Момент импульса векторная величина. И.С

а относительно неподвижной точки 0 называется физическая величина, равная векторному произведению

где - радиус-вектор проведенный из точки 0 в точку а,
- импульс материальной точки.

Направление вектора совпадает с направлением поступательного движения правого винта при его вращении отк. Модуль вектора момента импульса

где - угол между векторамии,- плечо вектораотносительно точки 0. Моментом импульса системы материальных точек относительно неподвижной точки 0 называется векторная сумма моментов импульсов всех материальных точек системы относительно той же точки 0

(22)

7. Момент импульса относительно неподвижной осиz.

Моментом импульса материальной точки а относительно неподвижной осиzназывается скалярная величина, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки 0 данной оси. Значение момента импульса не зависит от положения точки 0 на осиz.

Рассмотрим вращение твердого тела вокруг неподвижной оси z(О-О 1). Каждая точка твердого тела описывает горизонтальную окружность радиусасо скоростью. Скорость.и импульс
перпендикулярны этому радиусу, поэтомурадиус является плечом вектора
(угол=90 0). Момент импульса каждой точки твердого тела относительно осиzравен

(23)

и направлен по оси в сторону, определяемую правилом правого винта. Моменты импульса всех точек твердого тела будут сонаправлены, поэтому момент импульса твердого тела относительно оси есть сумма моментов импульсов отдельных частиц

то есть все точки твердого тела вращаются с одинаковой угловой скоростью, то wможно вынести за знак суммы

,

.
.

Момент импульса твердого тела относительно оси вращения равен произведению момента инерции тела относительно той же оси на угловую скорость.

Лекция 6. Уравнения динамики вращательного движения.

1. Закон сохранения момента импульса.

Продифференцируем момент импульса по времени

Величина есть скорость материальной точки, связанная с ее импульсом соотношением
. Поэтому первое слагаемое
равно нулю как векторное произведение коллинеарных векторови
, (
) Второе слагаемое можно преобразовать с помощью уравнения Ньютона

.

. (1)

Это уравнение моментов относительно неподвижной точки. Производная по времени момента импульса материальной точки (относительно неподвижной точки) равна моменту силы относительно этой же точки.

Уравнение моментов (1) можно обобщить на случай произвольной системы материальных точек. Пусть система состоит из nматериальных точек вращающихся вокруг центра 0.

…………………….

где
- момент внутренних сил,
- момент внешних сил.

По третьему закону Ньютона
= 0, так как внутренние силы входят попарно, сила с которой одно тело действует на другое равно и противоположно направлена сила с которой второе тело действует на первое. Полный момент этих сил равен нулю (см. рис.)

Исходя из этого уравнение примет вид

,

где
- момент импульса системы материальных точек.

=
- момент всех сил действующих на систему материальных точек.

(2)

Основной закон динамики вращательного движения для системы материальных точек. Производная по времени от момента импульса системы материальных точек относительно неподвижной точки равна геометрической сумме моментов всех внешних сил относительно этой точки .

Если момент всех внешних сил относительно неподвижной точки равен нулю, то момент импульса системы относительно той же неподвижной точки остается постоянным во времени.

и
или(3)

Выражение (3) – математическая запись закона сохранения момента импульса. Если мы продифференцируем по времени момент импульса относительно неподвижной оси, то получим уравнение моментов относительно неподвижной оси

(4)

Как было показано ранее, момент импульса твердого тела относительно оси вращения равен

.

Если момент инерции при вращении остается постоянным, то

,

где
- угловое ускорение. Тогда

(5).

Произведение момента инерции твердого тела относительно оси вращения на угловое ускорение равно моменту внешних сил относительно той же оси.

Уравнение (5) – основное уравнение динамики вращательного движения вокруг неподвижной оси. Оно напоминает уравнение Ньютона для поступательного движения.

Роль массы mиграет момент инерцииJ, роль скоростиv– угловая скоростьw, роль с илыF– момент силыM, роль импульсаp– момент импульсаL. Момент импульсаLчасто называют вращательным импульсом системы.

Если момент внешних сил M z относительно оси вращения равен нулю, то вращательный импульс сохраняется:

(6)

Продемонстрировать закон сохранения импульса можно с помощью скамьи Жуковского. Скамья Жуковского представляет собой стул, сиденье которого имеет форму диска. Диск может свободно вращаться вокруг вертикальной оси на шариковых подшипниках.

Человек, оттолкнувшись ногой от пола, приводит скамью во вращение. Вместе со скамьей будет вращаться и он сам. Во время вращения момент импульса системы скамья плюс человек будет оставаться постоянным, какие бы внутренние движения не совершались в системе.

Если человек разведет руки в стороны, то он увеличит момент инерции системы J, а потому угловая скорость вращенияwдолжна уменьшиться, чтобы оставался неизменным вращательный импульсL=Jw(см рис 1а и 1б)

Рис.1а. L=J 1 w 1 Рис.1бL=J 2 w 2

J 1 w 1 =J 2 w 2 (J 2 >J 1, w 2

Если человек, стоя на неподвижной скамье Жуковского, начинает делать конические движения над головой, скамья начинает вращаться в другую сторону (рис.2).

Общий момент импульса системы остается равным нулю.

Когда винт судна начинает вращаться, по закону сохранения момента импульса системы, корпус судна должен вращаться в противоположную сторону. В обычных условиях это не страшно, но в критических ситуациях (сильная боковая волна, легкое судно) может привести к опрокидыванию судна. Эта же ситуация всегда реализуется и для вертолетов. Чтобы этого не происходило, на хвосте устанавливается другой винт для гашения вращения.

В заключении сопоставим основные величины и уравнения определяющие вращение тела им его поступательное движение.

Поступательное движение

Вращательное движение

Масса m

Скорость v = dr / dt

Ускорение a = dv / dt

Сила F

Импульс p = mv

Основное уравнение динамики F = ma

F = dp / dt

Работа dA = F ds

Кинетическая энергия mv 2 /2

Момент инерции J

Угловая скорость w = / dt

Угловое ускорение ε = dw / dt

Момент силы M = Fr

Момент импульса L = Jw

Основное уравнение динамики M =

M = dL / dt

Работа вращения dA = Mdφ

Кинетическая энергия вращения Jw 2 /2

Момент импульса тела относительно неподвижной оси вращения

Определение

Момент импульса - векторная физическая величина характеризующая импульс, численно равная векторному произведению
Момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.
Момент импульса замкнутой системы сохраняется.
Эта величина называется моментом импульса относительно оси.

Закон сохранения момента импульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем. В упрощённом виде: , если система находится в равновесии.

Сначала дадим определение изотропности , чтобы продвинуться далее в изучении.

Изотропность — одно из ключевых свойств пространства в классической механике. Пространство называется изотропным, если поворот системы отсчета на произвольный угол не приведет к изменению результатов измерений.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.
Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства - его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.

Пример

Справедливость закона сохранения момента импульса относительно неподвижной оси вращения можно продемонстрировать на опыте со скамьей Жуковского. Скамьей Жуковского называется горизонтальная площадка, свободно вращающаяся без трения вокруг неподвижной вертикальной оси. Человек, стоящий или сидящий на скамье, держит в вытянутых руках гимнастические гантели и приводится во вращение вместе со скамьей вокруг оси с угловой скоростью ω1 . Приближая гантели к себе, человек уменьшает момент инерции системы, а так как момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость ее вращения ω2 возрастает.

Момент импульса относится к фундаментальным, основополагающим законам природы. Он непосредственно связан со свойствами симметрии пространства физического мира, в котором мы все живем. Благодаря закону своего сохранения, момент импульса определяет привычные для нас физические законы перемещения материальных тел в пространстве. Данной величиной характеризуется количество поступательного или вращательного движения.

Момент импульса, также называемый "кинетическим", "угловым" и "орбитальным", является важной характеристикой, зависящей от массы материального тела, особенностей ее распределения относительно воображаемой оси обращения и скорости перемещения. Здесь следует уточнить, что в механике вращение имеет более широкую трактовку. Даже мимо некой произвольно лежащей в пространстве точки можно считать вращательным, принимая ее за воображаемую ось.

Момент импульса и законы его сохранения были сформулированы Рене Декартом применительно к поступательно движущейся системе Правда, о сохранении типа он не упоминал. Лишь столетие спустя Леонардом Эйлером, а затем другим швейцарским ученым, физиком и математиком при изучении вращения материальной системы вокруг неподвижной центральной оси был сделан вывод, что и для такого вида перемещения в пространстве действует данный закон.

Дальнейшие исследования полностью подтвердили, что при отсутствии внешнего воздействия сумма произведения массы всех точек на общую скорость системы и расстояния до центра вращения остается неизменной. Несколько позднее французским ученым Патриком Дарси эти слагаемые были выражены через площади, заметаемые радиус-векторами за одинаковый период времени. Это позволило связать момент импульса материальной точки с некоторыми известными постулатами небесной механики и, в частности, с важнейшим положением о движении планет

Момент импульса твердого тела - третья динамическая переменная, к которой применимы положения фундаментального закона сохранения. Он гласит о том, что независимо от характера и при отсутствии внешнего воздействия данная величина в изолированной материальной системе всегда будет оставаться неизменной. Этот физический показатель может подвергнуться каким-либо изменениям только в случае наличия ненулевого момента воздействующих сил.

Из данного закона также следует, что если М = 0, любое изменение расстояния между телом (системой материальных точек) и центральной осью вращения непременно вызовет увеличение или уменьшение скорости его обращения вокруг центра. Например, гимнастка, выполняющая сальто, чтобы произвести в воздухе несколько оборотов, изначально свертывает свое тело в клубок. А балерины или фигуристки, вращаясь в пируэте, разводят руки в стороны, если хотят замедлить движение, и, наоборот, прижимают их к корпусу, когда стараются кружиться с большей скоростью. Таким образом, в спорте и искусстве используются фундаментальные законы природы.

Пусть твёрдое тело вращается вокруг закреплённой оси z с угловой скоростью . Для нахождения момента импульса тела рассматриваем его как механическую систему материальных точек. Мысленно разобьём тело на элементарные части массой Dm i , которые можно принять за материальные точки. Очевидно, что момент импульса тела относительно оси равен векторной сумме отдельных элементарных частей тела относительно той же оси. При вращении тела все его точки движутся по окружностям различного радиуса R i , плоскости которых перпендикулярны к оси вращения. Поэтому моменты импульсов всех элементарных частей тела, согласно правилу правого винта, направлены в одну сторону вдоль оси вращения. Тогда векторное сложение заменяется скалярным, т.е.

Используя формулу (7), имеем: где ¾ модуль линейной скорости i -ой части. Но u i = wR i . Поэтому , и с учётом выражения (9) Поскольку все точки тела обладают одинаковой угловой скоростью w, то её выносим за знак суммы: Так как ¾ момент инерции тела, то L z = I z w. Запишем это выражение в векторном виде:

Итак, момент импульса твёрдого телаотносительно оси вращения равен произведению момента инерции тела относительно той же оси на его угловую скорость . Направление , как и направление , находят по правилу правого винта.

АНАЛОГИЯ МЕЖДУ ВРАЩАТЕЛЬНЫМ И ПОСТУПАТЕЛЬНЫМ ДВИЖЕНИЕМ

Рассмотрев поступательное и вращательное движения можно установить аналогию между ними. В кинематике поступательного движения используются путь s , скорость u и ускорение а . Их роль во вращательном движении играют угол поворота j, угловая скорость w и угловое ускорение ε. В динамике поступательного движения применяются понятия силы , массы т и импульса Во вращательном движении роль силы играет момент силы, роль массы - момент инерции I z и роль импульса - момент импульса Зная формулы поступательного движения легко записать формулы вращательного движения. Например, скорость и ускорение тела при поступательном движении вычисляются по формулам и Тогда угловая скорость и угловое ускорении при вращательном движении находится по формулам и При поступательном движении импульс тела равен Поэтому при вращательном движении момент импульса равен Эту аналогию можно продолжать и дальше.

ОСНОВНОЙ ЗАКОН ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЁРДОГО ТЕЛА

Пусть тело с моментом инерции I z вращается относительно оси z под действием равнодействующего момента сил. Запишем второй закон Ньютона, являющимся основным законом динамики поступательного движения: и Здесь и т - ускорение и масса тела, - импульс тела и - равнодействующая сил, приложенных к телу. Тогда, пользуясь аналогией между поступательным и вращательным движениями, получаем две записи основного закона динамики вращательного движения:

(11) (12)

Их формулировка: угловое ускорение, приобретаемое телом, пропорционально моменту внешних сил, приложенных к нему, относительно оси вращения, и обратно пропорционально моменту инерции тела относительно той же оси.

Момент внешних сил, действующих на тело, относительно оси вращения равен производной по времени от момента импульса тела относительно той же оси. Соотношение (12) является более общей записью основного закона динамики вращательного движения тела, так как оно оказывается справедливым и для тел, у которых момент инерции тела не является постоянной величиной.

Момент импульса в классической механике

Связь между импульсом и моментом

Определение

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса :

где - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, - импульс частицы.

Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:

где - радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.

(В пределе количество частиц может быть бесконечным, например, в случае твердого тела с непрерывно распределенной массой или вообще распределенной системы это может быть записано как где - импульс бесконечно малого точечного элемента системы).

Из определения момента импульса следует его аддитивность : как, для системы частиц в частности, так и для системы, состоящей из нескольких подсистем, выполняется:

  • Замечание: в принципе момент импульса может быть вычислен относительно любого начала отсчета (получившиеся при этом разные значения связаны очевидным образом); однако чаще всего (для удобства и определенности) его вычисляют относительно центра масс или закрепленной точки вращения твердого тела итп).

Вычисление момента

Так как момент импульса определяется векторным произведением , он является псевдовектором , перпендикулярным обоим векторам и . Однако, в случаях вращения вокруг неизменной оси, бывает удобно рассматривать не момент импульса как псевдовектор, а его проекцию на ось вращения как скаляр , знак которого зависит от направления вращения. Если выбрана такая ось, проходящая через начало отсчёта, для вычисления проекции углового момента на неё можно указать ряд рецептов в соответствии с общими правилами нахождения векторного произведения двух векторов.

где - угол между и , определяемый так, чтобы поворот от к производился против часовой стрелки с точки зрения наблюдателя, находящегося на положительной части оси вращения. Направление поворота важно при вычислении, так как определяет знак искомой проекции.

Запишем в виде , где - составляющая радиус-вектора, параллельная вектору импульса, а - аналогично, перпендикулярная ему. является, по сути, расстоянием от оси вращения до вектора , которое обычно называют «плечом». Аналогично можно разделить вектор импульса на две составляющие: параллельную радиус-вектору и перпендикулярную ему . Теперь, используя линейность векторного произведения, а также свойство, согласно которому произведение параллельных векторов равно нулю, можно получить ещё два выражения для .

Сохранение углового момента

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
↕ Трансляции времени …энергии
⊠ , , и -симметрии …чётности
↔ Трансляции пространства Однородность
пространства
…импульса
↺ Вращения пространства Изотропность
пространства
…момента
импульса
⇆ Группа Лоренца Относительность
Лоренц-инвариантность
…4-импульса
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Таким образом, требование замкнутости системы может быть ослаблено до требования равенства нулю главного (суммарного) момента внешних сил:

где - момент одной из сил, приложенных к системе частиц. (Но конечно, если внешние силы вообще отсутствуют, это требование также выполняется).

Математически закон сохранения момента импульса следует из изотропии пространства, то есть из инвариантности пространства по отношению к повороту на произвольный угол. При повороте на произвольный бесконечно малый угол , радиус-вектор частицы с номером изменятся на , а скорости - . Функция Лагранжа системы при таком повороте не изменится, вследствие изотропии пространства. Поэтому

С учетом , где - обобщенный импульс -той частицы, каждое слагаемое в сумме из последнего выражения можно переписать в виде

Теперь, пользуясь свойством смешанного произведения , совершим циклическую перестановку векторов, в результате чего получим, вынося общий множитель:

где, - момент импульса системы. Ввиду произвольности , из равенства следует .

На орбитах момент импульса распределяется между собственным вращением планеты и момента импульса её орбитального движения:

Момент импульса в электродинамике

При описании движения заряженной частицы в электромагнитном поле , канонический импульс не является инвариантным . Как следствие, канонический момент импульса тоже не инвариантен. Тогда берем реальный импульс, который также называется «кинетическим импульсом»:

где - электрический заряд , - скорость света , - векторный потенциал . Таким образом, гамильтониан (инвариантный) заряженной частицы массы в электромагнитном поле:

где - скалярный потенциал . Из этого потенциала следует закон Лоренца. Инвариантный момент импульса или «кинетический момент импульса» определяется:

Момент импульса в квантовой механике

Оператор момента

Вычисление момента импульса в нерелятивистской механике

Если имеется материальная точка массой , двигающаяся со скоростью и находящаяся в точке, описываемой радиус-вектором , то момент импульса вычисляется по формуле:

где - знак векторного произведения .

Чтобы рассчитать момент импульса тела , его надо разбить на бесконечно малые кусочки и векторно просуммировать их моменты как моменты импульса материальных точек, то есть взять интеграл :

Можно переписать это через плотность :



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...