Поляризованная волна. Естественный и поляризованный свет

Лекция 8. Поляризация электромагнитных волн

8.1. Поляризация плоских однородных волн

Поляризацией электромагнитной волны называют изменения величины и ориентации векторов ив фиксированной точке пространства в течение периода колебания волны. Волна, у которой в фиксированной точке пространства в любой момент времени величина и ориентация векторовиявляются детерминированными (точно определенными), называется поляризованной. Поляризация волны ориентационная характеристика. В плоской однородной волне векторыивзаимосвязаны (6.36), характер их поведения в пространстве одинаков, поэтому ограничиваются рассмотрением одного вектора. Плоскость, проходящую через вектори направление распространения волны, называют плоскостью поляризации.

Предположим, что волна создается двумя взаимно перпендикулярными элементарными электрическими вибраторами с токами и(рис. 8.1).

Рис. 8.1. К введению понятия поляризации волны

Вектор имеет две составляющиеЕ х иЕ у , которые имеют разные амплитуды и изменяются с некоторым фазовым сдвигом в зависимости от соотношения между амплитудами и фазами токов вибраторов. Векторпри этом также имеет две составляющиеН х иН у , связанные сЕ х иЕ у характеристическим сопротивлением. Таким образом, в общем случае выражение для вектораплоской волны в среде без потерь записывается в виде

Здесь и
– начальные фазы составляющихЕ х иЕ у в точкеz = 0 приt = 0. Волну (8.1) можно рассматривать как суперпозицию(сумму) двух плоских волн одинаковой частоты с взаимно перпендикулярной ориентацией векторови, распространяющихся в одном направлении (вдоль осиz ). Определим ориентацию суммарного вектора(8.1) углом(рис. 8.2).

Рис. 8.2. Мгновенное положение вектора

Угол отсчитывается по часовой стрелке, если смотреть вдоль направления распространения волны и определяется соотношением

. (8.2)

Характер изменения вектора (8.1) с течением времени в фиксированной точке пространства зависит от сдвига фаз
и от равенства или неравенства амплитуд
и
. В общем случае уголможет изменяться во времени. Конец векторас течением времени в фиксированной точке пространства будет описывать линию, называемую годографом. По форме годографа выделяют три вида поляризации.

1. Линейная поляризация . СоставляющиеЕ х иЕ у синфазны или противофазны

, гдеn = 0,1,2,… (8.3).

Для простоты возьмем n = 0, то есть начальные фазыисовпадают. Полагая в формуле (8.2)
, получаем постоянное значение угла ориентации

. (8.4)

Величина вектора (8.1) меняется во времени

В фиксированной точке пространства вектор , не меняя ориентации (=const) изменяется по модулю, конец векторас течением времени перемещается вдоль отрезка прямой линии, составляющей с осью х угол

. (8.6)

При четных значениях числа n(Е х иЕ у синфазны) уголвеличина положительная; при нечетныхn (Е х иЕ у противофазны) уголвеличина отрицательная. Таким образом, волна (8.74) при выполнении условия (8.3) имеет линейную поляризацию. Отметим, что если векторплоской волны имеет одну составляющую, волна линейно поляризована.

2. Круговая поляризация . Амплитуды составляющихЕ х иЕ у равны, а фазы отличаются на

Подставляя эти значения в (8.4), получаем равенство

. (8.8)

Из (8.8) следует, что

, если
, (8.9)

, если
. (8.10)

Равенства (8.9), (8.10) означают, что угол в фиксированной точке пространства изменяется линейно во времени и происходит периодическое изменение ориентации вектора. Величина векторапри этом остается неизменной

.

Таким образом, в фиксированной точке пространства вектор , оставаясь неизменным по величине, вращается с угловой частотой
вокруг направления. Число оборотов вектораза секунду равно частоте колебаний. В рассматриваемую точку в разные моменты времени приходит векторразной ориентации. Конец векторапри этом описывает окружность (рис. 8.3).

Рис. 8.3. Годограф вектора при круговой поляризации

Волна (8.1) при условии (8.7) имеет круговую поляризацию. В зависимости от направления вращения вектора различают волны с правой и левой поляризацией. Волна имеет правую круговую поляризацию, когда векторвращается по часовой стрелке, если смотреть вдоль направления распространения волны (>0). Волна имеет левую круговую поляризацию, когда векторвращается против часовой стрелки, если смотреть вдоль направления распространения волны (<0). Согласно условиям (8.9), (8.10) векторвращается в сторону к отстающей по фазе составляющей.

На рис. 8.4 показана ориентация вектора в пространстве в фиксированный момент времени для плоской волны с круговой поляризацией, распространяющейся вдоль осиz в среде без потерь.

Линия, соединяющая концы векторов, представляет собой правовинтовую спираль с шагом, равным длине волны. Ее проекция на плоскость
образует окружность с вращением векторапротив часовой стрелки, глядя вдоль направления распространения волны. Отметим, что винтовая линия, соответствующая волне с правой круговой поляризацией, имеет левую намотку, и, наоборот, в случае волны с левой круговой поляризацией винтовая линия имеет правую намотку.

Рис. 8.4. Ориентация вектора в пространстве при круговой поляризации

Очевидно, такой же анализ для вектора привел бы к аналогичным результатам. Запишем для примера поле плоской однородной волны левой круговой поляризации, распространяющейся вдоль осиzв среде без потерь. В записи электрического поля используем условие круговой поляризации (8.7), а взаимосвязанное с ним магнитное поле определяем по формуле (6.32). Комплексные амплитуды векторовирассматриваемой волны принимают вид

, (8.11)

. (8.12)

При записи этой волны использовано известное соотношение
. На основании последних выражений (8.11), (8.12) находим среднее за период значение плотности потока мощности

. (8.13)

Среднее значение вектора Пойнтинга волны круговой поляризации равно сумме средних плотностей мощности двух волн с ортогональными линейными поляризациями.

Любая волна круговой поляризации является суперпозицией двух волн с ортогональными линейными поляризациями при условии (8.7). В свою очередь, всякую линейно поляризованную волну можно представить в виде суммы двух волн с правой и левой круговой поляризацией. Вновь воспользуемся комплексным представлением вектора волны линейной поляризации

. (8.14)

Прибавим и вычтем в правой части (8.14) дополнительный вектор и перегруппируем слагаемые

Первое слагаемое в правой части (8.15) описывает волну с левой круговой поляризацией, а второе слагаемое описывает волну с правой круговой поляризацией с равными амплитудами.

3. Эллиптическая поляризация. СоставляющиеE х иЕ у (8.1) имеют произвольные соотношения амплитуд и фаз. Суммарный векторв фиксированной точке пространства с течением времени изменяется по величине и вращается вокруг направления, его конец описывает эллипс (рис. 8.5).

Рис. 8.5. Годографы векторов ипри эллиптической поляризации

Волны такого типа принято называть эллиптически поляризованными. Вращение вектора происходит в сторону составляющей, отстающей по фазе. Если это вращение происходит по часовой стрелке, глядя вдоль направления распространения волны, то волна имеет правую эллиптическую поляризацию, если вращение против часовой стрелки – волна левой эллиптической поляризации. Степень эллиптичности волны оценивают по коэффициенту эллиптичности, равному отношению малой оси эллипса к большой. Ориентация эллипса задается углом между большой осью эллипса и осьюх (или осьюу ). Такой же анализ для векторапривел бы к аналогичным результатам. Конец векторав фиксированной точке пространства в течение периода колебаний также описывает эллипс, подобный эллипсу вектора, но повернутый относительно него на угол(рис. 8.5).

Введем понятие ортогонально поляризованных волн. Две волны ортогонально поляризованы, если их поляризационные эллипсы взаимно перпендикулярны в пространстве, равны коэффициенты эллиптичности, а вращение вектора в эллипсах противоположное. Волну одного вида поляризации можно представить как сумму двух волн с ортогональными поляризациями и разными амплитудами. Так эллиптически поляризованную волну можно представить как сумму двух волн с ортогональными линейными поляризациями, как сумму двух волн круговой поляризации с разными амплитудами и разным направлением вращения, либо как сумму двух волн эллиптической поляризации с ортогональными осями эллипсов, с разными амплитудами и разным направлением вращения. Приемная антенна извлекает из падающей на нее электромагнитной волны максимальную мощность, если поляризованные эллипсы передающей и приемной антенны совпадают. Прием будет отсутствовать, если антенны имеют ортогональные поляризации. В промежуточных случаях происходит уменьшение принятой мощности.

Отметим, что понятие эллиптической, круговой и линейной поляризации применимо не только для плоских однородных волн, но и других типов волн. Поляризационные свойства электромагнитных волн имеют большое значение в прикладной радиотехнике. Например, штыревая антенна, размещенная в поле волны с круговой поляризацией перпендикулярно оси распространения, будет создавать выходной сигнал неизменной амплитуды независимо от ориентации в поперечной плоскости. Это обстоятельство делает волны с круговой поляризацией предпочтительными для организации радиосвязи с подвижными объектами, которые могут занимать в пространстве любые положения.

8.2. Плоские волны, распространяющиеся в произвольном направлении

При анализе распространения плоской электромагнитной волны в неограниченной однородной среде была использована прямоугольная система координат, одна из осей которой (ось z ) совпадала с направлением распространения волны. Для изучения волновых явлений на плоской границе раздела двух сред прямоугольную систему координат обычно вводят таким образом, чтобы поверхность раздела совпадала с одной из координатных поверхностей. При этом в общем случае направления распространения падающей, отраженной и преломленной волн не совпадают ни с одной из координатных осей. Рассмотрим случай, когда плоская электромагнитная волна распространяется в произвольном направлении, не совпадающем ни с одной из координатных осей. Ограничимся записью линейно поляризованной волны, так как волны круговой и эллиптической поляризации можно представить в виде суперпозиции двух линейно поляризованных плоских волн. Предположим, что волна распространяется в однородной среде вдоль оси
, образующей с осямиx , y , z прямоугольной системы координат углы,исоответственно (рис. 8.6).

Рис. 8.6. Произвольные направления распространения плоской волны

Поле плоской однородной волны в среде без потерь запишем через комплексные амплитуды


. (8.16).

Векторы илежат в плоскости перпендикулярной оси , причем

, (8.17)

где – координатный орт переменной.

Поверхность равных фаз (фронт волны) является плоскостью, перпендикулярной оси
, и удовлетворяет уравнению

, (8.18)

где – радиус вектор, проведенный из начала координат до произвольной точки, лежащей на рассматриваемой поверхности равных фаз.

Для перехода к координатам x , y , z нужно вычислить скалярное произведение векторана вектор(8.18). Учитывая, что радиус вектор равен

,

из (8.18) запишем

Подставляем (8.19) в (8.16), получаем запись комплексных амплитуд векторов поля волны, произвольное направление распространения которой расписано в системе x,y,zчерез направляющие косинусы вектора

, (8.20)

. (8.21)

Частными случаями формул (8.20), (8.21) являются записи плоских волн, распространяющихся вдоль какой-либо координаты x , y , z .

В начале XIX века, когда Т.Юнг и О.Френель развивали волновую теорию света, природа световых волн была неизвестна. На первом этапе предполагалось, что свет представляет собой продольные волны, распространяющиеся в некоторой гипотетической среде - эфире . При изучении явлений интерференции и дифракции вопрос о том, являются ли световые волны продольными или поперечными, имел второстепенное значение. В то время казалось невероятным, что свет - это поперечные волны, так как по аналогии с механическими волнами пришлось бы предполагать, что эфир - это твердое тело (поперечные механические волны не могут распространяться в газообразной или жидкой среде).

Однако, постепенно накапливались экспериментальные факты, свидетельствующие в пользу поперечности световых волн. Еще в конце XVII века было обнаружено, что кристалл исландского шпата (CaCO 3) раздваивает проходящие через него лучи. Это явление получило название двойного лучепреломления (рис. 3.11.1).

В 1809 году французский инженер Этьен Малюс открыл закон, названный его именем. В опытах Малюса свет последовательно пропускался через две одинаковые пластинки из турмалина (прозрачное кристаллическое вещество зеленоватой окраски). Пластинки можно было поворачивать друг относительно друга на угол φ (рис. 3.11.2).

Интенсивность прошедшего света оказалась прямо пропорциональной cos 2 φ:

I ~ cos 2 φ.

Ни двойное лучепреломление, ни закон Малюса не могут найти объяснение в рамках теории продольных волн. Для продольных волн направление распространения луча является осью симметрии. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны. В поперечной волне (например, в волне, бегущей по резиновому жгуту) направление колебаний и перпендикулярное ему направление не равноправны (рис. 3.11.3).

Таким образом, асимметрия относительно направления распространения (луча) является решающим признаком, который отличает поперечную волну от продольной. Впервые догадку о поперечности световых волн высказал в 1816 г. Т.Юнг. Френель, независимо от Юнга, также выдвинул концепцию поперечности световых волн, обосновал ее многочисленными экспериментами и создал теорию двойного лучепреломления света в кристаллах.

В середине 60-х годов XIX века на основании совпадения известного значения скорости света со скоростью распространения электромагнитных волн Максвелл сделал вывод о том, что свет - это электромагнитные волны. К тому времени поперечность световых волн уже была доказано экспериментально. Поэтому Максвелл справедливо полагал, что поперечность электромагнитных волн является еще одним важнейшим доказательством электромагнитной природы света.

Электромагнитная теория света приобрела должную стройность, поскольку исчезла необходимость введения особой среды распространения волн - эфира, который приходилось рассматривать как твердое тело.

В электромагнитной волне вектора и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3). Во всех процессах взаимодействия света с веществом основную роль играет электрический вектор поэтому его называют световым вектором . Если при распространении электромагнитной волны световой вектор сохраняет свою ориентацию, такую волну называют линейно поляризованной или плоско поляризованной (термин поляризация волн был введен Малюсом применительно к поперечным механическим волнам). Плоскость, в которой колеблется световой вектор называется плоскостью колебаний (плоскость yz на рис. 2.6.3), а плоскость, в которой совершает колебание магнитный вектор - плоскостью поляризации (плоскость xz на рис. 2.6.3).

Если вдоль одного и того же направления распространяются две монохроматические волны, поляризованные в двух взаимно перпендикулярных плоскостях, то в результате их сложения в общем случае возникает эллиптически поляризованная волна (рис. 3.11.4).

В эллиптически поляризованной волне в любой плоскости P , перпендикулярной направлению распространения волны, конец результирующего вектора за один период светового колебания обегает эллипс, который называется эллипсом поляризации . Форма и размер эллипса поляризации определяются амплитудами a x и a y линейно поляризованных волн и фазовым сдвигом Δφ между ними. Частным случаем эллиптически поляризованной волны является волна с круговой поляризацией (a x = a y , Δφ = ± π / 2).

Рис. 3.11.5 дает представление о пространственной структуре эллиптически поляризованной волны.

Линейно поляризованный свет испускается лазерными источниками. Свет может оказаться поляризованным при отражении или рассеянии. В частности, голубой свет от неба частично или полностью поляризован. Однако, свет, испускаемый обычными источниками (например, солнечный свет, излучение ламп накаливания и т. п.), неполяризован . Свет таких источников в каждый момент состоит из вкладов огромного числа независимо излучающих атомов с различной ориентацией светового вектора в излучаемых этими атомами волнах. Поэтому в результирующей волне вектор беспорядочно изменяет свою ориентацию во времени, так что в среднем все направления колебаний оказываются равноправными. Неполяризованный свет называют также естественным светом .

В каждый момент времени вектор может быть спроектирован на две взаимно перпендикулярные оси (рис. 3.11.6).

Это означает, что любую волну (поляризованную и неполяризованную) можно представить как суперпозицию двух линейно поляризованных во взаимно перпендикулярных направлениях волн: . Но в поляризованной волне обе составляющие E x (t ) и E y (t ) когерентны, а в неполяризованной - некогерентны, т. е. в первом случае разность фаз между E x (t ) и E y (t ) постоянна, а во втором она является случайной функцией времени.

Явление двойного лучепреломления света объясняется тем, что во многих кристаллических веществах показатели преломления волн, линейно поляризованных во взаимно перпендикулярных направлениях, различны. Поэтому кристалл раздваивает проходящие через него лучи (рис. 3.11.1). Два луча на выходе кристалла линейно поляризованы во взаимно перпендикулярных направлениях. Кристаллы, в которых происходит двойное лучепреломление, называются анизотропными .

С помощью разложения вектора на составляющие по осям можно объяснить закон Малюса (рис. 3.11.2).

У многих кристаллов поглощение света сильно зависит от направления электрического вектора в световой волне. Это явление называют дихроизмом . Этим свойством, в частности, обладают пластины турмалина, использованные в опытах Малюса. При определенной толщине пластинка турмалина почти полностью поглощает одну из взаимно перпендикулярно поляризованных волн (например, E x ) и частично пропускает вторую волну (E y ). Направление колебаний электрического вектора в прошедшей волне называется разрешенным направлением пластинки. Пластинка турмалина может быть использована как для получения поляризованного света (поляризатор ), так и для анализа характера поляризации света (анализатор ). В настоящее время широко применяются искусственные дихроичные пленки, которые называются поляроидами . Поляроиды почти полностью пропускают волну разрешенной поляризации и не пропускают волну, поляризованную в перпендикулярном направлении. Таким образом, поляроиды можно считать идеальными поляризационными фильтрами .

Рассмотрим прохождение естественного света последовательно через два идеальных поляроида П 1 и П 2 (рис. 3.11.7), разрешенные направления которых повернуты друг относительно друга на некоторый угол φ. Первый поляроид играет роль поляризатора. Он превращает естественный свет в линейно поляризованный. Второй поляроид служит для анализа падающего на него света.

Если обозначить амплитуду линейно поляризованной волны после прохождения света через первый поляроид через , то волна, пропущенная вторым поляроидом, будет иметь амплитуду E = E 0 cos φ. Следовательно, интенсивность I линейно поляризованной волны на выходе второго поляроида будет равна

Таким образом, в электромагнитной теории света закон Малюса находит естественное объяснение на основе разложения вектора на составляющие.

Поляризация волн

Поляриза́ция волн - характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

В продольной волне поляризация возникнуть не может, так как направление колебаний в этом типе волн всегда совпадают с направлением распространения.

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды , всегда перпендикулярным к волновому вектору. Так что в трёхмерном пространстве имеется ещё одна степень свободы - вращение вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

  • несимметричная генерация волн в источнике возмущения;
  • анизотропность среды распространения волн;
  • преломление и отражение на границе двух сред.

Основными являются два вида поляризации:

  • линейная - колебания возмущения происходят в какой-то одной плоскости . В таком случае говорят о «плоско-поляризованной волне»;
  • круговая - конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой .

На основе этих двух или только круговой можно сформировать и другие, более сложные виды поляризации. Например, эллиптическая .

Поляризация описывается Фигурами Лиссажу и соответствует сложению поперечных колебаний равной частоты.

Поляризация электромагнитных волн

Теория явления

Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например, поляризованные вертикально и горизонтально. Возможны другие разложения, например, по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

Линейную поляризацию имеет обычно излучение антенн .

По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света, прошедшего через поляризаторы, подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

, , , .

Независимыми являются только три из них, ибо справедливо тождество:

.

Если ввести вспомогательный угол , определяемый выражением (знак соответствует левой, а - правой поляризации ), то можно получить следующие выражения для параметров Стокса:

, , .

На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса , , интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса . Углы и имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре [уточнить ] , поэтому эта сфера называется сферой Пуанкаре . В математике этой модели соответствует сфера Римана , в других разделах физики - сфера Блоха .

Наряду с , , используют также нормированные параметры Стокса , , . Для поляризованного света .

Практическое значение

Картинка справа сделана с использованием поляризационного фильтра

Чаще всего это явление используется для создания различных оптических эффектов, а также в 3D-кинематографе (технология IMAX), где поляризация используется для разделения изображений, предназначенных правому и левому глазу.

Круговая поляризация применяется в антеннах космических линий связи, так как для приёма сигнала не важно положение плоскости поляризации передающей и приёмной антенн. То есть вращение космического аппарата не повлияет на возможность связи с ним. В наземных линиях используют антенны линейной поляризации - всегда можно выбрать заранее - горизонтально или вертикально располагать плоскость поляризации антенн. Антенну круговой поляризации выполнить сложнее, чем антенну линейной поляризации. Вообще, круговая поляризация - вещь теоретическая. На практике говорят об антеннах эллиптической поляризации - с левым или правым направлением вращения.

Круговая поляризация света используется также в технологиях стереокинематографа RealD и MasterImage. Эти технологии подобны IMAX с той разницей, что круговая поляризация вместо линейной позволяет сохранять стереоэффект и избегать двоения изображения при небольших боковых наклонах головы.

Поляризация частиц

Аналогичный эффект наблюдается при квантовомеханическом рассмотрении пучка частиц, обладающих спином . Состояние отдельной частицы в этом случае, вообще говоря, не является чистым и должно описываться соответствующей матрицей плотности . Для частицы со спином ½ (скажем, электрона) это эрмитова матрица 2×2 со следом 1:

В общем случае она имеет вид

Здесь - вектор, составленный из матриц Паули , а - вектор среднего спина частицы. Величина

называется степенью поляризации частицы . Это вещественное число Значение соответствует полностью поляризованному пучку частиц, при этом

Поляризация волн

Поляриза́ция волн - характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

В продольной волне поляризация возникнуть не может, так как направление колебаний в этом типе волн всегда совпадают с направлением распространения.

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды , всегда перпендикулярным к волновому вектору. Так что в трёхмерном пространстве имеется ещё одна степень свободы - вращение вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

  • несимметричная генерация волн в источнике возмущения;
  • анизотропность среды распространения волн;
  • преломление и отражение на границе двух сред.

Основными являются два вида поляризации:

  • линейная - колебания возмущения происходят в какой-то одной плоскости . В таком случае говорят о «плоско-поляризованной волне»;
  • круговая - конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой .

На основе этих двух или только круговой можно сформировать и другие, более сложные виды поляризации. Например, эллиптическая .

Поляризация описывается Фигурами Лиссажу и соответствует сложению поперечных колебаний равной частоты.

Поляризация электромагнитных волн

Теория явления

Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например, поляризованные вертикально и горизонтально. Возможны другие разложения, например, по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

Линейную поляризацию имеет обычно излучение антенн .

По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света, прошедшего через поляризаторы, подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

, , , .

Независимыми являются только три из них, ибо справедливо тождество:

.

Если ввести вспомогательный угол , определяемый выражением (знак соответствует левой, а - правой поляризации ), то можно получить следующие выражения для параметров Стокса:

, , .

На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса , , интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса . Углы и имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре [уточнить ] , поэтому эта сфера называется сферой Пуанкаре . В математике этой модели соответствует сфера Римана , в других разделах физики - сфера Блоха .

Наряду с , , используют также нормированные параметры Стокса , , . Для поляризованного света .

Практическое значение

Картинка справа сделана с использованием поляризационного фильтра

Чаще всего это явление используется для создания различных оптических эффектов, а также в 3D-кинематографе (технология IMAX), где поляризация используется для разделения изображений, предназначенных правому и левому глазу.

Круговая поляризация применяется в антеннах космических линий связи, так как для приёма сигнала не важно положение плоскости поляризации передающей и приёмной антенн. То есть вращение космического аппарата не повлияет на возможность связи с ним. В наземных линиях используют антенны линейной поляризации - всегда можно выбрать заранее - горизонтально или вертикально располагать плоскость поляризации антенн. Антенну круговой поляризации выполнить сложнее, чем антенну линейной поляризации. Вообще, круговая поляризация - вещь теоретическая. На практике говорят об антеннах эллиптической поляризации - с левым или правым направлением вращения.

Круговая поляризация света используется также в технологиях стереокинематографа RealD и MasterImage. Эти технологии подобны IMAX с той разницей, что круговая поляризация вместо линейной позволяет сохранять стереоэффект и избегать двоения изображения при небольших боковых наклонах головы.

Поляризация частиц

Аналогичный эффект наблюдается при квантовомеханическом рассмотрении пучка частиц, обладающих спином . Состояние отдельной частицы в этом случае, вообще говоря, не является чистым и должно описываться соответствующей матрицей плотности . Для частицы со спином ½ (скажем, электрона) это эрмитова матрица 2×2 со следом 1:

В общем случае она имеет вид

Здесь - вектор, составленный из матриц Паули , а - вектор среднего спина частицы. Величина

называется степенью поляризации частицы . Это вещественное число Значение соответствует полностью поляризованному пучку частиц, при этом

Следствием теории Максвелла является поперечность электромагнитных (световых) волн распространяющихся в вакууме или изотропной среде: векторы напряженности электрического и магнитного полей волны взаимно перпендикулярны и колеблются перпендикулярно вектору скорости v распространения волны (то есть перпендикулярно световому лучу). Явление поляризации света служит надежным обоснованием поперечности световой волны. При рассмотрении поляризации обычно все рассуждения связывают с плоскостью колебаний вектора напряженности электрического поля Е - светового вектора , так как химическое, физиологическое и другие виды воздействия света на вещество обусловлены главным образом электрическими колебаниями. Однако при этом следует помнить об обязательном существовании перпендикулярного ему вектора напряженности магнитного поля Н .

Поляризация электромагнитной волны. Записывая решение для электрического поля плоской электромагнитной волны в виде

мы предполагали, что направление вектора амплитуды колебаний не зависит от времени. В этом случае вектор электрического поля всегда и во всех точках волны направлен вдоль одной и той же прямой - колеблется в одной плоскости неизменной ориентации в пространстве.

Плоскость, в которой происходят колебания светового вектора, то есть плоскость, содержащая вектор и направление распространения волны, называется плоскостью колебаний. Если эта плоскость не меняет во времени своей ориентации, то волна называется - линейно (плоско) поляризованной .

Выбирая ось х вдоль направления распространения волны, а ось у - вдоль векторной амплитуды , записываем (6.1) в виде

Однако существует и вторая линейно поляризованная волна, имеющая ту же частоту и распространяющаяся в том же направлении:

Электрические колебания в этой волне направлены вдоль оси z, так что волны (6.2) и (6.3) линейно независимы. Обе они являются решением одного и того же волнового уравнения, так что их суперпозиция также является решением того же уравнения. Сложив эти волны, мы найдем общее выражение для монохроматической волны с данной частотой w , распространяющейся вдоль оси х. Математически эта процедура ничем не отличается от сложения взаимно ортогональных колебаний. Если зафиксировать какую-то точку х и следить за изменением вектора электрического поля в ней, то конец вектора будет описывать эллиптическую , в общем случае, траекторию в плоскости, параллельной y0z. Вращение вектора происходит с частотой волны . В этом случае говорят, что свет имеет эллиптическую поляризацию . Если разность фаз кратна , то эллиптическая поляризация вырождается в линейную . При равенстве амплитуд Е 0,у и Е 0,г эллипс превращается в окружность. Тогда говорят о круговой поляризации волны. В соответствии с двумя возможными направлениями вращения вектора возможны право- и левополяризованные волны . Любую электромагнитную волну можно представить как линейную комбинацию двух линейно поляризованных волн или как линейную комбинацию двух волн с круговой поляризацией. Иными словами, электромагнитные волны имеют две внутренние степени свободы.

Естественный и поляризованный свет. В свете, испускаемом обычными источниками, имеются колебания, совершающиеся в различных направлениях, перпендикулярных к лучу. В таких световых волнах, исходящих из различных элементарных излучателей (атомов), векторы имеют различные ориентации, причем все эти ориентации равновероятны, что обусловлено большим числом атомных излучателей. Такой свет называется естественным , или неполяризованным .

Если под влиянием внешних воздействий на свет или внутренних особенностей источника света (лазер) появляется предпочтительное, наиболее вероятное направление колебаний, то такой свет называется частично поляризованным . Неполяризованный (естественный) свет может испускаться лишь огромным числом элементарных излучателей. Электромагнитная волна от отдельного элементарного излучателя (атома, молекулы) всегда поляризована. С помощью различных поляризаторов из пучка естественного света можно выделить часть, в которой колебания вектора будут происходить в одном определенном направлении в плоскости, перпендикулярной лучу, то есть выделенный свет будет линейно поляризованным.

На рисунках направление колебаний электрического поля линейно поляризованной волны изображается следующим образом. Если вектор Е колеблется в плоскости чертежа, то на направление вектора скорости волны наносится ряд вертикальных стрелочек (рис. 6.1-1), а если в плоскости, перпендикулярной чертежу, - ряд точек (рис. 6.1-2). Естественный (неполяризованный) свет условно обозначается чередующимися черточками, которым соответствует, например, компонента Е y вектора напряженности электрического поля, и точками, соответствующими другой компоненте Е z (рис. 6.1-3).

Рис. 6.1. Условные обозначения типа поляризации волны

Существуют приборы (поляризаторы), пропускающие только колебания, происходящие параллельно некоторой плоскости, называемой плоскостью поляризации прибора, и полностью задерживающие ортогональные колебания. Если пропустить через такой прибор пучок света, то на выходе он будет линейно поляризованным. При вращении прибора вокруг направления луча интенсивность выходящего света будет изменяться от I MAX до I MIN .

Степень поляризации света - это величина

Отметим, что формула (6.4) пригодна для расчета степени поляризации света лишь в том случае, когда частично поляризованный свет представляет собой смесь естественного света и света линейно поляризованного и не работает, например, в случае смеси естественного света и света поляризованного по кругу. В общем случае степень поляризации может быть рассчитана как отношение интенсивности поляризованной компоненты к суммарной интенсивности волны, то есть сумме интенсивностей поляризованной и естественной компонент смеси:

Нетрудно показать, что (6.4) есть частный случай последней формулы.

Если падающий пучок света линейно поляризован, то при положении прибора, когда его плоскость поляризации ортогональна плоскости колебаний волны, свет через прибор не пройдет, то есть . В соответствии с формулой (6.4) степень поляризации такого света . Для частично поляризованного света

и . Для естественного света, где волны разных поляризаций смешаны в равной степени и все направления эквивалентны, интенсивность выходящего света не изменяется при вращении поляризатора, так что и .

Закон Малюса. В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е , например природные кристаллы турмалина. Монокристалл турмалина поглощает колебания вектора Е в одном направлении настолько сильно, что сквозь пластинку толщиной порядка 1 мм проходит только линейно поляризованный луч. Кристаллы йодистого хинина еще сильнее поглощают одну из поляризаций: кристаллическая пленка толщиной в десятую долю миллиметра практически полностью отделяет один из линейно поляризованных лучей.

Пусть естественный свет распространяется перпендикулярно плоскости рисунка 6.2.

Рис. 6.2. Разложение вектора амплитуды колебаний А в волне, падающей на поляризатор

Вектор амплитуды колебаний электрического поля волны, совершающихся в плоскости, образующей с плоскостью поляризатора угол , можно разложить на два колебания с амплитудами

Первое колебание с амплитудой А || пройдет через прибор (поляризатор), второе - с амплитудой А - будет задержано (поглощено). Интенсивность прошедшей волны пропорциональна квадрату амплитуды

Падающая волна является смесью волн с различными углами . Усредняя по углам, получаем для интенсивности света на выходе из поляризатора:

где - интенсивность падающего на поляризатор света. В естественном свете все значения угла равновероятны:

так что интенсивность света, прошедшего через поляризатор, будет равна . При вращении поляризатора вокруг направления луча естественного света интенсивность прошедшего света остается неизменной, но изменяется лишь ориентация плоскости колебаний света, выходящего из прибора.

Рассмотрим теперь падение линейно поляризованного света с интенсивностью на тот же поляризатор (рис. 6.3).

Рис. 6.3. Прохождение линейно поляризованной волны через поляризатор

Сквозь прибор пройдет составляющая колебаний с амплитудой

где - угол между плоскостью колебаний вектора Е и плоскостью поляризатора. Следовательно, интенсивность прошедшего света I определяется выражением

которое носит название закона Малюса .

Поляризационные приборы по своему целевому назначению делятся на поляризаторы и анализаторы . Поляризаторы служат для получения поляризованного света. С помощью анализатора можно убедиться, что падающий свет поляризован, и выяснить направление плоскости поляризации. Принципиальных различий в конструкционном отношении между поляризатором и анализатором не существует.

Поставим на пути естественного света два поляризатора, плоскости которых образуют угол (рис. 6.4).


Рис. 6.4. Пропускание естественного света через систему из двух поляризаторов

Из первого поляризатора выйдет линейно поляризованный свет, интенсивность которого , составит половину интенсивности падающего естественного света . Согласно закону Малюса из второго поляризатора (который играет роль анализатора) выйдет свет с интенсивностью

Таким образом, интенсивность света, прошедшего через два поляризатора, равна

Если угол (плоскости поляризации поляризатора и анализатора параллельны), то ; если (анализатор и поляризатор скрещены), то .

Пример 1. В частично поляризованном свете амплитуда колебаний, соответствующая максимальной интенсивности света при прохождении через поляризатор, в n = 2 раза больше амплитуды, соответствующей минимальной интенсивности. Определим степень поляризации света.

Поскольку интенсивность пропорциональна квадрату амплитуды, имеем

Отсюда степень поляризации света равна

Пример 2. На пути света со степенью поляризации Р = 0.6 поставили анализатор так, что интенсивность прошедшего света стала максимальной. Определим, во сколько раз уменьшится интенсивность, если анализатор повернуть на угол ?

В падающем луче по условию (см. предыдущий пример)

При повороте анализатора на угол будут пропущены колебания, параллельные плоскости поляризации прибора. Поэтому интенсивность пропущенных колебаний, прежде бывших параллельными плоскости поляризации, составит

a интенсивность прошедших колебаний, до поворота задерживавшихся анализатором, равна

Суммарная интенсивность прошедших колебаний равна сумме

Стало быть, интенсивность уменьшится при повороте анализатора в 16/13 = 1.23 раза.

Поляризация при отражении и преломлении. Получить поляризованный свет из естественного можно еще одним способом - отражением. Опыт показывает, что отраженный от поверхности диэлектрика и преломленный лучи всегда частично поляризованы. Когда свет падает на диэлектрическую поверхность, то в отраженном луче преобладают колебания, перпендикулярные плоскости падения (точки на рис. 6.5), а в преломленном луче - колебания, параллельные плоскости падения (стрелки на рис. 6.5).

Рис. 6.5. Поляризация света при отражении и преломлении

Степень поляризации зависит от угла падения лучей и от относительного показателя преломления сред. Исследуя это явление, английский физик Д. Брюстер установил, что при определенном значении угла падения

удовлетворяющем условию

отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения луча. Это соотношение известно как закон Брюстера. При

отражается только та компонента вектора напряженности электрического поля, которая параллельна поверхности диэлектрика (перпендикулярна плоскости падения). Соответственно, преломленный луч всегда частично поляризован, так как отражается лишь какая-то доля падающего света (не равная 50 %).

При падении света под углом Брюстера отраженный и преломленный лучи взаимно перпендикулярны, отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения луча, а преломленный луч частично поляризован с максимальной степенью поляризации.

Для того чтобы объяснить, почему отраженный при падении под углом Брюстера луч линейно поляризован в плоскости, перпендикулярной плоскости падения, учтем, что отраженный свет есть результат излучения вторичных волн колеблющимися под действием светового вектора волны электрическими зарядами (электронами) в среде II . Эти колебания происходят в направлении колебаний вектора Е .

Разложим колебания вектора Е в среде II на два взаимно перпендикулярных направления (см. рис. 6.6): колебания , происходящие в плоскости падения (показаны стрелками), и колебания , происходящие перпендикулярно плоскости падения (показаны точками). В случае падения под углом Брюстера

отраженный луч перпендикулярен преломленному лучу 0С. Следовательно, параллелен . Из электромагнитной теории Максвелла известно, что колеблющийся электрический заряд не излучает электромагнитных волн вдоль направления своего движения. Поэтому колеблющийся в диэлектрике излучатель типа вдоль направления не излучает. Таким образом, по направлению отраженного луча распространяется свет, посылаемый только излучателями типа , направления колебаний которых перпендикулярны плоскости падения.

Следует отметить, что на опыте закон Брюстера не выполняется вполне строго из-за дисперсии света.

Пример 3. Определим, на какой угловой высоте над горизонтом должно находиться Солнце, чтобы солнечный свет, отраженный от поверхности воды, был полностью поляризован.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...