Основные и промежуточные агрегатные состояния. Четвертое агрегатное состояние вещества

Агрегатное состояние - это состояние вещества в определенном интервале температур и давлений, характеризуется свойствами: способностью (твердое тело) или неспособностью (жидкость, газ) сохранять объем и форму; наличием или отсутствием дальнего (твердое тело) или ближнего (жидкость) порядка и другими свойствами.

Вещество может находиться в трех агрегатных состояниях: твердом, жидком или газообразном, в настоящее время выделяют дополнительно плазменное (ионное) состояние.

В газообразном состоянии расстояние между атомами и молекулами вещества велико, силы взаимодействия малы и частицы, хаотично перемещаясь в пространстве, обладают большой кинетической энергией , превышающей потенциальную энергию. Материал в газообразном состоянии не имеет ни своей формы, ни объема. Газ заполняет все доступное пространство. Это состояние свойственно для веществ с малой плотностью.

В жидком состоянии сохраняется лишь ближний порядок атомов или молекул , когда в объеме вещества периодически возникают отдельные участки с упорядоченным расположением атомов, однако взаимная ориентация этих участков также отсутствует. Ближний порядок неустойчив и под действием тепловых колебаний атомов может либо исчезать, либо возникать вновь. Молекулы жидкости не имеют определенного положения, и в то же время им недоступна полная свобода перемещения. Материал в жидком состоянии своей формы не имеет, сохраняет лишь объем. Жидкость может занимать только часть объема сосуда, но свободно перетекать по всей поверхности сосуда. Жидкое состояние обычно считают промежуточным между твердым телом и газом.

В твердом веществе порядок расположения атомов становится строго определенным, закономерно упорядоченным, силы взаимодействия частиц взаимно уравновешены, поэтому тела сохраняют свою форму и объем. Закономерно упорядоченное расположение атомов в пространстве характеризует кристаллическое состояние, атомы образуют кристаллическую решетку.

Твердые тела имеют аморфное или кристаллическое строение. Для аморфных тел характерен только ближний порядок в расположении атомов или молекул, хаотичное расположение атомов, молекул или ионов в пространстве. Примерами аморфных тел являются стекло, пек, вар, внешне находящиеся в твердом состоянии, хотя на самом деле они медленно текут, подобно жидкости. Определенной температуры плавления у аморфных тел, в отличие от кристаллических, нет. Аморфные тела занимают промежуточное положение между кристаллическими твердыми телами и жидкостями.

Большинство твердых тел имеет кристаллическое строение, которое отличается упорядоченным расположением атомов или молекул в пространстве. Для кристаллической структуры свойственен дальний порядок, когда элементы структуры периодически повторяются; при ближнем порядке такое правильное повторение отсутствует. Характерной особенностью кристаллического тела является способность сохранять форму. Признаком идеального кристалла, моделью которого служит пространственная решетка, является свойство симметрии. Под симметрией понимается теоретическая способность кристаллической решетки твердого тела совмещаться самой с собой при зеркальном отражении ее точек от некоторой плоскости, называемой плоскостью симметрии. Симметрия внешней формы отражает симметрию внутренней структуры кристалла. Кристаллическую структуру имеют, например, все металлы, для которых характерны два типа симметрии: кубическая и гексагональная.


В аморфных структурах с неупорядоченным распределением атомов свойства вещества в разных направлениях одинаковы, т. е стеклообразные (аморфные) вещества изотропны.

Для всех кристаллов характерна анизотропия . В кристаллах расстояния между атомами упорядочены, но в разных направлениях степень упорядоченности может быть неодинаковой, что приводит к различию свойств вещества кристалла в разных направлениях. Зависимость свойств вещества кристалла от направления в его решетке называют анизотропией свойств. Анизотропия проявляется при измерении как физических, так и механических и других характеристик. Существуют свойства (плотность, теплоемкость), не зависящие от направления в кристалле. Большинство же характеристик зависит от выбора направления.

Измерить свойства возможно у объектов, имеющих определенный материальный объем: размеры - от нескольких миллиметров до десятков сантиметров. Эти объекты со строением, идентичным кристаллической ячейке, называются монокристаллами.

Анизотропия свойств проявляется в монокристаллах и практически отсутствует в поликристаллическом веществе, состоящем из множества мелких хаотично ориентированных кристаллов. Поэтому поликристаллические вещества называют квазиизотропными.

Кристаллизация полимеров, молекулы которых могут располагаться упорядоченно с образованием надмолекулярных структур в виде пачек, клубков (глобул), фибрилл и пр., происходит в определенном интервале температур. Сложное строение молекул и их агрегатов определяет специфику поведения полимеров при нагреве. Они не могут перейти в жидкое состояние с низкой вязкостью, не имеют газообразного состояния. В твердом виде полимеры могут находиться в стеклообразном, высокоэластическом и вязкотекучем состояниях. Полимеры с линейными или разветвленными молекулами при изменении температуры могут переходить из одного состояния в другое, что проявляется в процессе деформации полимера. На рис. 9 приведена зависимость деформации от температуры.

Рис. 9 Термомеханическая кривая аморфного полимера : t c , t т, t р - температуры стеклования, текучести и начала химического разложения соответственно; I - III - зоны стеклообразного, высокоэластического и вязкотекучего состояния соответственно; Δl - деформация.

Пространственная структура расположения молекул определяет только стеклообразное состояние полимера. При низких температурах все полимеры деформируются упруго (рис. 9, зона I ). Выше температуры стеклования t c аморфный полимер с линейной структурой переходит в высокоэластическое состояние (зона II ), и его деформация в стеклообразном и высокоэластическом состояниях обратима. Нагрев выше температуры текучести t т переводит полимер в вязкотекучее состояние (зона III ). Деформация полимера в вязкотекучем состоянии необратима. Аморфный полимер с пространственной (сетчатой, сшитой) структурой не имеет вязкотекучего состояния, температурная область высокоэластического состояния расширяется до температуры разложения полимера t р. Такое поведение характерно для материалов типа резин.

Температура вещества в любом агрегатном состоянии характеризует среднюю кинетическую энергию его частиц (атомов и молекул). Эти частицы в телах обладают в основном кинетической энергией колебательных движений относительно центра равновесия, где энергия минимальна. При достижении некоторой критической температуры твердый материал теряет свою прочность (устойчивость) и расплавляется, а жидкость превращается в пар: кипит и испаряется. Этими критическими температурами являются температуры плавления и кипения.

При нагреве кристаллического материала при определенной температуре молекулы двигаются настолько энергично, что жесткие связи в полимере нарушаются и кристаллы разрушаются - переходят в жидкое состояние. Температура, при которой кристаллы и жидкость находятся в равновесии, называется точкой плавления кристалла, или точкой затвердевания жидкости. Для иода эта температура равна 114 о С.

Каждый химический элемент обладает индивидуальной температурой плавления t пл, разделяющей существование твердого тела и жидкости, и температурой кипения t кип, соответствующей переходу жидкости в газ. При этих температурах вещества находятся в термодинамическом равновесии. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других физических величин.

Для описания различных состояний в физике используется более широкое понятие термодинамической фазы. Явления, описывающие переходы из одной фазы в другую, называют критическими.

При нагревании вещества претерпевают фазовые превращения. Медь при плавлении (1083 о С) превращается в жидкость, в которой атомы имеют только ближний порядок. При давлении 1 атм медь кипит при 2310 о С и превращается в газообразную медь с беспорядочно расположенными атомами меди. В точке плавления давления насыщенного пара кристалла и жидкости равны.

Материал в целом представляет собой систему.

Система - группа веществ, объединенных физическими, химическими или механическими взаимодействиями. Фазой называют однородную часть системы, отделенную от других частей физическими границами раздела (в чугуне: графит + зерна железа; в воде со льдом: лед + вода). Составные части системы - это различные фазы, образующие данную систему. Компоненты системы - это вещества, образующие все фазы (составные части) данной системы.

Материалы, состоящие из двух и более фаз, представляют собой дисперсные системы . Дисперсныесистемы разделяют на золи, поведение которых напоминает поведение жидкостей, и гели с характерными свойствами твердых тел. В золях дисперсионной средой, в которой распределено вещество, является жидкость, в гелях преобладает твердая фаза. Гелями являются полукристаллический металл, бетон, раствор желатина в воде при низкой температуре (при высокой температуре желатин переходит в золь). Гидрозолем называют дисперсию в воде, аэрозолем - дисперсию в воздухе.

Диаграммы состояния.

В термодинамической системе каждая фаза характеризуется такими параметрами, как температура Т , концентрация с и давление Р . Для описания фазовых превращений используется единая энергетическая характеристика - свободная энергия Гиббса ΔG (термодинамический потенциал).

Термодинамика при описании превращений ограничивается рассмотрением состояния равновесия. Равновесное состояние термодинамической системы характеризуется неизменностью термодинамических параметров (температуры и концентрации, так как в технологических обработках Р = const) во времени и отсутствием в ней потоков энергии и вещества - при постоянстве внешних условий. Фазовое равновесие - равновесное состояние термодинамической системы, состоящей из двух или большего числа фаз.

Для математического описания условий равновесия системы существует правило фаз , выведенное Гиббсом. Оно связывает число фаз (Ф) и компонентов (К) в равновесной системе с вариантностью системы, т. е. числом термодинамических степеней свободы (С).

Число термодинамических степеней свободы (вариантность) системы - это число независимых переменных как внутренних (химический состав фаз), так и внешних (температура), которым можно придавать различные произвольные (в некотором интервале) значения так, чтобы не появились новые и не исчезли старые фазы.

Уравнение правила фаз Гиббса:

С = К - Ф + 1.

В соответствии с этим правилом в системе из двух компонентов (К = 2) возможны следующие варианты степеней свободы:

Для однофазного состояния (Ф = 1) С = 2, т. е. можно менять температуру и концентрацию;

Для двухфазного состояния (Ф = 2) С = 1, т. е. можно менять только один внешний параметр (например, температуру);

Для трехфазного состояния число степеней свободы равно нулю, т. е. нельзя менять температуру без нарушения равновесия в системе (система нонвариантна).

Например, для чистого металла (К = 1) во время кристаллизации, когда имеются две фазы (Ф = 2), число степеней свободы равно нулю. Это означает, что температура кристаллизации не может быть изменена, пока не закончится процесс и не останется одна фаза - твердый кристалл. После окончания кристаллизации (Ф = 1) число степеней свободы равно 1, поэтому можно менять температуру, т. е. охлаждать твердое вещество, не нарушая равновесия.

Поведение систем в зависимости от температуры и концентрации описывается диаграммой состояния. Диаграмма состояния воды — система с одним компонентом H 2 O, поэтому наибольшее число фаз, которые одновременно могут находиться в равновесии, равно трем (рис. 10). Эти три фазы — жидкость, лед, пар. Число степеней свободы в этом случае равно нулю, т.е. нельзя изменить ни давление, ни температуру, чтобы не исчезла ни одна из фаз. Обычный лед, жидкая вода и водяной пар могут существовать в равновесии одновременно только при давлении 0,61 кПа и температуре 0,0075°С. Точка сосуществования трех фаз называется тройной точкой (O ).

Кривая ОС разделяет области пара и жидкости и представляет собой зависимость давления насыщенного водяного пара от температуры. Кривая ОС показывает те взаимосвязанные значения температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом, поэтому она называется кривой равновесия жидкость — пар или кривой кипения.

Рис 10 Диаграмма состояния воды

Кривая ОВ отделяет область жидкости от области льда. Она является кривой равновесия твердое состояние — жидкость и называется кривой плавления. Эта кривая показывает те взаимосвязанные пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.

Кривая OA называется кривой сублимации и показывает взаимосвязанные пары значений давления и температуры, при которых в равновесии находятся лед и водяной пар.

Диаграмма состояния — наглядный способ представления областей существования различных фаз в зависимости от внешних условий, например от давления и температуры. Диаграммы состояния активно используются в материаловедении на разных технологических этапах получения изделия.

Жидкость отличается от твердого кристаллического тела малыми значениями вязкости (внутреннего трения молекул) и высокими значениями текучести (величина, обратная вязкости). Жидкость состоит из множества агрегатов молекул, внутри которых частицы расположены в определенном порядке, подобно порядку в кристаллах. Природа структурных единиц и межчастичного взаимодействия определяет свойства жидкости. Различают жидкости: моноатомные (сжиженные благородные газы), молекулярные (вода), ионные (расплавленные соли), металлические (расплавленные металлы), жидкие полупроводники. В большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической (жидкой) фазой.

Жидкие вещества чаще всего представляет собой растворы. Раствор однороден, но не является химически чистым веществом, состоит из растворенного вещества и растворителя (примеры растворителя - вода или органические растворители: дихлорэтан, спирт, четыреххлористый углерод и др.), поэтому представляет собой смесь веществ. Пример - раствор спирта в воде. Однако растворами также являются смеси газообразных (например, воздух) или твердых (сплавы металлов) веществ.

При охлаждении в условиях малой скорости образования центров кристаллизации и сильного увеличения вязкости может возникнуть стеклообразное состояние. Стекла - это изотропные твердые материалы, получаемые переохлаждением расплавленных неорганических и органических соединений.

Известно много веществ, переход которых из кристаллического состояния в изотропное жидкое осуществляется через промежуточное жидкокристаллическое состояние. Оно характерно для веществ, молекулы которых имеют форму длинных стержней (палочек) с асимметричным строением. Такие фазовые переходы, сопровождаемые тепловыми эффектами, вызывают скачкообразное изменение механических, оптических, диэлектрических и других свойств.

Жидкие кристаллы , подобно жидкости, могут принимать форму удлиненной капли или форму сосуда, обладают высокой текучестью, способны к слиянию. Они получили широкое применение в разных областях науки и техники. Их оптические свойства сильно зависят от небольших изменений внешних условий. Эта особенность используется в электрооптических устройствах. В частности, жидкие кристаллы применяют при изготовлении электронных наручных часов, визуальной аппаратуры и др.

К числу основных агрегатных состояний относится плазма - частично или полностью ионизированный газ. По способу образования различают два вида плазмы: термическую, возникающую при нагревании газа до высоких температур, и газообразную, образующуюся при электрических разрядах в газовой среде.

Плазмохимические процессы заняли прочное место в ряде отраслей техники. Они применяются для резки и сварки тугоплавких металлов, синтеза разных веществ, широко используют плазменные источники света, перспективно применение плазмы в термоядерных энергетических установках и пр.

Вся материя может существовать в одном из четырех видов. Каждый из них — это определенное агрегатное состояние вещества. В природе Земли только одно представлено сразу в трех из них. Это вода. Ее легко увидеть и испаренную, и расплавленную, и отвердевшую. То есть пар, воду и лед. Ученые научились проводить изменение агрегатных состояний вещества. Самую большую сложность для них составляет только плазма. Для этого состояния нужны особенные условия.

Что это такое, от чего зависит и как характеризуется?

Если тело перешло в другое агрегатное состояние вещества, то это не значит, что появилось что-то другое. Вещество остается прежним. Если у жидкости были молекулы воды, то такие же они будут и у пара со льдом. Изменится только их расположение, скорость движения и силы взаимодействия друг с другом.

При изучении темы «Агрегатные состояния (8 класс)» рассматриваются только три из них. Это жидкость, газ и твердое тело. Их проявления зависят от физических условий окружающей среды. Характеристики этих состояний представлены в таблице.

Название агрегатного состояния твердое тело жидкость газ
Его свойства сохраняет форму с объемом имеет постоянный объем, принимает форму сосуда не имеет постоянных объема и формы
Расположение молекул в узлах кристаллической решетки беспорядочное хаотичное
Расстояние между ними сравнимо с размерами молекул приблизительно равно размерам молекул существенно больше их размеров
Как двигаются молекулы колеблются около узла решетки не перемещаются от места равновесия, но иногда совершают большие скачки беспорядочное с редкими столкновениями
Как они взаимодействуют сильно притягиваются сильно притягиваются друг к другу не притягиваются, силы отталкивания проявляются при ударах

Первое состояние: твердое тело

Его принципиальное отличие от других в том, что молекулы имеют строго определенное место. Когда говорят про твердое агрегатное состояние, то чаще всего имеют в виду кристаллы. В них структура решетки симметричная и строго периодичная. Поэтому она сохраняется всегда, как далеко не распространялось бы тело. Колебательного движения молекул вещества недостаточно для того, чтобы разрушить эту решетку.

Но существуют еще и аморфные тела. В них отсутствует строгая структура в расположении атомов. Они могут быть где угодно. Но это место так же стабильно, как и в кристаллическом теле. Отличие аморфных веществ от кристаллических в том, что у них нет определенной температуры плавления (отвердевания) и им свойственна текучесть. Яркие примеры таких веществ: стекло и пластмасса.

Второе состояние: жидкость

Это агрегатное состояние вещества представляет собой нечто среднее между твердым телом и газом. Поэтому сочетает в себе некоторые свойства от первого и второго. Так, расстояние между частицами и их взаимодействие похоже на то, что было в случае с кристаллами. Но вот расположение и движение ближе к газу. Поэтому и форму жидкость не сохраняет, а растекается по сосуду, в который налита.

Третье состояние: газ

Для науки под названием «физика» агрегатное состояние в виде газа стоит не на последнем месте. Ведь она изучает окружающий мир, а воздух в нем очень распространен.

Особенности этого состояния заключаются в том, что силы взаимодействия между молекулами практически отсутствуют. Этим объясняется их свободное движение. Из-за которого газообразное вещество заполняет весь объем, предоставленный ему. Причем в это состояние можно перевести все, нужно только увеличить температуру на нужную величину.

Четвертое состояние: плазма

Это агрегатное состояние вещества представляет собой газ, который полностью или частично ионизирован. Это значит, что в нем число отрицательно и положительно заряженных частиц практически одинаковое. Возникает такая ситуация при нагревании газа. Тогда происходит резкое ускорение процесса термической ионизации. Оно заключается в том, что молекулы делятся на атомы. Последние потом превращаются в ионы.

В рамках Вселенной такое состояние очень распространено. Потому что в нем находятся все звезды и среда между ними. В границах Земной поверхности оно возникает крайне редко. Если не считать ионосферы и солнечного ветра, плазма возможна только во время грозы. Во вспышках молнии создаются такие условия, в которых газы атмосферы переходят в четвертое состояние вещества.

Но это не означает, что плазму не создали в лаборатории. Первое, что удалось воспроизвести — это газовый разряд. Теперь плазма заполняет лампы дневного света и неоновую рекламу.

Как осуществляется переход между состояниями?

Для этого нужно создать определенные условия: постоянное давление и конкретную температуру. При этом изменение агрегатных состояний вещества сопровождается выделением или поглощением энергии. Причем этот переход не происходит молниеносно, а требует определенных временных затрат. В течение всего этого времени условия должны быть неизменными. Переход происходит при одновременном существовании вещества в двух ипостасях, которые поддерживают тепловое равновесие.

Первые три состояния вещества могут взаимно переходить одно в другое. Существуют прямые процессы и обратные. Они имеют такие названия:

  • плавление (из твердого в жидкое) и кристаллизация , например, таяние льда и отвердевание воды;
  • парообразование (из жидкого в газообразное) и конденсация , примером является испарение воды и получение ее из пара;
  • сублимация (из твердого в газообразное) и десублимация , к примеру, испарение сухого ароматизатора для первого из них и морозные узоры на стекле ко второму.

Физика плавления и кристаллизации

Если твердое тело нагревать, то при определенной температуре, называемой температурой плавления конкретного вещества, начнется изменение агрегатного состояния, которое называется плавление. Этот процесс идет с поглощением энергии, которая называется количеством теплоты и обозначается буквой Q . Для ее расчета потребуется знать удельную теплоту плавления , которая обозначается λ . И формула принимает такое выражение:

Q = λ * m , где m — масса вещества, которое задействовано в плавлении.

Если происходит обратный процесс, то есть кристаллизация жидкости, то условия повторяются. Отличие только в том, что энергия выделяется, и в формуле появляется знак «минус».

Физика парообразования и конденсации

При продолжении нагревания вещества, оно постепенно приблизится к температуре, при которой начнется его интенсивное испарение. Этот процесс называется парообразованием. Оно опять же характеризуется поглощением энергии. Только для его вычисления требуется знать удельную теплоту парообразования r . А формула будет такой:

Q = r * m .

Обратный процесс или конденсация происходят с выделением того же количества теплоты. Поэтому в формуле опять появляется минус.

Любое вещество состоит из молекул, а его физические свойства зависят от того, каким образом упорядочены молекулы и как они взаимодействуют между собой. В обычной жизни мы наблюдаем три агрегатных состояния вещества - твердое, жидкое и газообразное.

Например, вода может находиться в твердом (лед), жидком (вода) и газообразном (пар) состояниях.

Газ расширяется, пока не заполнит весь отведенный ему объем. Если рассмотреть газ на молекулярном уровне, мы увидим беспорядочно мечущиеся и сталкивающиеся между собой и со стенками сосуда молекулы, которые, однако, практически не вступают во взаимодействие друг с другом. Если увеличить или уменьшить объем сосуда, молекулы равномерно перераспределятся в новом объеме.

В отличие от газа при заданной температуре занимает фиксированный объем, однако и она принимает форму заполняемого сосуда - но только ниже уровня ее поверхности. На молекулярном уровне жидкость проще всего представить в виде молекул-шариков, которые хотя и находятся в тесном контакте друг с другом, однако имеют свободу перекатываться друг относительно друга, подобно круглым бусинам в банке. Налейте жидкость в сосуд - и молекулы быстро растекутся и заполнят нижнюю часть объема сосуда, в результате жидкость примет его форму, но не распространится в полном объеме сосуда.

Твердое тело имеет собственную форму, не растекается по объему контейнера и не принимает его форму. На микроскопическом уровне атомы прикрепляются друг к другу химическими связями, и их положение друг относительно друга фиксировано. При этом они могут образовывать как жесткие упорядоченные структуры - кристаллические решетки, - так и беспорядочное нагромождение - аморфные тела (именно такова структура полимеров, которые похожи на перепутанные и слипшиеся макароны в миске).

Выше были описаны три классических агрегатных состояния вещества. Имеется, однако, и четвертое состояние, которые физики склонны относить к числу агрегатных. Это плазменное состояние. Плазма характеризуется частичным или полным срывом электронов с их атомных орбит, при этом сами свободные электроны остаются внутри вещества.

Изменение агрегатных состояний вещества мы можем наблюдать воочию в природе. Вода с поверхности водоемов испаряется, и образуются облака. Так жидкость переходит в газ. Зимой вода в водоемах замерзает, переходя в твердое состояние, а весной вновь тает, переходя в обратно в жидкость. Что происходит с молекулами вещества при переходе его из одного состояния в другое? Меняются ли они? Отличаются ли, например, молекулы льда от молекул пара? Ответ однозначный: нет. Молекулы остаются абсолютно теми же. Меняется их кинетическая энергия, а соответственно и свойства вещества.

Энергия молекул пара достаточно велика, чтобы разлетаться в разные стороны, а при охлаждении пар конденсируется в жидкость, и энергии у молекул все еще достаточно для почти свободного перемещения, но уже недостаточно, чтобы оторваться от притяжения других молекул и улететь. При дальнейшем охлаждении вода замерзает, становясь твердым телом, и энергии молекул уже недостаточно даже для свободного перемещения внутри тела. Они колеблются около одного места, удерживаемые силами притяжения других молекул.

Введение

1.Агрегатное состояние вещества – газ

2.Агрегатное состояние вещества – жидкость

3.Агрегатное состояние вещества – твердое тело

4.Четвертое состояние вещества – плазма

Заключение

Список использованной литературы

Введение

Как известно, многие вещества в природе могут находиться в трех состояниях: твердом, жидком и газообразном.

Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи.

Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

Существует еще одно состояние вещества – плазма.

Целью данной работы является – рассмотреть существующие агрегатные состояния вещества, выявить все их достоинства и недостатки.

Для этого необходимо выполнить и рассмотреть следующие агрегатные сотояния:

2. жидкости

3. твердые вещества

3. Агрегатное состояние вещества – твердое тело

Твёрдое тело, одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний (жидкости, газов, плазмы ) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия. Наряду с кристаллическим состоянием Т. т. существует аморфное состояние, в том числе стеклообразное состояние. Кристаллы характеризуются дальним порядком в расположении атомов. В аморфных телах дальний порядок отсутствует.

Агрегатные состояния вещества (от латинского aggrego - присоединяю, связываю) - это состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, плотности и других физических параметров вещества.
Газ (французское gaz, происшедшее от греческого chaos - хаос) - это агрегатное состояние вещества , в котором силы взаимодействия его частиц, заполняющих весь предоставленный им объем, пренебрежимо малы. В газах межмолекулярные расстояния велики и молекулы движутся практически свободно.

Газы можно рассматривать как значительно перегретые или малонасыщенные пары. Над поверхностью каждой жидкости вследствие находится пар. При повышении давления пара до определенного предела, называемого давлением насыщенного пара, испарение жидкости прекращается, так как и жидкости становится одинаковым. Уменьшение объема насыщенного пара вызывает части пара, а не повышение давления. Поэтому давление пара не может быть выше . Состояние насыщения характеризуется массой насыщения, содержащейся в 1м массой насыщенного пара, которая зависит от температуры. Насыщенный пар может стать ненасыщенным, если увеличивать его объем или повышать температуру. Если температура пара много выше точки , соответствующей данному давлению, пар называется перегретым.

Плазмой называется частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Солнце, звезды, облака межзвездного вещества состоят из газов - нейтральных или ионизованных (плазмы). В отличие от других агрегатных состояний плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях, но не обладают ни ближним, ни дальним порядками в расположении частиц.

Жидкость - это агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкостям присущи некоторые черты твердого вещества (сохраняет свой объем, образует поверхность, обладает определенной прочностью на разрыв) и газа (принимает форму сосуда, в котором находится). Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое. Одновременно происходят медленные перемещения молекул и их колебания внутри малых объемов, частые перескоки молекул нарушают дальний порядок в расположении частиц и обусловливают текучесть жидкостей, а малые колебания около положений равновесия обусловливают существование в жидкостях ближнего порядка.

Жидкости и твердые вещества, в отличие от газов, можно рассматривать как высоко конденсированные среды. В них молекулы (атомы) расположены значительно ближе друг к другу и силы взаимодействия на несколько порядков больше, чем в газах. Поэтому жидкости и твердые вещества имеют существенно ограниченные возможности для расширения, заведомо не могут занять произвольный объем, а при постоянных сохраняют свой объем, в каком бы объеме их не размещали. Переходы из более упорядоченного по структуре агрегатного состояния в менее упорядоченное могут происходить и непрерывно. В связи с этим вместо понятия агрегатного состояния целесообразно пользоваться более широким понятием - понятием фазы.

Фазой называется совокупность всех частей системы, обладающих одинаковым химическим составом и находящихся в одинаковом состоянии. Это оправдано одновременным существованием термодинамически равновесных фаз в многофазной системе: жидкости со своим насыщенным паром; воды и льда при температуре плавления; двух несмешивающихся жидкостей (смесь воды с триэтиламином), отличающихся концентрациями; существованием аморфных твердых веществ, сохраняющих структуру жидкости (аморфное состояние).

Аморфное твердое состояние вещества является разновидностью переохлажденного состояния жидкости и отличается от обычных жидкостей существенно большей вязкостью и численными значениями кинетических характеристик.
Кристаллическое твердое состояние вещества - это агрегатное состояние, которое характеризуется большими силами взаимодействия между частицами вещества (атомами, молекулами, ионами). Частицы твердых тел совершают колебания около средних равновесных положений, называемых узлами кристаллической решетки; структура этих веществ характеризуется высокой степенью упорядоченности (дальним и ближним порядком) - упорядоченностью в расположении (координационный порядок), в ориентации (ориентационный порядок) структурных частиц, или упорядоченностью физических свойств (например, в ориентации магнитных моментов или электрических дипольных моментов). Область существования нормальной жидкой фазы для чистых жидкостей, жидкого и жидких кристаллов ограничена со стороны низких температур фазовыми переходами соответственно в твердое (кристаллизацией), сверхтекучее и жидко-анизотропное состояние.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...