. Поэтому необходимо решить без чертежа. Вспомним, что функция определена для всех положительных значений y . Рассмотрим значения функции, имеющиеся на отрезке [ 1 ; 4 ] . По свойствам элементарных функций знаем, что логарифмическая функция возрастает на всей области определения. Тогда не отрезке [ 1 ; 4 ] является неотрицательной. Значит имеем, что ln y ≥ 0 . Имеющееся выражение ln y y , определенное на том же отрезке, неотрицательно. Можно сделать вывод, что функция x = 4 ln y y + 3 является положительной на интервале, равном [ 1 ; 4 ] . Получаем, что фигура на этом интервале является положительной. Тогда ее площадь должна вычисляться по формуле S (G) = ∫ 1 4 4 ln y y + 3 d y .

Необходимо произвести вычисление неопределенного интеграла. Для этого необходимо найти первообразную функции x = 4 ln y y + 3 и применить формулу Ньютона-Лейбница. Получаем, что

∫ 4 ln y y + 3 d y = 4 ∫ ln y y d y + 3 ∫ d y = 4 ∫ ln y d (ln y) + 3 y = = 4 ln 2 y 2 + 3 y + C = 2 ln 2 y + 3 y + C ⇒ S (G) = ∫ 1 4 4 ln y y + 3 d y = 2 ln 2 + y + 3 y 1 4 = = 2 ln 2 4 + 3 · 4 - (2 ln 2 1 + 3 · 1) = 8 ln 2 2 + 9

Рассмотрим чертеж, приведенный ниже.

Ответ: S (G) = 8 ln 2 2 + 9

Итоги

В данной статье мы выявили геометрический смысл определенного интеграла и изучили связь с площадью криволинейной трапеции. Отсюда следует, что мы имеем возможность вычислять площадь сложных фигур при помощи вычисления интеграла для криволинейной трапеции. В разделе нахождения площадей и фигур, которые ограниченными линиями y = f (x) , x = g (y) , данные примеры рассмотрены подробно.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Рассмотрим движение точки вдоль прямой. Пусть за время t от начала движения точка прошла путь s(t). Тогда мгновенная скорость v(t) равна производной функции s(t), то есть v(t) = s"(t).

В практике встречается обратная задача: по заданной скорости движения точки v(t) найти пройденный ею путь s(t) , то есть найти такую функцию s(t), производная которой равна v(t) . Функцию s(t), такую, что s"(t) = v(t) , называют первообразной функции v(t).

Например, если v(t) = аt , где а – заданное число, то функция
s(t) = (аt 2) / 2 v(t), так как
s"(t) = ((аt 2) / 2) " = аt = v(t).

Функция F(x) называется первообразной функции f(x) на некотором промежутке, если для всех х из этого промежутка F"(x) = f(x).

Например, функция F(x) = sin x является первообразной функции f(x) = cos x, так как (sin x)" = cos x ; функция F(x) = х 4 /4 является первообразной функции f(x) = х 3 , так как (х 4 /4)" = х 3 .

Рассмотрим задачу.

Задача .

Доказать, что функции х 3 /3, х 3 /3 + 1, х 3 /3 – 4 являются первообразной одной и той же функции f(x) = х 2 .

Решение .

1) Обозначим F 1 (x) = х 3 /3, тогда F" 1 (x) = 3 ∙ (х 2 /3) = х 2 = f(x).

2) F 2 (x) = х 3 /3 + 1, F" 2 (x) = (х 3 /3 + 1)" = (х 3 /3)" + (1)"= х 2 = f(x).

3) F 3 (x) = х 3 /3 – 4, F" 3 (x) = (х 3 /3 – 4)" = х 2 = f(x).

Вообще любая функция х 3 /3 + С, где С – постоянная, является первообразной функции х 2 . Это следует из того, что производная постоянной равна нулю. Этот пример показывает, что для заданной функции ее первообразная определяется неоднозначно.

Пусть F 1 (x) и F 2 (x) – две первообразные одной и той же функции f(x).

Тогда F 1 "(x) = f(x) и F" 2 (x) = f(x).

Производная их разности g(х) = F 1 (x) – F 2 (x) равна нулю, так как g"(х) = F" 1 (x) – F" 2 (x) = f(x) – f(x) = 0.

Если g"(х) = 0 на некотором промежутке, то касательная к графику функции у = g(х) в каждой точке этого промежутка параллельна оси Ох. Поэтому графиком функции у = g(х) является прямая, параллельная оси Ох, т.е. g(х) = С, где С – некоторая постоянная. Из равенств g(х) = С, g(х) = F 1 (x) – F 2 (x) следует, что F 1 (x) = F 2 (x) + С.

Итак, если функция F(x) является первообразной функции f(x) на некотором промежутке, то все первообразные функции f(x) записываются в виде F(x) + С, где С – произвольная постоянная.

Рассмотрим графики всех первообразных заданной функции f(x). Если F(x) – одна из первообразных функции f(x), то любая первообразная этой функции получается прибавлением к F(x) некоторой постоянной: F(x) + С. Графики функций у = F(x) + С получаются из графика у = F(x) сдвигом вдоль оси Оу. Выбором С можно добиться того, чтобы график первообразной проходил через заданную точку.

Обратим внимание на правила нахождения первообразных.

Вспомним, что операцию нахождения производной для заданной функции называют дифференцированием . Обратную операцию нахождения первообразной для данной функции называют интегрированием (от латинского слова «восстанавливать» ).

Таблицу первообразных для некоторых функций можно составить, используя таблицу производных. Например, зная, что (cos x)" = -sin x, получаем (-cos x)" = sin x , откуда следует, что все первообразные функции sin x записываются в виде -cos x + С , где С – постоянная.

Рассмотрим некоторые значения первообразных.

1) Функция: х р, р ≠ -1 . Первообразная: (х р+1) / (р+1) + С.

2) Функция: 1/х, х > 0. Первообразная: ln x + С.

3) Функция: х р, р ≠ -1 . Первообразная: (х р+1) / (р+1) + С.

4) Функция: е х . Первообразная: е х + С.

5) Функция: sin x . Первообразная: -cos x + С.

6) Функция: (kx + b) p , р ≠ -1, k ≠ 0. Первообразная: (((kx + b) p+1) / k(p+1)) + С.

7) Функция: 1/(kx + b), k ≠ 0 . Первообразная: (1/k) ln (kx + b)+ С.

8) Функция: е kx + b , k ≠ 0 . Первообразная: (1/k) е kx + b + С.

9) Функция: sin (kx + b), k ≠ 0 . Первообразная: (-1/k) cos (kx + b) .

10) Функция: cos (kx + b), k ≠ 0. Первообразная: (1/k) sin (kx + b).

Правила интегрирования можно получить с помощью правил дифференцирования . Рассмотрим некоторые правила.

Пусть F(x) и G(x) – первообразные соответственно функций f(x) и g(x) на некотором промежутке. Тогда:

1) функция F(x) ± G(x) является первообразной функции f(x) ± g(x);

2) функция аF(x) является первообразной функции аf(x).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Этот урок — первый из серии видео, посвященных интегрированию. В нём мы разберём, что такое первообразная функции, а также изучим элементарные приёмы вычисления этих самых первообразных.

На самом деле здесь нет ничего сложного: по существу всё сводится к понятию производной, с которым вы уже должны знакомы.:)

Сразу отмечу, что, поскольку это самый первый урок в нашей новой теме, сегодня не будет никаких сложных вычислений и формул, но то, что мы изучим сегодня, ляжет в основу гораздо более сложных выкладок и конструкций при вычислении сложных интегралов и площадей.

Кроме того, приступая к изучению интегрирования и интегралов в частности, мы неявно предполагаем, что ученик уже, как минимум, знаком к понятиям производной и имеет хотя бы элементарные навыки их вычисления. Без четкого понимания этого, делать в интегрировании совершенно нечего.

Однако здесь же кроется одна из самых частых и коварных проблем. Дело в том, что, начиная вычислять свои первые первообразные, многие ученики путают их с производными. В результате на экзаменах и самостоятельных работах допускаются глупые и обидные ошибки.

Поэтому сейчас я не буду давать четкого определения первообразной. А взамен предлагаю вам посмотреть, как она считается на простом конкретном примере.

Что такое первообразная и как она считается

Мы знаем такую формулу:

\[{{\left({{x}^{n}} \right)}^{\prime }}=n\cdot {{x}^{n-1}}\]

Считается эта производная элементарно:

\[{f}"\left(x \right)={{\left({{x}^{3}} \right)}^{\prime }}=3{{x}^{2}}\]

Посмотрим внимательно на полученное выражение и выразим ${{x}^{2}}$:

\[{{x}^{2}}=\frac{{{\left({{x}^{3}} \right)}^{\prime }}}{3}\]

Но мы можем записать и так, согласно определению производной:

\[{{x}^{2}}={{\left(\frac{{{x}^{3}}}{3} \right)}^{\prime }}\]

А теперь внимание: то, что мы только что записали и есть определением первообразной. Но, чтобы записать ее правильно, нужно написать следующее:

Аналогично запишем и такое выражение:

Если мы обобщим это правило, то сможем вывести такую формулу:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

Теперь мы можем сформулировать четкое определение.

Первообразной функции называется такая функция, производная которой равна исходной функции.

Вопросы о первообразной функции

Казалось бы, довольно простое и понятное определение. Однако, услышав его, у внимательного ученика сразу возникнет несколько вопросов:

  1. Допустим, хорошо, эта формула верна. Однако в этом случае при $n=1$ у нас возникают проблемы: в знаменателе появляется «ноль», а на «ноль» делить нельзя.
  2. Формула ограничивается только степенями. Как считать первообразную, например, синуса, косинуса и любой другой тригонометрии, а также констант.
  3. Экзистенциальный вопрос: а всегда ли вообще можно найти первообразную? Если да, то как быть с первообразной суммы, разности, произведения и т.д.?

На последний вопрос я отвечу сразу. К сожалению, первообразная, в отличие от производной, считается не всегда. Нет такой универсальной формулы, по которой из любой исходной конструкции мы получим функцию, которая будет равна этой сходной конструкции. А что касается степеней и констант — сейчас мы об этом поговорим.

Решение задач со степенными функциями

\[{{x}^{-1}}\to \frac{{{x}^{-1+1}}}{-1+1}=\frac{1}{0}\]

Как видим, данная формула для ${{x}^{-1}}$ не работает. Возникает вопрос: а что тогда работает? Неужели мы не можем посчитать ${{x}^{-1}}$? Конечно, можем. Только давайте для начала вспомним такое:

\[{{x}^{-1}}=\frac{1}{x}\]

Теперь подумаем: производная какой функции равна $\frac{1}{x}$. Очевидно, что любой ученик, который хоть немного занимался этой темой, вспомнит, что этому выражению равна производная натурального логарифма:

\[{{\left(\ln x \right)}^{\prime }}=\frac{1}{x}\]

Поэтому мы с уверенностью можем записать следующее:

\[\frac{1}{x}={{x}^{-1}}\to \ln x\]

Эту формулу нужно знать, точно так же, как и производную степенной функции.

Итак, что нам известно на данный момент:

  • Для степенной функции — ${{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}$
  • Для константы — $=const\to \cdot x$
  • Частный случай степенной функции — $\frac{1}{x}\to \ln x$

А если простейшие функции мы начнем умножать и делить, как тогда посчитать первообразную произведения или частного. К сожалению, аналогии с производной произведения или частного здесь не работают. Какой-либо стандартной формулы не существует. Для некоторых случаев существуют хитрые специальные формулы — с ними мы познакомимся на будущих видеоуроках.

Однако запомните: общей формулы, аналогичной формуле для вычисления производной частного и произведения, не существует.

Решение реальных задач

Задача № 1

Давайте каждую из степенных функций посчитаем отдельно:

\[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

Возвращаясь к нашему выражению, мы запишем общую конструкцию:

Задача № 2

Как я уже говорил, первообразные произведений и частного «напролом» не считаются. Однако здесь можно поступить следующим образом:

Мы разбили дробь на сумму двух дробей.

Посчитаем:

Хорошая новость состоит в том, что зная формулы вычисления первообразных, вы уже способны считать более сложные конструкции. Однако давайте пойдем дальше и расширим наши знания еще чуть-чуть. Дело в том, что многие конструкции и выражения, которые, на первый взгляд, не имеют никакого отношения к ${{x}^{n}}$, могут быть представлены в виде степени с рациональным показателем, а именно:

\[\sqrt{x}={{x}^{\frac{1}{2}}}\]

\[\sqrt[n]{x}={{x}^{\frac{1}{n}}}\]

\[\frac{1}{{{x}^{n}}}={{x}^{-n}}\]

Все эти приемы можно и нужно комбинировать. Степенные выражения можно

  • умножать (степени складываются);
  • делить (степени вычитаются);
  • умножать на константу;
  • и т.д.

Решение выражений со степенью с рациональным показателем

Пример № 1

Посчитаем каждый корень отдельно:

\[\sqrt{x}={{x}^{\frac{1}{2}}}\to \frac{{{x}^{\frac{1}{2}+1}}}{\frac{1}{2}+1}=\frac{{{x}^{\frac{3}{2}}}}{\frac{3}{2}}=\frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

\[\sqrt{x}={{x}^{\frac{1}{4}}}\to \frac{{{x}^{\frac{1}{4}}}}{\frac{1}{4}+1}=\frac{{{x}^{\frac{5}{4}}}}{\frac{5}{4}}=\frac{4\cdot {{x}^{\frac{5}{4}}}}{5}\]

Итого всю нашу конструкцию можно записать следующим образом:

Пример № 2

\[\frac{1}{\sqrt{x}}={{\left(\sqrt{x} \right)}^{-1}}={{\left({{x}^{\frac{1}{2}}} \right)}^{-1}}={{x}^{-\frac{1}{2}}}\]

Следовательно, мы получим:

\[\frac{1}{{{x}^{3}}}={{x}^{-3}}\to \frac{{{x}^{-3+1}}}{-3+1}=\frac{{{x}^{-2}}}{-2}=-\frac{1}{2{{x}^{2}}}\]

Итого, собирая все в одно выражение, можно записать:

Пример № 3

Для начала заметим, что $\sqrt{x}$ мы уже считали:

\[\sqrt{x}\to \frac{4{{x}^{\frac{5}{4}}}}{5}\]

\[{{x}^{\frac{3}{2}}}\to \frac{{{x}^{\frac{3}{2}+1}}}{\frac{3}{2}+1}=\frac{2\cdot {{x}^{\frac{5}{2}}}}{5}\]

Перепишем:

Надеюсь, я никого не удивлю, если скажу, что то, что мы только что изучали — это лишь самые простые вычисления первообразных, самые элементарные конструкции. Давайте сейчас рассмотрим чуть более сложные примеры, в которых помимо табличных первообразных еще потребуется вспомнить школьную программу, а именно, формулы сокращенного умножения.

Решение более сложных примеров

Задача № 1

Вспомним формулу квадрата разности:

\[{{\left(a-b \right)}^{2}}={{a}^{2}}-ab+{{b}^{2}}\]

Давайте перепишем нашу функцию:

Первообразную такой функции нам сейчас предстоит найти:

\[{{x}^{\frac{2}{3}}}\to \frac{3\cdot {{x}^{\frac{5}{3}}}}{5}\]

\[{{x}^{\frac{1}{3}}}\to \frac{3\cdot {{x}^{\frac{4}{3}}}}{4}\]

Собираем все в общую конструкцию:

Задача № 2

В этом случае нам нужно раскрыть куб разности. Вспомним:

\[{{\left(a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}\cdot b+3a\cdot {{b}^{2}}-{{b}^{3}}\]

С учетом этого факта можно записать так:

Давайте немного преобразуем нашу функцию:

Считаем как всегда — по каждому слагаемому отдельно:

\[{{x}^{-3}}\to \frac{{{x}^{-2}}}{-2}\]

\[{{x}^{-2}}\to \frac{{{x}^{-1}}}{-1}\]

\[{{x}^{-1}}\to \ln x\]

Запишем полученную конструкцию:

Задача № 3

Сверху у нас стоит квадрат суммы, давайте его раскроем:

\[\frac{{{\left(x+\sqrt{x} \right)}^{2}}}{x}=\frac{{{x}^{2}}+2x\cdot \sqrt{x}+{{\left(\sqrt{x} \right)}^{2}}}{x}=\]

\[=\frac{{{x}^{2}}}{x}+\frac{2x\sqrt{x}}{x}+\frac{x}{x}=x+2{{x}^{\frac{1}{2}}}+1\]

\[{{x}^{\frac{1}{2}}}\to \frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

Давайте напишем итоговое решение:

А теперь внимание! Очень важная вещь, с которой связана львиная доля ошибок и недопониманий. Дело в том, что до сих пор считая первообразные с помощью производных, приводя преобразования, мы не задумывались о том, чему равна производная константы. А ведь производная константы равна «нулю». А это означает, что можно записать такие варианты:

  1. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}$
  2. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+1$
  3. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+C$

Вот это очень важно понимать: если производная функции всегда одна и та же, то первообразных у одной и той же функции бесконечно много. Просто к нашим первообразным мы можем дописывать любые числа-константы и получать новые.

Неслучайно, в пояснении к тем задачам, которые мы только что решали, было написано «Запишите общий вид первообразных». Т.е. уже заранее предполагается, что их не одна, а целое множество. Но, на самом деле, они отличаются лишь константой $C$ в конце. Потому в наших задачах мы исправим то, что мы не дописали.

Еще раз переписываем наши конструкции:

В таких случаях следует дописывать, что $C$ — константа — $C=const$.

Во второй нашей функции мы получим следующую конструкцию:

И последняя:

И вот теперь мы действительно получили то, что от нас требовалось в исходном условии задачи.

Решение задач на нахождение первообразных с заданной точкой

Сейчас, когда мы знаем о константах и об особенностях записи первообразных, вполне логично возникает следующий тип задач, когда из множества всех первообразных требуется найти одну-единственную такую, которая проходила бы через заданную точку. В чем состоит эта задача?

Дело в том, что все первообразные данной функции отличаются лишь тем, что они сдвинуты по вертикали на какое-то число. А это значит, что какую бы точку на координатной плоскости мы не взяли, обязательно пройдет одна первообразная, и, причем, только одна.

Итак, задачи, которые сейчас мы будем решать, сформулированы следующем образом: не просто найти первообразную, зная формулу исходной функции, а выбрать именно такую из них, которая проходит через заданную точку, координаты которой будут даны в условии задачи.

Пример № 1

Для начала просто посчитаем каждое слагаемое:

\[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

\[{{x}^{3}}\to \frac{{{x}^{4}}}{4}\]

Теперь подставляем эти выражения в нашу конструкцию:

Эта функция должна проходить через точку $M\left(-1;4 \right)$. Что значит, что она проходит через точку? Это значит, что если вместо $x$ поставить везде $-1$, а вместо $F\left(x \right)$ — $-4$, то мы должны получить верное числовое равенство. Давайте так и сделаем:

Мы видим, что у нас получилось уравнение относительно $C$, поэтому давайте попробуем его решить:

Давайте запишем то самое решение, которое мы искали:

Пример № 2

В первую очередь необходимо раскрыть квадрат разности по формуле сокращенного умножения:

\[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

Исходная конструкция запишется следующим образом:

Теперь давайте найдем $C$: подставим координаты точки $M$:

\[-1=\frac{8}{3}-12+18+C\]

Выражаем $C$:

Осталось отобразить итоговое выражение:

Решение тригонометрических задач

В качестве финального аккорда к тому, что мы только что разобрали, предлагаю рассмотреть две более сложные задачи, в которых содержится тригонометрия. В них точно так же потребуется найти первообразные для всех функций, затем выбрать из этого множества одну-единственную, которая проходит через точку $M$ на координатной плоскости.

Забегая наперед, хотел бы отметить, что тот прием, который мы сейчас будем использовать для нахождения первообразных от тригонометрических функций, на самом деле, является универсальным приемом для самопроверки.

Задача № 1

Вспомним следующую формулу:

\[{{\left(\text{tg}x \right)}^{\prime }}=\frac{1}{{{\cos }^{2}}x}\]

Исходя из этого, мы можем записать:

Давайте подставим координаты точки $M$ в наше выражение:

\[-1=\text{tg}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}+C\]

Перепишем выражение с учетом этого факта:

Задача № 2

Тут будет чуть сложнее. Сейчас увидите, почему.

Вспомним такую формулу:

\[{{\left(\text{ctg}x \right)}^{\prime }}=-\frac{1}{{{\sin }^{2}}x}\]

Чтобы избавится от «минуса», необходимо сделать следующее:

\[{{\left(-\text{ctg}x \right)}^{\prime }}=\frac{1}{{{\sin }^{2}}x}\]

Вот наша конструкция

Подставим координаты точки $M$:

Итого запишем окончательную конструкцию:

Вот и все, о чем я хотел сегодня вам рассказать. Мы изучили сам термин первообразных, как считать их от элементарных функций, а также как находить первообразную, проходящую через конкретную точку на координатной плоскости.

Надеюсь, этот урок хоть немного поможет вам разобраться в этой сложной теме. В любом случае, именно на первообразных строятся неопределенные и неопределенные интегралы, поэтому считать их совершенно необходимо. На этом у меня все. До новых встреч!

Документ

Некотором промежутке Х. Если для любого хХ F"(x) = f(x), то функция F называется первообразной для функции f на промежутке Х. Первообразную для функции можно попытаться найти...

  • Первообразной для функции

    Документ

    ... . Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех x(a;b) выполняется равенство F(x) = f(x). Например, для функции x2 первообразной будет функция x3 ...

  • Основы интегрального исчисления Учебное пособие

    Учебное пособие

    ... ; 5. Найти интеграл. ; B) ; C) ; D) ; 6. Функция называется первообразной к функции на множестве, если: для всех; в некоторой точке; для всех; в некоторой... интервалом. Определение 1. Функция называется первообразной для функции на множестве, ...

  • Первообразная Неопределённый интеграл

    Документ

    Интегрирования. Первообразная . Непрерывная функция F (x) называется первообразной для функции f (x) на промежутке X , если для каждого F’ (x) = f (x). П р и м е р. Функция F (x) = x 3 является первообразной для функции f (x) = 3x ...

  • СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ СССР Утверждено Учебно-методическим управлением по высшему образованию ВЫСШАЯ МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ (С ПРОГРАММОЙ) для студентов-заочников инженерно-технических специальностей

    Методические указания

    Вопросы для самопроверки Дайте определение первообразной функции . Укажите геометрический смысл совокупности первообразных функций . Что называется неопределенным...



  • Последние материалы раздела:

    Важность Патриотического Воспитания Через Детские Песни
    Важность Патриотического Воспитания Через Детские Песни

    Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

    Изменение вида звездного неба в течение суток
    Изменение вида звездного неба в течение суток

    Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

    Развитие критического мышления: технологии и методики
    Развитие критического мышления: технологии и методики

    Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...