Неполные уравнения плоскости. Уравнение плоскости в отрезках


Все уравнения плоскости, которые разобраны в следующих пунктах могут быть получены из общего уравнения плоскости, а также приведены к общему уравнению плоскости. Таким образом, когда говорят об уравнении плоскости, то имеют в виду общее уравнение плоскости, если не оговорено иное.

Уравнение плоскости в отрезках.

Уравнение плоскости вида , где a , b и c – отличные от нуля действительные числа, называется уравнением плоскости в отрезках .

Такое название не случайно. Абсолютные величины чисел a , b и c равны длинам отрезков, которые отсекает плоскость на координатных осях Ox , Oy и Oz соответственно, считая от начала координат. Знак чисел a , b и c показывает, в каком направлении (положительном или отрицательном) следует откладывать отрезки на координатных осях.

Для примера построим в прямоугольной системе координат Oxyz плоскость, определенную уравнением плоскости в отрезках . Для этого отмечаем точку, удаленную на 5 единиц от начала координат в отрицательном направлении оси абсцисс, на 4 единицы в отрицательном направлении оси ординат и на 4 единицы в положительном направлении оси аппликат. Осталось соединить эти точки прямыми линиями. Плоскость полученного треугольника и есть плоскость, соответствующая уравнению плоскости в отрезках вида .

Для получения более полной информации обращайтесь к статье уравнение плоскости в отрезках , там показано приведение уравнения плоскости в отрезках к общему уравнению плоскости, там же Вы также найдете подробные решения характерных примеров и задач.

Нормальное уравнение плоскости.

Общее уравнение плоскости вида называют нормальным уравнением плоскости , если равна единице, то есть, , и .

Часто можно видеть, что нормальное уравнение плоскости записывают в виде . Здесь - направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , а p – неотрицательное число, равное расстоянию от начала координат до плоскости.

Нормальное уравнение плоскости в прямоугольной системе координат Oxyz определяет плоскость, которая удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости . Если p=0 , то плоскость проходит через начало координат.

Приведем пример нормального уравнения плоскости.

Пусть плоскость задана в прямоугольной системе координат Oxyz общим уравнение плоскости вида . Это общее уравнение плоскости является нормальным уравнением плоскости. Действительно, и нормальный вектор этой плоскости имеет длину равную единице, так как .

Уравнение плоскости в нормальном виде позволяет находить расстояние от точки до плоскости .

Рекомендуем более детально разобраться с данным видом уравнения плоскости, посмотреть подробные решения характерных примеров и задач, а также научиться приводить общее уравнение плоскости к нормальному виду. Это Вы можете сделать, обратившись к статье .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Уравнение поверхности в пространстве

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

Общее уравнение плоскости

Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

где А, В, С - координаты вектора

вектор нормали к плоскости. Возможны следующие частные случаи:

А = 0 - плоскость параллельна оси Ох

В = 0 - плоскость параллельна оси Оу

С = 0 - плоскость параллельна оси Оz

D = 0 - плоскость проходит через начало координат

А = В = 0 - плоскость параллельна плоскости хОу

А = С = 0 - плоскость параллельна плоскости хОz

В = С = 0 - плоскость параллельна плоскости yOz

А = D = 0 - плоскость проходит через ось Ох

В = D = 0 - плоскость проходит через ось Оу

С = D = 0 - плоскость проходит через ось Oz

А = В = D = 0 - плоскость совпадает с плоскостью хОу

А = С = D = 0 - плоскость совпадает с плоскостью xOz

В = С = D = 0 - плоскость совпадает с плоскостью yOz

Уравнение плоскости, проходящей через три точки

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой. Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат. Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны.

Таким образом,

Уравнение плоскости, проходящей через три точки:

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор.

Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору.

Векторы и вектор должны быть компланарны, т.е.

Уравнение плоскости:

Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости

Пусть заданы два вектора и, коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы должны быть компланарны. Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали

Теорема. Если в пространстве задана точка М0(х0, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали (A, B, C) имеет вид:

A(x - x0) + B(y - y0) + C(z - z0) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор. Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору. Тогда скалярное произведение

Таким образом, получаем уравнение плоскости

Теорема доказана.

Рассмотрим ПДСК {O,i ,j ,k } в пространстве R 3 . Пусть  – некоторая плоскость и вектор N перпендикулярен . Зафиксируем на плоскости  произвольную точку М 0 и возьмем текущую точку М пространства.. Обозначим `r =
и`r 0 =
. Тогда
=`r `r 0 , а точка М тогда и только тогда, когда векторы ` N и
ортогональны. Последнее возможно, когда

N .
= 0, т.е.N . (`r – `r 0) = 0, (9)

это уравнение называется векторным уравнением плоскости. Вектор ` N называют нормальным вектором плоскости.

Если ` N =(А , В , С ), М 0 (х 0 , у 0 , z 0) , М(х , у , z ) , то уравнение (9) примет вид

А(х х 0) + В(у у 0) + С(z z 0) = 0, (10).

Это уравнение называют уравнением плоскости, проходящей через заданную точку перпендикулярно заданному вектору.

Как известно, через три точки можно провести единственную плоскость. Пусть М 1 (х 1 , у 1 , z 1), М 3 (х 2 , у 2 , z 2), М 3 (х 3 , у 3 , z 3). Найдем уравнение этой плоскости. Согласно векторному уравнению (9), чтобы записать это уравнение, необходимо знать точку плоскости и нормальный вектор. Точка у нас есть (например М 1). А в качестве нормального вектора подойдет любой вектор, перпендикулярный этой плоскости. Известно, что векторное произведение двух векторов перпендикулярно плоскости, в которой лежат эти векторы. Следовательно, векторное произведение векторов
и
можно взять в качестве нормального вектора плоскости :

` N =

Тогда уравнение плоскости  в векторной форме имеет вид

. (

) =
.
.
= 0.

(заметим, что получили условие компланарности векторов
,
,
).

Через координаты точек М 1 , М 2 , М 3 и М это уравнение запишется так

, (11)

и называется уравнением плоскости, проходящей через три заданные точки М 1 (х 1 , у 1 , z 1), М 2 (х 2 , у 2 , z 2), М 3 (х 3 , у 3 , z 3).

Рассмотрим вновь уравнение (9), преобразуем его:

Ах + Ву + Cz +(–Ах 0 – Ву 0 – Cz 0) = 0 ,

Ах + Ву + Cz +D = 0, где D = (–Ах 0 – Ву 0 – Cz 0) .

Уравнение

Ах + Ву + Cz +D = 0, (12)

называется общим уравнением плоскости. Здесь векторN = (A , B , C ) – нормальный вектор плоскости (т.е. вектор, перпендикулярный плоскости). Справедлива теорема:

Теорема 4.2.

В пространстве R 3 всякая плоскость может быть описана линейным относительно переменных x y , z уравнением и наоборот, любое уравнение первой степени определяет некоторую плоскость.

Изучим расположение плоскости относительно системы координат по ее общему уравнению Ах + Ву + Cz +D = 0 .

Если коэффициент D = 0, то координаты точки О(0, 0, 0) удовлетворяют уравнению Ах + Ву + Cz = 0, значит, эта точка лежит на плоскости, т.е. плоскость с уравнением Ах + Ву + Cz = 0 проходит через начало координат.

Если в общем уравнении плоскости отсутствует одна из переменных (соответствующий коэффициент равен нулю), то плоскость параллельна одноименной оси координат. Например, уравнение Ах + Cz + D = 0 определяет плоскость, параллельную оси ОУ. Действительно, вектор нормали имеет координаты ` N = (А, 0, С) и легко проверить, что ` N j . Но если плоскость и вектор перпендикулярны одному и тому же вектору, то они параллельны. Плоскость с уравнением Ву + Cz = 0, в таком случае, проходит через ось ОХ (т.е. эта ось лежит на плоскости)

Отсутствие двух переменных в уравнении плоскости означает, что плоскость параллельна соответствующей координатной плоскости, например, уравнение вида Ах + D = 0 определяет плоскость, параллельную плоскости УОZ. Вектор нормали имеет координаты ` N = (А, 0, 0), он коллинеарен вектору i , и,следовательно, плоскость перпендикулярна вектору i , или параллельна плоскости УОZ.

Уравнения координатных плоскостей имеют вид: пл. ХОУ: z = 0, пл. XOZ: y = 0, пл. YOZ: x = 0.

Действительно, плоскость ХОУ проходит через начало координат (D = 0) и вектор k =(0, 0, 1) – ее нормальный вектор. Аналогично плоскости ХОZ и УОZ проходят через начало координат(D = 0) и векторы j =(0, 1, 0) и i = (1,0,0) – их нормали соответственно.

Если D0, то преобразуем общее уравнение так

Ах + Ву z = –D ,
,
.

Обозначив здесь
,
,
, получим уравнение
, (13)

которое называется уравнением плоскости в отрезках на осях . Здесь а , b , c – величины отрезков, отсекаемых плоскостью на осях координат (рис.). Это уравнение удобно использовать для построения плоскости в системе координат. Нетрудно убедиться, что точки (а , 0, 0), (0. b , 0), (0, 0, с ) лежат на плоскости. Прямые, проходящие через эти точки, называются следами плоскости на координатных плоскостях.

Например, построим плоскость

2х – 3у + 4z –12 = 0.

Приведем это уравнение к виду (13), получим

Для построения плоскости в системе координат, отметим на оси ОХ точку (6, 0, 0), на оси ОУ точку (0, -4, 0), на оси ОZ – (0, 0, 3), соединим их отрезками прямы (следы плоскости). Полученный треугольник есть часть искомой плоскости, заключенная между осями координат.

Таким образом, чтобы найти уравнение плоскости , достаточно знать

Либо нормальный вектор этой плоскости и любую ее точку (уравнение (10));

Либо три точки, лежащие на плоскости (уравнение (11)).

Взаимное расположение плоскостей в пространстве удобно изучать с помощью соответствующих им векторов. Если  – плоскость с нормальным вектором N, то

.

Вывод формулы аналогичен тому, как это было проделано для прямой на плоскости. Провести его самостоятельно.

В декартовых координатах каждая плоскость определяется уравнением первой степени относительно неизвестных х, у и z и каждое уравнение первой степени с тремя неизвестными определяет плоскость.

Возьмем произвольный вектор с началом в точке . Выведем уравнение геометрического места точек М(x,y,z), для каждой из которых вектор перпендикулярен вектору . Запишем условие перпендикулярности векторов:

Полученное уравнение линейное относительно x, y, z, следовательно, оно определяет плоскость, проходящую через точку перпендикулярно вектору . Вектор называют нормальным вектором плоскости. Раскрывая скобки в полученном уравнении плоскости и обозначая число
буквой D, представим его в виде:

Ax + By + Cz + D = 0. (13.2)

Это уравнение называют общим уравнением плоскости . А, В, С и D – коэффициенты уравнения, А 2 + В 2 + С 2 0.

1. Неполные уравнения плоскости.

Если в общем уравнении плоскости один, два или три коэффициента равны нулю, то уравнение плоскости называют неполным. Могут представиться следующие случаи:

1) D = 0 – плоскость проходит через начало координат;

2) А = 0 – плоскость параллельна оси Ох;

3) В = 0 – плоскость параллельна оси Оу;

4) С = 0 – плоскость параллельна оси Оz;

5) А = В = 0 – плоскость параллельна плоскости ХОY;

6) А = С = 0 – плоскость параллельна плоскости ХОZ;

7) В = С = 0 – плоскость параллельна плоскости YOZ;

8) А = D = 0 – плоскость проходит через ось Ох;

9) В = D = 0 – плоскость проходит через ось Оу;

10) С = D = 0 – плоскость проходит через ось Оz;

11) А = В = D = 0 – плоскость совпадает с плоскостью XOY;

12) А = С = D = 0 – плоскость совпадает с плоскостью XOZ;

13) С = В = D = 0 – плоскость совпадает с плоскостью YOZ.

2. Уравнение плоскости в отрезках.

Если в общем уравнении плоскости D 0, то его можно преобразовать к виду

, (13.3)

которое называют уравнением плоскости в отрезках. - определяют длины отрезков, отсекаемых плоскостью на координатных осях.

3. Нормальное уравнение плоскости.

Уравнение

где - направляющие косинусы нормального вектора плоскости , называют нормальным уравнением плоскости. Для приведения общего уравнение плоскости к нормальному виду его надо умножить на нормирующий множитель :
,

при этом знак перед корнем выбирают из условия .

Расстояние d от точки до плоскости определяют по формуле: .

4. Уравнение плоскости, проходящей через три точки

Возьмем произвольную точку плоскости М(x,y,z) и соединим точку М 1 с каждой из трех оставшихся. Получим три вектора . Для того, чтобы три вектора принадлежали одной плоскости, необходимо и достаточно, чтобы они были компланарны. Условием компланарности трех векторов служит равенство нулю их смешанного произведения, то есть .


Записывая это равенство через координаты точек, получим искомое уравнение:

. (13.5)

5. Угол между плоскостями.

Плоскости могут быть параллельны, совпадать или пересекаться, образуя двугранный угол . Пусть две плоскости заданы общими уравнениями и . Чтобы плоскости совпадали, нужно, чтобы координаты любой точки, удовлетворяющей первому уравнению, удовлетворяли бы и второму уравнению.

Это будет иметь место, если
.

Если , то плоскости параллельны.

Угол , образованный двумя пересекающимися плоскостями, равен углу, образованному их нормальными векторами. Косинус угла между векторами определяется по формуле:

Если , то плоскости перпендикулярны.

Пример 21 . Составить уравнение плоскости, которая проходит через две точки и перпендикулярно к плоскости .

Запишем искомое уравнение в общем виде: . Так как плоскость должна проходить через точки и , то координаты точек должны удовлетворять уравнению плоскости. Подставляя координаты точек и , получаем: и .

Из условия перпендикулярности плоскостей имеем: . Вектор расположен в искомой плоскости и, следовательно, перпендикулярен нормальному вектору: .

по учебной дисциплине

МАТЕМАТИКА

Тема № 2. Основы аналитической геометрии

Занятие.Плоскость в пространстве

Введение

В лекции рассмотрим различные виды уравнения плоскости в пространстве, докажем, что уравнение первой степени определяет в пространстве плоскость, по уравнениям плоскостей научимся определять их взаимное расположение в пространстве.

1. Основные понятия

Определение. Пусть задана прямоугольная система координат, любая поверхность S и уравнение

F (x , y , z ) = 0 (1)

Будем говорить, что уравнение является (1) является уравнением поверхности S в заданной системе координат, если ему удовлетворяют координаты каждой точки этой поверхности и не удовлетворяют координаты никакой точки, которая не принадлежит этой поверхности. С точки зрения данного определения поверхность есть множество точек пространства R 3 .

Пример . Уравнение

x 2 + y 2 + z 2 = 5 2

поверхность, которая является сферой радиуса 5, с центром в точке 0(0,0,0).

2. Уравнения плоскости в пространстве

2.1. Общее уравнение плоскости

Определение. Плоскостью называется поверхность, вес точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

где А, В, С – координаты вектора – вектор нормали к плоскости.

Возможны следующие частные случаи:

А = 0 – плоскость параллельна оси Ох

В = 0 – плоскость параллельна оси Оу

С = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

А = В = 0 – плоскость параллельна плоскости хОу

А = С = 0 – плоскость параллельна плоскости хОz

В = С = 0 – плоскость параллельна плоскости yOz

А = D = 0 – плоскость проходит через ось Ох

В = D = 0 – плоскость проходит через ось Оу

С = D = 0 – плоскость проходит через ось Oz

А = В = D = 0 – плоскость совпадает с плоскостью хОу

А = С = D = 0 – плоскость совпадает с плоскостью xOz

В = С = D = 0 – плоскость совпадает с плоскостью yOz

2.2. Уравнение плоскости, проходящей через три точки

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2), M 3 (x 3 , y 3 , z 3) в общей декартовой системе координат.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М 1 , М 2 , М 3 необходимо, чтобы векторы
были компланарны.

(
) = 0

Таким образом,

Уравнение плоскости, проходящей через три точки:

2.3.Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.

Пусть заданы точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2) и вектор
.

Составим уравнение плоскости, проходящей через данные точки М 1 и М 2 и произвольную точку М(х, у, z) параллельно вектору .

Векторы
и вектор
должны быть компланарны, т.е.

(
) = 0

Уравнение плоскости:

2.4.Уравнение плоскости по одной точке и двум векторам,

коллинеарным плоскости.

Пусть заданы два вектора
и
, коллинеарные плоскости. Тогда для произвольной точки М(х, у, z ), принадлежащей плоскости, векторы
должны быть компланарны.

Уравнение плоскости:

2.5.Уравнение плоскости по точке и вектору нормали.

Теорема. Если в пространстве задана точка М 0 0 , у 0 , z 0 ), то уравнение плоскости, проходящей через точку М 0 перпендикулярно вектору нормали (A , B , C ) имеет вид:

A (x x 0 ) + B (y y 0 ) + C (z z 0 ) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору
. Тогда скалярное произведение

= 0.

Таким образом, получаем уравнение плоскости

Теорема доказана.

2.6.Уравнение плоскости в отрезках.

Если в общем уравнении Ах + Ву + С z + D = 0 поделить обе части на –D

,

заменив
, получим уравнение плоскости в отрезках:

Числа a , b , c являются точками пересечения плоскости соответственно с осями х, у, z .

2.7.Расстояние от точки до плоскости.

Расстояние от произвольной точки М 0 (х 0 , у 0 , z 0) до плоскости Ах+Ву+С z + D =0 равно:

Пример. Найти уравнение плоскости, зная, что точка Р(4; –3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Таким образом, A = 4/13; B = –3/13; C = 12/13, воспользуемся формулой:

A(x – x 0 ) + B(y – y 0 ) + C(z – z 0 ) = 0.

Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; –1) и Q(1; –1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

Вектор нормали к плоскости 3х + 2у – z + 5 = 0
параллелен искомой плоскости.

Получаем:

Пример. Найти уравнение плоскости, проходящей через точки А(2, –1, 4) и В(3, 2, –1) перпендикулярно плоскости х + у + 2z – 3 = 0.

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор
(1, 3, –5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали(1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

Таким образом, вектор нормали (11, –7, –2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 112 + 71 – 24 + D = 0; D = –21.

Итого, получаем уравнение плоскости: 11x – 7y – 2z – 21 = 0.

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Находим координаты вектора нормали
= (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0.

Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0

Пример. Даны координаты вершин пирамиды А 1 (1; 0; 3), A 2 (2; –1; 3), A 3 (2; 1; 1), A 4 (1; 2; 5).

    Найти длину ребра А 1 А 2 .

    Найти угол между ребрами А 1 А 2 и А 1 А 4 .

Найти угол между ребром А 1 А 4 и гранью А 1 А 2 А 3 .

Сначала найдем вектор нормали к грани А 1 А 2 А 3 как векторное произведение векторов
и
.

= (2–1; 1–0; 1–3) = (1; 1; –2);

Найдем угол между вектором нормали и вектором
.

–4 – 4 = –8.

Искомый угол  между вектором и плоскостью будет равен  = 90 0 – .

    Найти площадь грани А 1 А 2 А 3 .

    Найти объем пирамиды.

    Найти уравнение плоскости А 1 А 2 А 3 .

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2 x + 2 y + 2 z – 8 = 0

x + y + z – 4 = 0;

3. Взаимное расположение плоскостей

Пусть заданы две плоскости

3.1. Угол между плоскостями

Угол между двумя плоскостями в пространстве  связан с углом между нормалями к этим плоскостям  1 соотношением:  =  1 или  = 180 0 –  1 , т.е.

cos = cos 1 .

Определим угол  1 . Известно, что плоскости могут быть заданы соотношениями:

,

где (A 1 , B 1 , C 1), (A 2 , B 2 , C 2).

Угол между векторами нормали найдем из их скалярного произведения:

.

Таким образом, угол между плоскостями находится по формуле:

Выбор знака косинуса зависит от того, какой угол между плоскостями следует найти – острый, или смежный с ним тупой.

3.2. Условия параллельности и перпендикулярности плоскостей.

На основе полученной выше формулы для нахождения угла между плоскостями можно найти условия параллельности и перпендикулярности плоскостей.

Для того, чтобы плоскости были перпендикулярны необходимо и достаточно, чтобы косинус угла между плоскостями равнялся нулю. Это условие выполняется, если:

Плоскости параллельны, векторы нормалей коллинеарны: .Это условие выполняется, если:
.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...